導航:首頁 > 裝置知識 > 篩板精餾塔實驗裝置圖

篩板精餾塔實驗裝置圖

發布時間:2025-03-28 09:36:17

A. 精餾塔工作原理

原理:利用混合物中各組分具有不同的揮發度,即在同一溫度下各組分的蒸氣壓不同這一性質,使液相中的輕組分(低沸物)轉移到氣相中,而氣相中的重組分(高沸物)轉移到液相中,從而實現分離的目的。

無論是平衡蒸餾還是簡單蒸餾,雖然可以起到一定的分離作用,但是並不能將一混合物分離為具有一定量的高純度產品。在石油化工生產中常常要求獲得純度很高的產品,通過精餾過程可以獲得這種高純度的產品。


(1)篩板精餾塔實驗裝置圖擴展閱讀

精餾塔產品質量指標選擇有兩類:直接產品質量指標和間接產品質量指標。精餾塔最直接的產品質量指標是產品成分。成分檢測儀表發展很快,特別是工業色譜儀的在線應用,出現了直接控制產品成分的控制方案,此時檢測點就可以放在塔頂或塔底。

然而由於成分分析儀表價格昂貴,維護保養麻煩,采樣周期較長(即反應緩慢,滯後較大)而且應用中有時也不太可靠,所以成分分析儀表的應用受到了一定的限制。因此,精餾塔產品質量指標通常採用間接質量指標。

B. 關於食品工程原理里的精餾塔實驗該如何設計

實驗8 篩板精餾塔實驗
一、實驗目的
1.了解篩板式精餾塔的結構流程及操作方法。
2.測取部分迴流或全迴流條件下的總板效率。
3.觀察及操作狀況。
二、實驗原理
在板式精餾塔中,混合液的蒸汽逐板上升,迴流液逐板下降,汽液兩相在塔板上接觸,實現傳質,傳熱過程而達到兩相一定程度的分離。如果在每層塔板上,液體與其上升的蒸汽到平衡狀態,則該塔板稱為理論板,然而在實際操作中、汽、液接觸時間有限,汽液兩相一般不可能達到平衡,即實際塔板的分離效果,達不到一塊理論板的作用,因此精餾塔的所需實際板數一般比理論板要多,為了表示這種差異而引入了「板效率」這一概念,板效率有多種表示方法,本實驗主要測取二元物系的總板效率Ep :

板式塔內各層塔板的傳質效果並相同,總板效率只是反映了整個塔板的平均效率,概括地講總板效率與塔的結構,操作條件,物質性質、組成等有關是無法用計算方法得出可靠值,而在設計中需主它,因此常常通過實驗測取。實驗中實驗板數是已知的,只要測取有關數據而得到需要的理論板數即可得總板效率,本實驗可測取部分迴流和全迴流兩種情況下的板效,當測取塔頂濃度,塔底濃度進料濃度 以及迴流比 並找出進料狀態、即可通過作圖法畫出平衡線、精餾段操作線、提餾段操作線,並在平衡線與操作線之間畫梯級即可得出理論板數。如果在全迴流情況下,操作線與對角線重合,此時用作圖法求取理論板數更為簡單。
三、實驗裝置與流程
實驗裝置分兩種:
(1)用於全迴流實驗裝置
精餾塔為一小型篩板塔,蒸餾釜為卧直徑229m長3000mm內有加熱 器。塔內徑50mm共有匕塊塔板,每塊塔板上開有直徑2mm篩孔12個板間距100mm,塔體上中下各裝有一玻璃段用 以觀察塔內的操作情況。塔頂裝有蛇管式冷凝器蛇管為φ10×1紫銅管長3.25m,以水作冷凝劑,無提餾段,塔傍設有儀表控制台,採用1kw調壓變壓器控制釜內電加熱器。在儀表控制台上設有溫度指示表。壓強表、流量計以及有關的操作控制等內容。
(2)用於部分迴流實驗裝置
裝置由塔、供料系統、產品貯槽和儀表控制櫃等部份組成。蒸餾釜為φ250×340×3mm不銹鋼罐體,內設有2支1kw電熱器,其中一支恆加熱,另一支用可調變壓器控制。控制電源,電壓以及有關溫,壓力等內容均有相應儀表指示,
塔身採用φ57×3.5mm不銹鋼管製成,設有二個加料口,共十五段塔節,法蘭連接,塔 身主要參數有塔板十五塊,板厚1mm不銹鋼板,孔徑2mm,每板21孔三形排列,板間距100mm,溢流管為φ14×2不銹鋼管堰高10mm。
在塔頂和靈敏板塔段中裝有WEG—001微型銅阻感溫計各一支由儀表櫃上的XCE—102溫度指示儀顯示,以監測相組成變化。
塔頂上裝有不銹鋼蛇管冷凝器,蛇管為φ14×2長250mm以水作冷凝劑以LZB10型轉子流量計計量,冷凝器裝有排氣旋塞。
產品貯槽上方設有觀測罩,用於檢測產品。
迴流量、產品量及供料量分別由轉子流量計計量。料液從料液槽用液下泵輸送。釜液進料液和餾出液分別可由采出取樣,此外在塔身上、中、下三部分各在二塊上設有取樣口,只要用針筒穿取樣口中的硅膠板即可取樣品,因此本裝置不但可以進精餾操作性能的訓練和塔沖總效率的測定,而且還可以進行全迴流下單板效率的測定。
四、實驗方法
(一)全迴流操作實驗方法
1、熟悉了解裝置,檢查加熱釜中料液量是否適當,釜中液面必須浸沒電加熱器(為液面計高1/2以上,約5升0釜內料液組成乙醇10-25%(重量)左右的水溶液。
2、打開電源和加熱器開關,控制加熱功率在700W左右,打開冷卻水,注意觀察塔頂、塔釜情況,當上升蒸汽開始迴流時此時塔頂冷凝器內冷卻水流量應控制好使蒸汽基本處於全凝狀況(50-100升/小時范圍)若流量過小會使蒸汽從塔頂噴出,過大塔板上泡沫層不均,溫度變低。
3、當塔板上泡沫層正常各泡沫層高度大體相等,且各點溫度基本保持穩定、操作穩定持續一段時間(20分鍾以上)後即可開始取樣。
4、由塔頂取樣管和釜底取樣考克用燒瓶接取試樣(150mι左右)取樣前應取少許試樣沖洗燒瓶,取樣後用塞子塞好,並用水沖瓶外部,使其冷卻到常溫。
5、將常溫試樣用比重天平稱出相對密度,然後用相對密度與質量百分數對照表查出質量百分數。
6、可加大加熱電流(5安培左右)觀察到液泛現象,此時塔內壓力明顯增加,觀察後,將加熱電流緩慢減到零,關閉電源開關。
(二)部分迴流時操作方法
1、配製4~5%(體積)灑精水溶液,注入蒸餾釜(或由供料泵注入)至液位計上的標記為止。
2、在供料槽中配製15~20%(體積)灑精水溶液。
3、通電啟動加熱釜液,先可將可調變壓器達到額定電壓,開冷卻水,觀察塔各部情況。
4、進行全迴流操作,控制蒸發量「靈敏板」溫度應在80℃左右。
5、開加料泵,控制流量(需經幾度調節才能適宜流量)
6、為了首先滿足迴流要求、故在迴流分配器中的產品管(φ8)管口高於迴流管的管口,應調小迴流量(過一段時間即可餾出產品)進行部分迴流並控制一定回比,使產品達到 要求的濃度94~95%(體積)
7、控制釜底排料量,使釜液面保持不變。
8、控制好冷卻水用量(即塔頂冷凝器冷流體)便塔頂蒸汽基本處於全凝狀態。
9、操作均達到穩定後,進行樣品採集,可按進料、塔釜、塔頂、順序採集。並記錄進料迴流、餾出各流量及溫度等有關數據。
10、將樣品降到常溫後,在教師指導下用液體比重天平測定相對密度,再用對照關系曲線,查出質量百分數。
11、可加大加熱電流觀察液泛現象。
12、注意觀察操作條件不同對結果的影響。
五、數據處理
1、用作圖法確定實驗條件下理論板數,並進一步得出總板效率。
2、對結果的可靠性進行分析。

六、實驗討論題
1、在實驗中應測定哪些數據?如何測得?
2、比重天平如何使用?應注意什麼問題?
3、全迴流和部分迴流在操作上有何差異?
4、塔頂迴流液濃度在實驗過程中有否改變?
(全迴流及部分迴流兩種情況)
5、怎樣採集樣品才能合乎要求?
6、比較兩種裝置在內容和操作方面的不同?
7、在操作過程中各塔板上泡沫層狀態有何不同?各發生過怎樣的變化?為什麼?
8、塔釜內壓強由何決定?為會么會產生波動?
9、塔頂和塔底溫度和什麼條件有關?
10、精餾塔板效率都有幾種表示方法,試討論如何以板效率?
11、全迴流操作是否為穩定操作?當採集塔頂樣品時,對全迴流操作可能有何影響?
12、塔頂冷凝器內冷流體用量大小,對精餾操作有何影響?
13、如何判別部分迴流操作已達到穩定操作狀態?

C. 篩板塔板效率的驗算

一、篩板精餾實驗裝置篩板的流體力學驗算
1.氣體通過篩板壓強相當的液柱高度hp
(1)干板壓降相當的液柱高度,查干篩孔的流量系數圖得,C0=0.84
(2)氣體穿過板上液層壓降相當的液柱高度由充氣系數與關聯圖查得板上液層充氣系數﹦0.62
(3)克服液體表面張力壓降相當的液柱高度,故單板壓降
二、篩板精餾實驗裝置篩板的流體力學驗算
1、干板壓降相當的液柱高度,查干篩孔的流量系數圖得,C0=0.84
2、氣體穿過板上液層壓降相當的液柱高度,由充氣系數與關聯圖查得板上液層充氣系數﹦0.73
3、克服液體表面張力壓降相當的液柱高度,故單板壓降
二、霧沫夾帶量的驗算
1、篩板精餾實驗裝置霧沫夾帶量的驗算
故在設計負荷下不會發生過量霧沫夾帶。
2、篩板精餾實驗裝置霧沫夾帶量的驗算
故在設計負荷下不會發生過量霧沫夾帶。
三、篩板精餾實驗裝置漏液的驗算
1、篩板精餾實驗裝置漏液的驗算
篩板的穩定性系數 故在設計負荷下不會產生過量漏液。
2、篩板精餾實驗裝置漏液的驗算
篩板的穩定性系數 故在設計負荷下不會產生過量漏液。
四、液泛驗算
1、篩板精餾實驗裝置液泛驗算 為防止降液管液泛的發生,應使降液管中清液層高度,則故在設計負荷下不會發生液泛。
2、篩板精餾實驗裝置液泛驗算
為防止降液管液泛的發生,應使降液管中清液層高度,則故在設計負荷下不會發生液泛。根據以上塔板的各項液體力學驗算,可認為此精餾塔塔徑及各項工藝尺寸是適合的

D. 應用化學開題報告

應用化學開題報告

論文題目:苯-氯苯分離過程連續精餾塔的工藝設計

一 文獻綜述與調研報告 :(闡述課題研究的現狀及發展趨勢,本課題研究的意義和價值、參考文獻)

1. 課題的背景

設計是工程建設的靈魂,對工程建設起著主導和決定性的作用,決定著工業現代化的水平。工程設計是科研成果轉化為現實生產力的橋梁和紐帶,工業科研成果只有通過設計,才能轉化為現實的工業化生產力。化工設計是一項政策性很強的工作,它涉及政治、經濟、技術、環保、法規等諸多方面,而且還會涉及多專業及多學科的交叉、綜合和相互協調,是集體性的勞動。先進的設計思想、科學的設計方法和優秀的設計作品是工程設計人員應堅持的設計方向和追求的目標。在化工設計中,化工單元設備的設計是整個化工過程和裝置設計的核心和基礎,並貫穿於設計過程的始終,因此作為化工類的本科生,熟練掌握化工單元設備的設計方法是十分重要的。

精餾是分離液體混合物(含可液化的氣體混合物)最常用的一種單元操作,在化工、煉油、石油化工等工業中得到廣泛應用。精餾過程在能量劑的驅動下(有時加質量劑),使氣、液兩相多次直接接觸和分離,利用液相混合物中各組分揮發度的不同,使易揮發組分由液相向氣相轉移,難揮發組分由氣相向液相轉移,實現原料混合液中各組分的分離。該過程是同時進行傳質、傳熱的過程。

本次設計任務為設計一定處理量的精餾塔,實現苯-氯苯的分離。鑒於設計任務的處理量不大,苯-氯苯體系比較易於分離,待處理料液清潔的特點,設計決定選用篩板塔。本課程設計的主要內容是過程的物料衡算、熱量衡算,工藝計算,結構設計和校核。限於作者的水平,設計中難免有不足和謬誤之處,懇請老師和讀者批評指正。

篩板塔是生產中最常用的板式塔之一。板式塔具有結構簡單,製造和維修方便,生產能力大,塔板壓降小,板效率較高等優點。其早在1832年問世,長期以來,一直被誤以為操作范圍狹窄,篩孔容易堵塞而收到冷遇。但是篩孔板結構結構簡單,造價低廉,在經濟上有很大的吸引力。因此,從20世紀50年代以來,許多研究者對篩孔板塔重新進行了研究。研究結果表明,造成篩板塔操作范圍狹窄的原因是設計不良(主要是設計點偏低、容易漏液),而設計良好的篩板塔是具有足夠寬的操作范圍的。至於篩孔容易堵塞的問題,可採用大孔徑篩板一得到圓滿的解決。

20世紀60年代初,美國精餾研究公司(FRI)又以工業的規模,使用不同物系,在不同操作壓強下,廣泛地改變了篩孔直徑、開孔率、堰高等結構參數,對篩板塔進行了系統研究。這些研究成果,使篩板塔的設計更加完美善,其中關於大孔徑篩板的設計方法屬於專利。國內對大孔徑篩板也做過某些研究。

FRI研究工作表明,設計良好的篩板是一種效率高、生產能力大的塔板,對篩板的推廣應用起了很大的促進作用,目前,篩板已發展成為應用最廣的通用塔板。在我國,篩板的應用也日益普通。

可以說,篩板精餾塔是一種傳統的精餾塔。早期由於設計方面的原因,曾一度被工業生產所忽視。但由於計算技術的發展,設計水平的提高,篩板塔越來越受到廠家的關注和使用,其優點是設備簡單,操作簡便,維修方便,製造成本低。

2. 課題研究的現狀及發展趨勢

氣-液傳質設備主要分為板式塔和填料塔兩大類。精餾操作既可採用板式塔,也可採用填料塔,板式塔為逐級接觸型氣-液傳質設備,其種類繁多,根據塔板上氣-液接觸元件的不同,可分為泡罩塔、浮閥塔、篩板塔、穿流多孔板塔、舌形塔、浮動舌形塔和浮動噴射塔等多種。板式塔在工業上最早使用的是泡罩塔(1813年)、篩板塔(1832年),其後,特別是在本世紀五十年代以後,隨著石油、化學工業生產的迅速發展,相繼出現了大批新型塔板,如S型板、浮閥塔板、多降液管篩板、舌形塔板、穿流式波紋塔板、浮動噴射塔板及角鋼塔板等。目前從國內外實際使用情況看,主要的塔板類型為篩板塔、浮閥塔及泡罩塔,而前者使用尤為廣泛。

篩板塔是板式塔的一種,其設計意圖是一方面使汽液兩相在塔板上充分接觸,以減小傳質阻力,另一方面是在總體上使兩相保持逆流流動,而在塔板上使兩相呈均勻的錯流接觸,以獲得更大的傳質推動力。其內裝若干層水平塔板,板上有許多小孔,形狀如篩;並裝有溢流管或沒有溢流管。操作時,液體由塔頂進入,經溢流管(一部分經篩孔)逐板下降,並在板上積存液層。氣體(或蒸氣)由塔底進入,經篩孔上升穿過液層,鼓泡而出,因而兩相可以充分接觸,並相互作用。泡沫式接觸氣液傳質過程的一種形式,性能優於泡罩塔。為克服篩板安裝水平要求過高的困難,發展了環流篩板;克服篩板在低負荷下出現漏液現象,設計了板下帶盤的篩板;減輕篩板上霧沫夾帶縮短板間距,製造出板上帶擋的的篩板和突孔式篩板和用斜的增泡台代替進口堰,塔板上開設氣體導向縫的林德篩板。篩板塔普遍用作H2S-H2O雙溫交換過程的冷、熱塔,應用於蒸餾、吸收和除塵等。

篩板塔是傳質過程常用的塔設備,它的主要優點有:

(1) 結構比浮閥塔更簡單,易於加工,造價約為泡罩塔的60%,為浮閥塔的80%左右。

(2)處理能力大,比同塔徑的泡罩塔可增加10~15%。

(3)塔板效率高,比泡罩塔高15%左右。

(4) 壓降較低,每板壓力比泡罩塔約低30%左右。

篩板塔的缺點是:

(1)塔板安裝的水平度要求較高,否則氣液接觸不勻。

(2) 操作彈性較小(約2~3)。

(3)小孔篩板容易堵塞。

目前應用比較廣泛的是林德篩板,它由美國聯合碳化物公司的林德子公司開發 ,最早應用於要求低壓降的空分裝置的精餾塔 ,1963 年後開始應用於乙苯-苯乙烯等精餾裝置中。20 世紀70 年代有多家公司的120餘台減壓蒸餾塔採用了林德篩板,其中超過5.0 m 塔徑的就有45 台,最大的塔徑為11.5 m。林德篩板在普通篩板上有2 點重要改進:一是在降液管液體出口處將塔板向上凸起,二是在塔板上增設了百葉窗導向孔(國內稱之為導向篩板)。這種改進增大了有效鼓泡麵積,使塔板操作由鼓泡型變為噴射型,在降低液面梯度的同時使氣體分布均勻,從而使干板壓降減小、霧沫夾帶減少、傳質效率提高。目前,國內已有10餘套裝置使用了中運行林德篩板。

精餾是應用最廣的傳質分離操作,其廣泛應用促使其技術已相當成熟,但是技術的成熟並不意味著今後不再需要發展而停滯不前。成熟技術的發展往往要花費更大的精力,但由於其應用的廣泛,每一個進步,哪怕是微小的,也會帶來巨大的經濟效益。正因為如此,蒸餾的研究仍受到廣泛的重視,不斷取得進展。

提高精餾過程的熱力學效率、節省能耗是一貫受到重視的研究領域,分離序列的合成,在用熱集成概念和夾點分析方法開發節能的分離過程和優化換熱網路,在具體分離過程中合理地應用熱泵、多效精餾、中間再沸器和中間冷凝器等實現節能,一直是得到廣泛重視的活躍的研究領域。

對於普通精餾難以(或不能)分離的物料,開發萃取精餾和恆沸精餾的分離工藝,將精餾與反應結合開發反應精餾也是個值得重視的研究領域,這對於拓寬精餾的應用范圍,提高經濟效益有較大意義。

隨著精細化工的發展,間歇精餾應用也更加廣泛,其研究也得到了應有的重視。開發各種新的操作模式,對於節省能耗和縮短操作時間有明顯的效果。塔中持液量的間歇精餾膜模擬計算研究有一定進展,對於設計和指導操作有較大意義。

為開發更可靠的效率和壓降等的模型,當前應強調實測數據,尤其是工業規模的測試數據,這是建立和驗證模型的基礎。六七十年代,美國精餾研究公司等進行了一系列工業規模試驗,取得了十分有價值的實測數據,為各種模型的建立和現象認識的深化奠定了重要基礎。

精餾的研究工作一直十分活躍,而且不斷取得成果。在各種新分離方法得到不斷開發和取得工業應用之際,在石油、天然氣、石油化工、醫葯和農產品化學等工業中所起的重要作用不會改變,作為主要分離方法的地位不會動搖。正如費爾在1987年國際精餾會議上指出的:「如果混合物可以應用精餾分離,那麼經濟上可能有吸引力的方法是精餾。」隨著科學技術和工業生產水平的提高,精餾的應用天地十分廣闊,重要的通過不斷努力,使其技術水平得到進一步提高,使其日趨完善。

3 課題研究的意義和價值

本設計採用連續精餾分離苯-氯苯二元混合物的方法。連續精餾塔在常壓下操作,被分離的苯-氯苯二元混合物由連續精餾塔中部進入塔內,以一定得迴流比由連續精餾塔的塔頂采出含量合格的苯,由塔底采出氯苯,其中氯苯純度不低於99.5%。

高徑比很大的設備稱為塔器。塔設備是化工、煉油生產中最重要的設備之一。它可使氣(或汽)液或液液兩相之間進行緊密接觸,達到相際傳質及傳熱的目的。常見的可在塔設備中完成的單元操作有:精餾、吸收、解吸和萃取等。此外,工業氣體的冷卻與回收,氣體的濕法凈制和乾燥,以及兼有氣液兩相傳質和傳熱的增濕、減濕等。

在化工或煉油廠中,塔設備的性能對於整個裝置的產品產量、質量、生產能力和消耗定額,以及三廢處理和環境保護等各個方面都有重大的影響。據有關資料報道,塔設備的投資費用占整個工藝設備投資費用的較大比例。因此,塔設備的設計和研究,受到化工煉油等行業的`極大重視。

作為主要用於傳質過程的塔設備,首先必須使氣(汽)液兩相充分接觸,以獲得較高的傳質效率。此外,為了滿足工業生產的需要,塔設備還得考慮下列各項傳質效率。此外,為了滿足工業生產的需要,塔設備還得考慮下列各項要求:

(1)生產能力大。在較大的氣(汽)液流速下,仍不致發生大量的霧沫夾帶、攔液或液泛等破壞正常操作的現象。

(2)操作穩定、彈性大。當塔設備的氣(汽)液負荷量有較大的波動時,仍能在較高的傳質效率下進行穩定的操作。並且塔設備應保證能長期連續操作。

(3)流體流動的阻力小。即流體通過塔設備的壓力降小。這將大大節省生產中的動力消耗,以及降低經常操作費用。對於減壓蒸餾操作,較大的壓力降還使系統無法維持必要的真空度。

(4)結構簡單、材料耗用量小、製造和安裝容易。這可以減少基建過程中的投資費用。

(5)耐腐蝕和不易堵塞,方便操作、調節和檢修。

事實上,對於現有的任何一種塔型,都不可能完全滿足上述所有要求,僅是在某些方面具有獨到之處。

根據設計任務書,此設計的塔型為篩板塔。篩板塔是很早出現的一種板式塔。五十年代起對篩板塔進行了大量工業規模的研究,逐步掌握了篩板塔的性能,並形成了較完善的設計方法。與泡罩塔相比,篩板塔具有下列優點:生產能力大20-40%,塔板效率高10-15%,壓力降低30-50%,而且結構簡單,塔盤造價減少40%左右,安裝、維修都較容易。從而一反長期的冷落狀況,獲得了廣泛應用。近年來對篩板塔盤的研究還在發展,出現了大孔徑篩板(孔徑可達20-25mm),導向篩板等多種形式。

篩板塔盤上分為篩孔區、無孔區、溢流堰及降液管等幾部分。工業塔常用的篩孔孔徑為3-8mm,按正三角形排列,空間距與孔徑的比為2.5-5。近年來有大孔徑(10-25mm)篩板的,它具有製造容易,不易堵塞等優點,只是漏夜點低,操作彈性小。

該課題使理論教學與實際應用相結合,有助於提高處理實際問題的能力。通過對該課題的研究,可以加深對精餾過程基本原理的理解,熟練篩板精餾塔的工藝設計方法,培養設計能力。

該過程構造簡單,造價低廉,具有足夠操作彈性,且具有較強的工程使用價值。該過程的推廣和普及,將加速我國工業生產過程節能技術的進步,帶動一大批的相關技術和產業的發展。

參考文獻:

[1] 蔣維鈞,雷良恆,劉茂林.化工原理(下冊) [M].北京:清華大學出版社,1993,264-340

[2] 陳敏恆,從德滋,方圖南,齊鳴齋.化工原理(下冊)[M].北京:化學工業出版社,2006,49-104

[3] 柴誠敬等。化工原理課程設計[M].天津:天津科學技術出版社,1994,75-109

[4] 吳俊生,邵惠鶴.精餾設計、操作和控制[M].北京:中國石化出版社,1997,3-4

[5] 史賢林,田恆水,張平.化工原理實驗[M].上海:華東理工大學出版社,2005,121-122

[6] 劉興高.精餾過程的建模、優化與控制[M].北京:科學出版社,2007,1-2

[7] 林愛嬌,王良恩,邱挺,黃詩煌,李南芳,鄧友娥. 甲醛吸收塔填料層高度的計算[M]. 福州:福州大學學報(自然科學版)1996年2月,第24卷第1期

[8]董誼仁,張劍慈.填料塔液體再分布器的設計[M].化工生產與技術,1998年第3期

[9] 張前程, 簡麗.填料吸收塔中適宜液氣比的確定[M]. 內蒙古工業大學學報,第20卷,第1期

[10] 李忠玉,徐松. 吸收塔填料層高度的解析計算[M].化工設計,1998 年第 5 期

[11] 董誼仁,侯章德.現代填料塔技術(三)填料塔氣體再分布器和其他塔內件[M].化工生產與技術,1996年第四期

[12] Torbjgrn Pettersen,http://www.51lunwen.com/benkekaiti/ Andrew Argo,Richard D. Noble, Carl A. Koval,Design of combined membrane and distillation processes[M]. Separations Technology 6 (1996) 175-187

;

E. 化工原理課程設計 分離丙酮-水混合液的填料精餾塔 有滿意答案,追加100分

這個你要計算的,你可以在網路裡面找個模板,文庫里有,我是學化工的,上個月設計的,是填料塔,算估計要花兩天吧,畫圖三四天就夠了,豆丁文庫也有

F. 自動化與儀表工程師手冊的目錄

第1篇基礎知識
第1章 自動控制系統2
1.1 自動控制基本原理與組成2
1.1.1 自動控制系統的組成2
1.1.2 傳遞函數與方框圖4
1.1.3 頻率特性與單位階躍7
1.1.4 影響自動控制系統的因素13
1.2 自動控制的分類13
1.3 自動控制系統性能指標16
1.3.1 自動控制系統的狀態16
1.3.2 自動控制系統的過渡過程17
1.3.3 控制過程的性能指標18
1.4 自動控制系統各環節特性分析20
1.4.1 典型被控對象特性21
1.4.2 廣義對象各環節特性對控製品質的影響22
1.5 常用PID控制演算法特性24
1.5.1 比例控制演算法24
1.5.2 比例積分控制演算法25
1.5.3 比例微分控制演算法27
1.5.4 比例積分微分控制演算法PID28
1.6 PID控制參數整定方法30
1.7 單迴路控制系統投用33
第2章 流程工業常用工藝知識36
2.1 流程工業物流、能源流平衡關系計算方法36
2.1.1 物料衡算算式362.1.2 物料衡算方法37
2.1.3 物料衡算步驟38
2.1.4 物料衡算種類38
2.1.5 能量衡算基本方法與步驟41
2.2 流程工業中的傳熱原理及示例43
2.2.1 熱傳導43
2.2.2 對流傳熱44
2.2.3 輻射傳熱45
2.2.4 蒸發45
2.3 流程工業分離原理、方法及示例47
2.3.1 氣固分離48
2.3.2 液固分離49
2.3.3 吸收49
2.3.4 萃取52
2.3.5 精餾55
2.4 流程工業化學反應原理及示例61
2.4.1 化學反應過程分類61
2.4.2 化學反應過程主要技術指標61
2.4.3 化學反應過程中的催化劑64
第3章 流程工業常用設備66
3.1 流體輸送設備及特性66
3.1.1 流體輸送設備分類66
3.1.2 流體輸送設備主要性能參數68
3.1.3 離心泵70
3.1.4 往復泵73
3.1.5 旋渦泵74
3.1.6 軸流泵75
3.1.7 流程工業常用泵比較76
3.1.8 離心式通風機77
3.1.9 羅茨鼓風機77
3.1.1 0往復式壓縮機78
3.1.1 1離心式壓縮機79
3.1.1 2真空泵81
3.2 換熱設備及特性82
3.2.1 換熱器分類82
3.2.2 換熱器主要參數83
3.2.3 蒸發器85
3.3 分離設備及特性87
3.3.1 概述87
3.3.2 板式塔87
3.3.3 填料塔92
3.3.4 萃取設備95
3.3.5 結晶設備97
3.3.6 氣固分離設備98
3.4 化學反應設備及特性99
3.4.1 化學反應器的分類99
3.4.2 化學反應器的形式與特點100
3.4.3 烴類熱裂解——管式裂解爐101
3.4.4 氨合成塔106
3.4.5 均相反應器109
3.4.6 氣液相反應器110
3.4.7 氣固相固定床反應器110
3.4.8 流化床反應器112
第4章 流程工業安全與保護系統114
4.1 流程工業安全與保護基本知識114
4.1.1 爆炸114
4.1.2 燃燒122
4.1.3 靜電123
4.2 危險性劃分及安全措施125
4.2.1 爆炸性物質及危險場所劃分125
4.2.2 石油、化工企業火災危險性及危險場所分類127
4.2.3 化學反應危險性評價131
4.2.4 常見危險性及安全措施133
4.2.5 儲罐安全135
4.3 壓力容器和電氣設備安全136
4.3.1 壓力容器分類136
4.3.2 壓力容器事故危害137
4.3.3 防爆電器分類與通用要求141
4.3.4 防爆電氣設備防爆類型及原理144
4.4 工業防腐147
4.4.1 腐蝕機理147
4.4.2 金屬腐蝕分類147
4.4.3 防腐方法148
4.4.4 耐腐蝕材料性能150
4.5 流程工業安全保護方法及示例159
4.5.1 安全儀表系統159
4.5.2 TRICON三重化冗餘控制166
第5章 環境工程170
5.1 流程工業對環境污染及防治概述170
5.1.1 流程工業固體廢棄物來源及污染特徵170
5.1.2 大氣排放標准171
5.1.3 污水排放標准171
5.1.4 流程工業過程污染排放及控制實例177
5.2 廢水檢測與處理177
5.2.1 表示水質的名詞術語177
5.2.2 水體污染的危害177
5.2.3 水質檢測與分析179
5.2.4 廢水處理182
5.3 廢氣控制與處理184
5.3.1 氣體監測中常用的術語和定義184
5.3.2 廢氣監測185
5.3.3 廢氣處理186
5.4 廢渣處理189
5.4.1 化工廢渣分類189
5.4.2 化工廢渣常用處理方法189
5.4.3 鉻渣處理190
5.5 清潔生產與自動化193
5.5.1 清潔生產的定義193
5.5.2 清潔生產的主要內容193
5.5.3 清潔生產與自動化198
參考文獻200
第2篇測量儀表與執行器
第6章 測量技術基礎202
6.1 測量的基本概念202
6.1.1 概述202
6.1.2 測量方法202
6.2 誤差分析及測量不確定度203
6.2.1 誤差的定義及分類203
6.2.2 測量不確定度204
6.2.3 測量不確定度與測量誤差的聯系與區別204
第7章 測量儀表205
7.1 溫度測量205
7.1.1 概述205
7.1.2 膨脹式溫度計206
7.1.3 壓力式溫度計208
7.1.4 熱電偶溫度計210
7.1.5 熱電阻溫度計218
7.1.6 新型測溫方式221
7.1.7 測溫元件及保護套管的選擇222
7.2 壓力測量222
7.2.1 概述222
7.2.2 液柱式壓力表223
7.2.3 彈性式壓力表224
7.2.4 物性式壓力表(固態測壓儀表)226
7.2.5 壓力信號的電測法227
7.3 流量測量227
7.3.1 概述227
7.3.2 節流式流量計230
7.3.3 轉子流量計(又稱浮子流量計)232
7.3.4 動壓式流量計232
7.3.5 容積式流量計233
7.3.6 電磁流量計234
7.3.7 流體振動式流量計(又稱旋渦式流量計)235
7.3.8 渦輪流量計235
7.3.9 超聲波流量計236
7.3.10 質量流量計236
7.4 物位測量237
7.4.1 概述237
7.4.2 浮力式液位計237
7.4.3 差壓式液位計238
7.4.4 電容式物位計239
7.4.5 超聲波物位計239
7.4.6 現代物位檢測技術239
第8章 在線分析儀表240
8.1 概述240
8.1.1 特點及應用場合240
8.1.2 分類240
8.1.3 儀表的組成241
8.1.4 主要性能指標241
8.2 氣體分析儀241
8.2.1 熱導式氣體分析儀241
8.2.2 紅外氣體分析儀245
8.2.3 流程分析儀247
8.3 氧分析儀247
8.3.1 熱磁式氧分析儀247
8.3.2 氧化鋯氧分析儀249
8.4 氣相色譜分析儀250
8.4.1 測量原理250
8.4.2 氣相色譜儀的分類251
8.4.3 檢測器252
8.4.4 氣相色譜儀的結構253
8.5 工業質譜儀及色譜?質譜聯用儀253
8.5.1 質譜儀的測量原理254
8.5.2 質譜儀的組成255
8.5.3 色譜?質譜聯用儀255
8.6 石油物性分析儀表256
8.6.1 餾程在線分析儀256
8.6.2 在線閃點分析儀257
8.6.3 在線傾點(濁點)分析儀257
8.6.4 在線辛烷值分析儀258
8.7 工業電導儀259
8.7.1 測量原理259
8.7.2 電導法的使用條件260
8.7.3 溶液電導的測量260
8.8 pH計261
8.8.1 測量原理261
8.8.2 參比電極和指示電極261
第9章 顯示儀表263
9.1 概述263
9.2 自動平衡式顯示儀表264
9.2.1 自動電子電位差計記錄儀264
9.2.2 自動平衡電橋記錄儀266
9.3 數字式顯示儀表267
9.3.1 普通數字式顯示儀表268
9.3.2 智能式數字顯示儀表271
9.4 數字模擬混合記錄儀271
9.5 無紙記錄儀272
9.5.1 儀表結構272
9.5.2 主要的功能特點273
第10章 特殊測量及儀表275
10.1 微小流量的測量275
10.1.1 熱式質量流量計275
10.1.2 微小流量變送器277
10.1.3 浮子流量計278
10.1.4 容積流量計278
10.2 大流量的測量279
10.2.1 明渠的流量測量279
10.2.2 大口徑管道的液體流量測量280
10.2.3 大口徑管道的氣體流量測量282
10.3 多相流體的流量測量284
10.3.1 固液兩相流量的測量284
10.3.2 氣液兩相流量的測量285
10.3.3 固氣兩相流量的測量286
10.4 腐蝕性介質的流量測量288
10.5 脈動流量的測量289
10.6 介質含水量的測量292
10.7 溶液濃度的測量295
10.7.1 光學式濃度計295
10.7.2 電磁式濃度計296
10.8 其他的物性測量296
10.8.1 自動密度計296
10.8.2 濁度計297
第11章 執行器300
11.1 概述300
11.2 電動執行機構300
11.2.1 工作原理301
11.2.2 伺服放大器301
11.2.3 伺服電動機302
11.3 氣動執行機構302
11.3.1 薄膜式執行機構的工作原理302
11.3.2 薄膜式執行機構的輸出力303
11.3.3 閥門定位器304
11.3.4 活塞式執行機構305
11.4 調節閥306
11.4.1 工作原理306
11.4.2 調節閥的流量特性307
11.4.3 調節閥的可調比308
11.4.4 調節閥的分類308
11.5 執行器的選型原則312
11.5.1 執行器的結構形式312
11.5.2 調節閥閥芯的選擇313
11.5.3 調節閥材料的選擇313
11.5.4 流體對閥芯的流向選擇314
參考文獻315
第3篇 計算機控制系統
第12章 計算機控制系統概述317
12.1 計算機控制系統的概念和分類317
12.1.1 概念317
12.1.2 分類320
12.2 計算機控制系統的設計與實施323
12.2.1 設計323
12.2.2 實施324
第13章 集散控制系統325
13.1 概述325
13.1.1 集散控制系統的構成325
13.1.2 集散控制系統的廠商325
13.2 國內集散控制系統產品326
13.2.1 HOLLiAS?MACS集散控制系統(北京和利時)326
13.2.2 ECS?100X控制系統333
13.2.3 系統性能指標334
13.2.4 系統特點335
13.2.5 系統技術336
13.2.6 ECS?100X系統應用339
13.3 國外集散控制系統產品341
13.3.1 CS3000集散控制系統(日本橫河)341
13.3.2 TPS集散控制系統(美國霍尼威爾)363
13.3.3 SIMATICPCS7集散控制系統(德國西門子)372
第14章 可編程式控制制器(PLC)376
14.1 國內可編程式控制制器產品376
14.1.1 HOLLiAS?LECG3可編程式控制制器(杭州和利時)376
14.1.2 RD200系列可編程式控制制器(蘭州全志電子有限公司)379
14.1.3 FC系列可編程式控制制器(無錫信捷科技電子有限公司)380
14.2 國外可編程式控制制器產品382
14.2.1 SIMATICS7?400可編程式控制制器(德國西門子)382
14.2.2 ModiconTSXQuantum可編程式控制制器(美國施耐德)387
14.2.3 SYSMACCP1H系列可編程式控制制器(日本歐姆龍)390
第15章 現場匯流排控制技術393
15.1 現場匯流排的構成393
15.2 國內現場匯流排產品394
15.2.1 NCS3000現場匯流排(沈陽中科博威)394
15.2.2 ie?FCSTMFB6000現場匯流排(北京華控技術)396
15.2.3 STI?VC2100MA系列控制插件(上海船舶運輸科學研究所)400
15.2.4 EPA分布式網路控制系統402
15.3 國外現場匯流排產品408
15.3.1 FF基金會現場匯流排(美國埃默生)408
15.3.2 PROFIBUS過程匯流排(德國西門子)416
15.3.3 LonWorks現場匯流排(美國埃施朗公司)420
第16章 工業計算機(IPC)技術425
16.1 概述425
16.1.1 工業計算機的構成425
16.1.2 工業計算機的廠商425
16.2 國內工業計算機425
16.2.1 IPC800系列工業計算機(北京聯想)425
16.2.2 NORCO工業計算機(深圳華北工控)426
16.2.3 PCI匯流排工業計算機(北京康拓)428
16.2.4 IPC系列工業計算機(台灣研華)430
16.3 國外工業計算機432
16.3.1 IPC?H系列P4工業計算機(日本康泰克)432
16.3.2 APRE?4200工業計算機(美國APPRO國際公司)433
參考文獻434
第4篇 先進控制與綜合自動化
第17章 過程動態特性與系統建模436
17.1 系統建模一般原則436
17.2 典型過程特性437
17.3 機理建模方法及舉例439
17.3.1 化工過程機理建模例子440
17.3.2 生物反應器建模447
17.3.3 機電系統建模例子450
17.4 基於過程數據的實驗建模453
17.4.1 系統辨識建模方法概述453
17.4.2 基於線性或非線性回歸方法的建模453
17.4.3 由階躍響應曲線辨識模型456
第18章 復雜控制系統460
18.1 串級控制系統460
18.1.1 串級控制基本原理和結構460
18.1.2 串級控制系統設計461
18.1.3 串級控制系統舉例462
18.2 前饋及比值控制463
18.2.1 前饋控制系統的原理和特點463
18.2.2 前饋控制系統的幾種結構形式465
18.2.3 比值控制系統470
18.3 特殊控制系統473
18.3.1 均勻控制系統473
18.3.2 選擇性控制系統474
18.3.3 分程式控制制系統476
18.3.4 閥位控制(VPC)系統477
18.4 系統關聯與解耦控制477
18.4.1 系統關聯478
18.4.2 相對增益478
18.4.3 解耦控制設計方法482
第19章 軟測量技術及應用486
19.1 軟測量概述486
19.2 軟儀表構建方法487
19.3 機理建模軟測量方法及應用489
19.3.1 催化裂化反應再生系統的軟測量模型489
19.3.2 汽油飽和蒸氣壓軟測量492
19.3.3 氣力輸送固相流量的軟測量494
19.3.4 生物反應中生物參數軟測量模型497
19.4 基於回歸分析的軟測量方法及應用501
19.4.1 回歸分析方法502
19.4.2 噴射塔中SO2吸收傳質系數的軟測量504
19.4.3 輕柴油365℃含量軟測量模型506
19.4.4 篩板精餾塔板效率的軟測量508
19.5 基於神經網路軟測量模型及應用509
19.5.1 神經網路模型簡介509
19.5.2 粗汽油干點和輕柴油傾點軟測量建模512
19.5.3 維生素C發酵過程軟測量模型514
第20章 先進控制技術516
20.1 先進PID控制516
20.1.1 數字PID控制516
20.1.2 專家PID控制和模糊PID控制520
20.1.3 模型PID控制523
20.2 純滯後補償控制526
20.3 內模控制528
20.4 推斷控制532
20.5 模型預測控制534
20.6 自適應控制541
20.7 非線性過程式控制制545
20.8 智能控制551
20.8.1 引言551
20.8.2 專家控制551
20.8.3 模糊控制553
20.8.4 神經網路控制555
第21章 監督控制558
21.1 實時優化558
21.1.1 最優化概念559
21.1.2 實時優化的基本要求560
21.1.3 最優操作條件分析561
21.2 實時優化控制的實施技術563
21.2.1 實時優化控制建模563
21.2.2 在計算機控制中實施實時優化控制566
21.3 最優化演算法567
21.3.1 優化中的約束問題567
21.3.2 線性規劃568
21.3.3 二次規劃和非線性規劃569
21.4 統計過程式控制制570
21.4.1 統計過程式控制制的基本原理571
21.4.2 過程變數限值檢查法571
21.4.3 一般過程監控方法572
21.5 統計過程式控制制技術578
21.5.1 過程能力指數578
21.5.2 6?Sigma方法578
21.5.3 多元統計技術579
21.5.4 過程式控制制和統計過程式控制制的關系581
第22章 企業綜合自動化582
22.1 計算機綜合集成控制概述582
22.1.1 流程工業生產過程運作特點582
22.1.2 計算機綜合集成控制583
22.2 信息源與信息集成系統584
22.2.1 企業信息和數據來源584
22.2.2 信息分類與編碼585
22.2.3 企業信息系統綜合集成技術586
22.3 數據校正技術587
22.3.1 概述587
22.3.2 數據校正原理587
22.3.3 過失誤差的偵破原理588
22.3.4 過程數據校正技術的工程應用實施588
22.3.5 煉油廠的物流數據校正工業應用實例589
22.4 信息(數據)驅動下流程工業的運作590
22.4.1 企業運行概述591
22.4.2 企業決策功能591
22.4.3 期望目標(運行)實施593
22.4.4 數據驅動下的企業運行594
22.5 煉油企業綜合自動化應用示例595
22.5.1 某煉油企業信息化概況595
22.5.2 實時資料庫系統596
22.5.3 實驗室信息管理(LIMS)系統600
22.5.4 罐區自動化系統601
22.5.5 無鉛汽油管道自動調和系統602
22.5.6 集中控制與先進控制603
22.5.7 數據調理與整合604
22.5.8 流程模擬軟體的應用605
參考文獻608
第5篇 工業生產過程自動控制應用示例
第23章 化工單元過程式控制制610
23.1 流體輸送過程式控制制610
23.1.1 容積式泵的控制610
23.1.2 離心泵的控制610
23.1.3 離心式壓縮機的控制611
23.1.4 離心式壓縮機的防喘振控制611
23.1.5 離心式壓縮機的三重冗餘容錯緊急停車系統612
23.2 傳熱設備的控制614
23.2.1 傳熱設備的類型614
23.2.2 換熱器的控制614
23.2.3 蒸汽加熱器的控制615
23.2.4 冷凝冷卻器的控制616
23.2.5 加熱爐的控制616
23.3 精餾過程式控制制617
23.3.1 精餾塔的控制目標617
23.3.2 精餾塔的主要干擾因素618
23.3.3 精餾塔被控變數的選取618
23.3.4 精餾塔基本控制方案618
23.3.5 精餾塔的先進控制方案621
23.4 化學反應過程式控制制624
23.4.1 化學反應器的類型和特性624
23.4.2 化學反應器的基本控制方案625
23.4.3 反應器的新型控制方案626
23.4.4 乙烯裂解爐的先進控制方案628
23.5 間歇生產過程式控制制630
23.5.1 間歇生產過程特點630
23.5.2 間歇生產過程的控制要求631
23.5.3 間歇生產過程的自動控制632
23.5.4 間歇生產過程操作和調度優化634
23.5.5 間歇生產過程監控635
第24章 煉油工業生產過程式控制制639
24.1 煉油工業概述639
24.2 常減壓蒸餾生產過程式控制制641
24.2.1 加熱爐的控制641
24.2.2 常壓塔塔底液位非線性區域控制642
24.2.3 支路平衡控制643
24.2.4 常減壓蒸餾裝置的先進控制644
24.3 催化裂化生產過程式控制制648
24.3.1 反應?再生系統的控制648
24.3.2 主分餾塔的控制649
24.3.3 催化裂化先進控制實例651
24.4 催化重整生產過程式控制制654
24.4.1 原料預處理控制654
24.4.2 重整反應器控制655
24.4.3 重整反應器的先進控制656
24.5 延遲焦化生產過程式控制制659
24.5.1 延遲焦化裝置的工藝特點659
24.5.2 焦化爐控制660
24.5.3 塔頂急冷溫度控制660
24.5.4 焦炭塔切換擾動前饋控制661
24.5.5 延遲焦化裝置的先進控制661
24.6 油品調和663
24.6.1 油品調和工藝663
24.6.2 油品調和控制664
第25章 火力發電過程式控制制668
25.1 鍋爐設備的控制668
25.1.1 鍋爐汽包水位控制668
25.1.2 蒸汽過熱系統的控制668
25.1.3 鍋爐燃燒過程的控制669
25.2 汽輪機控制670
25.3 汽輪機轉速控制671
25.3.1 汽輪機轉速控制的概況671
25.3.2 汽輪機轉速控制673
25.4 機爐協調控制676
25.4.1 汽輪機控制系統對鍋爐汽壓對象動態特性的影響676
25.4.2 機爐協調控制系統679
25.4.3 機爐協調控制系統的完善以及自動發電控制681
25.4.4 機爐協調控制系統AGC控制中值得深思的問題684
25.5 負荷頻率控制(loadfrequencycontrol)685
25.5.1 負荷頻率控制方法及實施方案686
25.5.2 多區域互聯電力系統的PI滑模負荷頻率控制690
第26章 鋼鐵行業自動控制系統692
26.1 鋼鐵生產工藝及自動化簡述692
26.2 煉鐵生產自動控制697
26.2.1 原料場自動控制697
26.2.2 燒結自動控制700
26.2.3 球團自動控制705
26.2.4 煉焦自動化708
26.2.5 高爐煉鐵自動控制713
26.2.6 非高爐煉鐵自動控制723
26.3 煉鋼生產自動控制727
26.3.1 鐵水預處理自動控制727
26.3.2 轉爐煉鋼自動化730
26.3.3 電弧爐煉鋼自動控制738
26.3.4 爐外精煉自動控制742
26.3.5 連續鑄鋼自動控制745
26.4 軋鋼生產自動化749
26.4.1 軋鋼生產工藝流程及自動控制概述749
26.4.2 軋鋼過程主要自動控制系統755
第27章 輕工造紙生產典型過程式控制制769
27.1 制漿過程的自動控制770
27.1.1 間歇蒸煮過程自動控制系統770
27.1.2 連續蒸煮過程自動控制系統771
27.1.3 洗滌、篩選、漂白過程式控制制773
27.2 鹼回收過程的自動控制776
27.2.1 蒸發控制典型控制系統777
27.2.2 燃燒過程式控制制778
27.2.3 綠液苛化和石灰回收過程式控制制779
27.3 造紙過程的自動控制781
27.3.1 打漿控制782
27.3.2 配漿控制784
27.3.3 流漿箱控制786
27.3.4 紙頁質量控制788
參考文獻793
第6篇 儀表控制系統設計基礎
第28章 設計概論796
28.1 設計條件及資料796
28.2 標准規范796
28.3 工程設計程序及質量保證體系799
28.4 設計質量保證體系800
第29章 流程工業過程式控制制及工程設計802
29.1 單迴路反饋控制迴路802
29.2 串級控制迴路802
29.3 前饋?反饋控制迴路803
29.4 均勻控制迴路803
29.5 比值控制迴路804
29.6 分程式控制制迴路804
29.7 選擇性控制迴路(取代控制)805
29.8 多變數介耦控制迴路806
29.9 非線性控制迴路806
29.10 先進控制迴路807
第30章 儀表控制系統選擇808
30.1 控制系統發展動向808
30.2 影響控制系統品質的幾個因素809
30.3 儀表控制系統選擇810
30.3.1 模擬式儀表控制系統810
30.3.2 集散型控制系統(DCS)810
30.3.3 現場匯流排控制系統(FCS)815
30.3.4 PC控制系統(IPC)817
30.3.5 數據採集及監控系統(SCADA)817
30.3.6 過程安全控制系統818
30.3.7 企業綜合自動化解決方案826
第31章 測量方法選擇828
31.1 測量精度及誤差828
31.2 溫度測量方法的選擇828
31.2.1 溫度測量方法的比較829
31.2.2 溫度測量方法選擇829
31.3 壓力測量方法選擇831
31.4 流量測量方法選擇834
31.4.1 流量測量誤差分析834
31.4.2 流量測量方法使用特點及比較835
31.4.3 流量儀表的設計選型839
31.5 物位測量方法的選擇843
31.5.1 物位測量技術發展動向843
31.5.2 物位測量方法的選擇844
31.6 在線組分分析方法的選擇850
31.6.1 在線分析技術發展動向850
31.6.2 在線氣體成分分析技術850
31.6.3 在線氣體成分分析技術應用特點853
31.6.4 液體特性在線分析技術854
31.6.5 液體特性分析儀表應用特點856
31.6.6 在線分析采樣系統設計856
31.6.7 現場分析器室設計856
31.6.8 可燃氣體/毒性氣體檢測報警系統設計857
31.7 控制閥的選擇857
第32章儀表控制系統設計及設計文件861
32.1 儀表控制室設計861
32.2 儀表控制系統供電設計862
32.3 儀表供氣系統設計863
32.4 儀表控制系統的接地設計863
32.5 電氣儀表在危險區域內的安全設計865
32.6 現場儀表防護設計869
32.7 儀表及測量管線安裝設計872
32.8 儀表控制系統檢驗876
32.9 儀表詢價、報價及技術評估877
32.10 儀表、控制系統工程設計文件877
32.10.1 儀表、控制系統工程設計文件組成877
32.10.2 生產裝置自控設計程序878
32.10.3 儀表、控制系統工程設計文件內容892
參考文獻898

閱讀全文

與篩板精餾塔實驗裝置圖相關的資料

熱點內容
凈油裝置作用是什麼 瀏覽:612
為什麼會機械表受磁影響 瀏覽:590
什麼冰箱可以制熱製冷 瀏覽:104
餘姚工業設備回收哪裡有 瀏覽:871
南京祿口永騁五金建材市場 瀏覽:124
北京多功能拉桿工具箱 瀏覽:523
機械租賃公司收入計入什麼科目 瀏覽:994
市政接入管口加什麼閥門 瀏覽:457
老年康復機械裝置視頻 瀏覽:645
斷橋鋁窗內開內倒五金件安裝方法 瀏覽:935
閥門REF代表什麼 瀏覽:227
面部儀器檢測都有哪些方面 瀏覽:434
深圳製冷加熱控溫系統作用是什麼 瀏覽:625
石油化工企業生產裝置電力設計 瀏覽:883
鋼板軋技壓下裝置設計 瀏覽:428
autocad怎麼畫圓錐滾子軸承 瀏覽:654
哪個閥門廠可以承包 瀏覽:172
怎麼製作艾灸的儀器 瀏覽:521
漳州盛賽爾消防報警器材哪裡有 瀏覽:356
直線作用動力裝置 瀏覽:934