導航:首頁 > 儀器儀表 > 用什麼儀器產生伽馬射線

用什麼儀器產生伽馬射線

發布時間:2022-01-28 21:08:13

⑴ 藉助什麼簡單的工具可以看到伽馬射線,阿爾法射線等不可見光或者用什麼簡單儀器可以檢測到放射性

可以利用熒光物質,這類物質在吸收能量後在暗處能夠發光。沒有曝光的膠卷也可以,用紙盒子包裹住,這兩種射線都能輕易的穿透紙盒子

⑵ 為什麼說反物質不造成污染,也不產生輻射。正反物質的湮滅會產生伽馬射線,伽馬射線不算放射性污染嗎

γ射線是電磁波,不會在爆炸後遺留輻射塵埃。放射污染應該是指α射線和β射線轟擊後能持續產生輻射的輻射源,就是放射性塵埃,因為這兩種射線是高速的原子核和電子,本身以質量的形式存在,並且能不斷發散,就能產生持續的核輻射污染,我是這樣理解的。
關於反物質武器的應用,如果設想1克反物質在大氣層中湮滅的場景,從一個外行的角度,我只能抽象地理解湮滅的瞬間會產生巨大的能量,但當在網上查到湮滅的能量會100%以γ射線的形式釋放時,就實在想像不出以超高能的γ射線釋放能量是一種什麼場景了;比如高能γ射線會造成像核爆那樣的巨大沖擊波嗎?還是γ射線會瞬間轉變成其它形式的能量,進而轉變成內能和動能?還是僅僅暴發一陣亮度極大的閃光?另外,關於反物質炸彈無核輻射的准確說法是什麼,是指沒有殘留的核輻射嗎?如果在一個湮滅的現場架設幾台探測儀器,那麼這台儀器探測到的輻射結果是什麼?能夠持續探測到強大的γ射線嗎?γ射線會持續多久?這些都要問內行才能說得清,網上查是查不明白的。

⑶ 什麼是珈瑪射線由什麼產生謝謝了,大神幫忙啊

γ射線,波長短於0.2埃的電磁波。首先由法國科學家P.V.維拉德發現,是繼α、β射線後發現的第三種原子核射線。 γ射線,波長小於0.1納米的電磁波,是比X射線能量還高的一種輻射. 李啟斌提出了本世紀7個天文研究領域。其中有3個涉及地外能量探索,一個是和暗物質有關的暗能量,一個是具有巨大輻射能量的類星體,還有一個則是來自河外的巨大能量源棗伽瑪射線爆。 人類已經看到的太空物質只有百分之幾,還有百分之九十幾的物質是黑暗的,人類沒有看到的,這就是暗物質。 提到暗物質,人類很容易想到「黑洞」。黑洞是暗物質的一種。黑洞的引力非常大,從地球上發射的衛星要達到第一宇宙速度7.8公里/秒才能沖出大氣層,而在黑洞上以光速發射還是無法超越其巨大的引力。根據霍金的黑洞理論,根據對周圍事物的觀測可以確定黑洞。如果其周圍事物往下掉,那麼就會發出X光,產生X光暈,根據對X光的觀測就可以測定黑洞。如果觀測到某顆星一直圍繞著空心轉動,那麼也可以推測其軌道中間存在著黑洞。 對類星體的探討屬於天體劇烈活動領域的觀測。李啟斌解釋說,類星體的神秘點在於其每秒輻射的能量比整個銀河系1000億顆星體的總和還大。天文學家推測,其中一定存在著提供能量的獨特方法。 伽瑪射線爆的發現是戲劇性的。人們最初觀測伽馬射線是為了監測核試驗,當儀器偶然對准空中時,發現了來自太空的伽馬射線。人們由此發現了發射伽馬射線的星體,其中有一部分是爆發性的。空間探測器的觀測結果顯示了伽馬射線爆平均每天一次的頻繁程度。 伽馬射線爆跟類星體一樣具有很強的能量。李啟斌樂觀的講,如果能夠觀測和分析出它們的能量來源,說不定可以解決人類的能源危機和以破壞環境為代價的能源開采。 2003年末,美國《科學》雜志評出年度十大科技成就,關於宇宙伽馬射線的研究入選其中。這項研究增進了對宇宙伽馬射線爆發的理解,證實伽馬射線爆發與超新星之間存在聯系。 6500萬年前,一顆撞向地球的小行星曾導致了恐龍的滅絕。然而據英國《新科學家》雜志2003年披露,來自外太空的殺手遠不止小行星一個,最新科學研究顯示,早在4億年前,地球上曾經歷過另外一次生物大滅絕,而罪魁禍首就是銀河系恆星坍塌後爆發的「伽馬射線」! 在天文學界,伽馬射線爆發被稱作「伽馬射線暴」。 究竟什麼是伽馬射線暴?它來自何方?它為何會產生如此巨大的能量? 「伽馬射線暴是宇宙中一種伽馬射線突然增強的一種現象。」中國科學院國家天文台趙永恆研究員告訴記者,伽馬射線是波長小於0.1納米的電磁波,是比X射線能量還高的一種輻射,它的能量非常高。但是大多數伽馬射線會被地球的大氣層阻擋,觀測必須在地球之外進行。 冷戰時期,美國發射了一系列的軍事衛星來監測全球的核爆炸試驗,在這些衛星上安裝有伽馬射線探測器,用於監視核爆炸所產生的大量的高能射線。 偵察衛星在1967年發現了來自浩瀚宇宙空間的伽馬射線在短時間內突然增強的現象,人們稱之為「伽馬射線暴」。由於軍事保密等因素,這個發現直到1973年才公布出來。這是一種讓天文學家感到困惑的現象:一些伽馬射線源會突然出現幾秒鍾,然後消失。這種爆發釋放能量的功率非常高。一次伽馬射線暴的「亮度」相當於全天所有伽馬射線源「亮度」的總和。隨後,不斷有高能天文衛星對伽馬射線暴進行監視,差不多每天都能觀測到一兩次的伽馬射線暴。 伽馬射線暴所釋放的能量甚至可以和宇宙大爆炸相提並論。據趙永恆研究員介紹,伽馬射線暴的持續時間很短,長的一般為幾十秒,短的只有十分之幾秒。而且它的亮度變化也是復雜而且無規律的。但伽馬射線暴所放出的能量卻十分巨大,在若干秒鍾時間內所放射出的伽馬射線的能量相當於幾百個太陽在其一生(100億年)中所放出的總能量! 在1997年12月14日發生的伽馬射線暴,它距離地球遠達120億光年,所釋放的能量比超新星爆發還要大幾百倍,在50秒內所釋放出伽馬射線能量就相當於整個銀河系200年的總輻射能量。這個伽馬射線暴在一兩秒內,其亮度與除它以外的整個宇宙一樣明亮。在它附近的幾百千米范圍內,再現了宇宙大爆炸後千分之一秒時的高溫高密情形。 然而,1999年1月23日發生的伽馬射線暴比這次更加猛烈,它所放出的能量是1997年那次的十倍,這也是人類迄今為止已知的最強大的伽馬射線暴。 成因引發大辯論 關於伽馬射線暴的成因,至今世界上尚無定論。有人猜測它是兩個中子星或兩個黑洞發生碰撞時產生的;也有人猜想是大質量恆星在死亡時生成黑洞的過程中產生的,但這個過程要比超新星爆發劇烈得多,因而,也有人把它叫做「超超新星」。 趙永恆研究員介紹說,為了探究伽馬射線暴發生的成因,引發了兩位天文學家的大辯論。 在20世紀七八十年代,人們普遍相信伽馬射線暴是發生在銀河系內的現象,推測它與中子星表面的物理過程有關。然而,波蘭裔美國天文學家帕欽斯基卻獨樹一幟。他在上世紀80年代中期提出伽馬射線暴是位於宇宙學距離上,和類星體一樣遙遠的天體,實際上就是說,伽馬射線暴發生在銀河系之外。然而在那時,人們已經被「伽馬射線暴是發生在銀河系內」的理論統治多年,所以他們對帕欽斯基的觀點往往是付之一笑。 但是幾年之後,情況發生了變化。1991年,美國的「康普頓伽馬射線天文台」發射升空,對伽馬射線暴進行了全面系統的監視。幾年觀測下來,科學家發現伽馬射線暴出現在天空的各個方向上,而這就與星系或類星體的分布很相似,而這與銀河系內天體的分布完全不一樣。於是,人們開始認真看待帕欽斯基的伽馬射線暴可能是銀河系外的遙遠天體的觀點了。由此也引發了1995年帕欽斯基與持相反觀點的另一位天文學家拉姆的大辯論。 然而,在十年前的那個時候,世界上並沒有辦法測定伽馬射線暴的距離,因此辯論雙方根本 無法說服對方。伽馬射 線暴的發生在空間上是隨機的,而且持續時間很短,因此無法安排後續的觀測。再者,除短暫的伽馬射線暴外,沒有其他波段上的對應體,因此無法藉助其他波段上的已知距離的天體加以驗證。這場辯論誰是誰 非也就懸而未決。幸運的是,1997年義大利發射了一顆高能天文衛星,能夠快速而精確地測定出伽馬射線暴的位置,於是地面上的光學望遠鏡和射電望遠鏡就可以對其進行後續觀測。天文學家首先成功地發現了1997年2月28日伽馬射線暴的光學對應體,這種光學對應體被稱之為伽馬射線暴的「光學余輝」;接著看到了所對應的星系,這就充分證明了伽馬射線暴宇宙學距離上的現象,從而為帕欽斯基和拉姆的大辯論做出了結論。 到目前為止,全世界已經發現了20多個伽馬射線暴的「光學余輝」,其中大部分的距離已經確定,它們全部是銀河系以外的遙遠天體。 趙永恆研究員說,「光學余輝」的發現極大地推動了伽馬射線暴的研究工作,使得人們對伽馬射線暴的觀測波段從伽馬射線發展到了光學和射電波段,觀測時間從幾十秒延長到幾個月甚至幾年。 超新星再次引發爭論 難題一個接著一個。 2003年3月24日,在加拿大魁北克召開的美國天文學會高能天體物理分會會議上,一部分研究人員宣稱它們已經發現了一些迄今為止最有力的跡象,表明普通的超新星爆發可能在幾周或幾個月之內導致劇烈的伽馬射線大噴發。這種說法一經提出就在會議上引發了激烈的爭議。 其實在2002年的一期英國《自然》雜志上,一個英國研究小組就報告了他們對於伽馬射線暴的最新研究成果,稱伽馬射線暴與超新星有關。研究者研究了2001年12月的一次伽馬射線暴的觀測數據,歐洲航天局的XMM—牛頓太空望遠鏡觀測到了這次伽馬射線暴長達270秒的X射線波段的「余輝」。通過對於X射線的觀測,研究者發現了在爆發處鎂、硅、硫等元素以亞光速向外逃逸,通常超新星爆發才會造成這種現象。 大多數天體物理學家認為,強勁的伽馬射線噴發來自恆星內核坍塌導致的超新星爆炸而形成的黑洞。麻省理工學院的研究人員通過錢德拉X射線望遠鏡追蹤了2002年8月發生的一次時長不超過一天的超新星爆發。在這次持續二十一小時的爆發中,人們觀察到大大超過類似情況的X射線。而X射線被廣泛看作是由超新星爆發後初步形成的不穩定的中子星發出。大量的觀測表明,伽馬射線噴發源附近總有超新星爆發而產生的質量很大的物質存在。 反對上述看法的人士認為,這些說法沒有排除X射線非正常增加或減少的可能性。而且,超新星爆發與伽馬射線噴發之間存在時間間隔的原因仍然不明。 無論如何,人類追尋來自浩瀚宇宙的神秘能量———伽馬射線暴的勢頭不會因為一系列的疑惑而減少,相反,科學家會更加努力地去探索。「作為天文學的基礎研究,這種探索對人們認識宇宙,觀察極端條件下的物理現象並發現新的規律都是很有意義的。」趙永恆研究員說。 -相關新聞 伽馬射線幾秒內放射的能量相當於幾百個太陽一百億年所放總能量 二○○三年九月,美國有學者對奧陶紀晚期的化石標本進行了研究,他們猜測,在那個時期,一百種以上的水生無脊椎動物在一次伽馬射線爆發中從地球上永遠地消失了。研究人員表示,伽馬射線爆發可能形成酸雨氣候,使地球上的生物直接受到酸雨的侵蝕,同時,伽馬射線對臭氧層的破壞加大了紫外線的輻射強度,那些淺水域生活的無脊椎動物在紫外線的輻射下數量逐漸減少,直至從地球上滅絕。

⑷ 綠巨人1裡面,那個伽馬射線,儀器到底是用來干什麼的

之後需要選擇將備份放置在什麼分區下,選擇好後點擊「下一步」。

⑸ 伽瑪射線是怎樣產生的

γ射線,又稱γ粒子流,是原子核能級躍遷蛻變時釋放出的射線,是波長短於0.2埃的電磁波。γ射線有很強的穿透力,工業中可用來探傷或流水線的自動控制。γ射線對細胞有殺傷力,醫療上用來治療腫瘤。

波長短於0.2埃的電磁波
[1]
。首先由法國科學家p.v.維拉德發現,是繼α、β射線後發現的第三種原子核射線。原子核衰變和核反應均可產生γ射線
。γ射線具有比x射線還要強的穿透能力。當γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對三種效應。原子核釋放出的γ光子與核外電子相碰時,會把全部能量交給電子,使電子電離成為光電子,此即光電效應。由於核外電子殼層出現空位,將產生內層電子的躍遷並發射x射線標識譜。高能γ光子(>2兆電子伏特)的光電效應較弱。γ光子的能量較高時,除上述光電效應外,還可能與核外電子發生彈性碰撞,γ光子的能量和運動方向均有改變,從而產生康普頓效應。當γ光子的能量大於電子靜質量的兩倍時,由於受原子核的作用而轉變成正負電子對,此效應隨γ光子能量的增高而增強。γ光子不帶電,故不能用磁偏轉法測出其能量,通常利用γ光子造成的上述次級效應間接求出,例如通過測量光電子或正負電子對的能量推算出來。此外還可用γ譜儀(利用晶體對γ射線的衍射)直接測量γ光子的能量。由熒光晶體、光電倍增管和電子儀器組成的閃爍計數器是探測γ射線強度的常用儀器。
通過對γ射線譜的研究可了解核的能級結構。γ射線有很強的穿透力,工業中可用來探傷或流水線的自動控制。γ射線對細胞有殺傷力,醫療上用來治療腫瘤。

⑹ γ射線產生的原因是什麼

γ射線是因核能級間的躍遷而產生,原子核衰變和核反應均可產生γ射線。當γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對三種效應。原子核釋放出的γ光子與核外電子相碰時,會把全部能量交給電子,使電子電離成為光電子,此即光電效應。由於核外電子殼層出現空位,將產生內層電子的躍遷並發射X射線標識譜。高能γ光子(>2兆電子伏特)的光電效應較弱。γ光子的能量較高時,除上述光電效應外,還可能與核外電子發生彈性碰撞,γ光子的能量和運動方向均有改變,從而產生康普頓效應。當γ光子的能量大於電子靜質量的兩倍時,由於受原子核的作用而轉變成正負電子對,此效應隨γ光子能量的增高而增強。γ光子不帶電,故不能用磁偏轉法測出其能量,通常利用γ光子造成的上述次級效應間接求出,例如通過測量光電子或正負電子對的能量推算出來。此外還可用γ譜儀(利用晶體對γ射線的衍射)直接測量γ光子的能量。由熒光晶體、光電倍增管和電子儀器組成的閃爍計數器是探測γ射線強度的常用儀器。

通過對γ射線譜的研究可了解核的能級結構。γ射線有很強的穿透力,工業中可用來探傷或流水線的自動控制。γ射線對細胞有殺傷力,醫療上用來治療腫瘤。

⑺ 伽瑪射線是什麼

γ射線,又稱γ粒子流,是原子核能級躍遷蛻變時釋放出的射線,是波長短於0.01埃的電磁波。γ射線有很強的穿透力,工業中可用來探傷或流水線的自動控制。γ射線對細胞有殺傷力,醫療上用來治療腫瘤。γ射線首先由法國科學家P.V.維拉德發現,是繼α、β射線後發現的第三種原子核射線。在20世紀70年代首次被人類觀測到的。美國軍方發射薇拉(Vela)人造衛星用於探測「核閃光」(nukeflash)(未經授權的原子彈爆破的證據),但是薇拉沒有識別出核閃光,而是發現了來自太空的強烈射線爆發。這一發現最初在五角大樓引起了一陣惶恐:是蘇聯在太空中測試一種新的核武器嗎?稍後這些輻射被判定為均勻地來自空中的各個方向,意味著它們事實上來自銀河系之外。但如果來自銀河系外,它們肯定釋放著真正的天文學數量的能量,足以點亮整個可見的宇宙。起源理論關於γ射線爆發的起源有一種理論——它們是具有無窮能量的「巨超新星」(hypernova),在覺醒時留下巨大的黑洞。看起來γ射線爆發似乎是排成隊列的巨型黑洞。

太空產生在太空中產生的伽馬射線是由恆星核心的核聚變產生的,因為無法穿透地球大氣層,因此無法到達地球的低層大氣層,只能在太空中被探測到。太空中的伽瑪射線是在1967年由一顆名為「維拉斯」的人造衛星首次觀測到。從20世紀70年代初由不同人造衛星所探測到的伽馬射線圖片,提供了關於幾百顆此前並未發現到的恆星及可能的黑洞。於90年代發射的人造衛星(包括康普頓伽馬射線觀測台),提供了關於超新星、年輕星團、類星體等不同的天文信息。

⑻ 伽馬射線探傷原理

原理:當強度均勻的射線束透照射物體時,如果物體局部區域存在缺陷或結構存在差異,它將改變物體對射線的衰減,使得不同部位透射射線強度不同,這樣,採用一定的檢測器檢測透射射線強度,就可以判斷物體內部的缺陷和物質分布等。

γ射線有很強的穿透性,射線探傷就是利用γ射線穿透性和直線性來探傷的方法。γ射線雖然不會像可見光那樣憑肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器來接收。

當γ射線穿過(照射)物質時,該物質的密度越大,射線強度減弱得越多,即射線能穿透過該物質的強度就越小。此時,若用照相底片接收,則底片的感光量就小;若用儀器來接收,獲得的信號就弱。

用γ射線來照射待探傷的零部件時,若其內部有氣孔、夾渣等缺陷,射線穿過有缺陷的路徑比沒有缺陷的路徑所透過的物質密度要小得多,其強度就減弱得少些,即透過的強度就大些,若用底片接收,則感光量就大些,就可以從底片上反映出缺陷垂直於射線方向的平面投影。

γ射線探傷對氣孔、夾渣、未焊透等體積型缺陷最敏感。即γ射線探傷適宜用於體積型缺陷探傷,而不適宜面積型缺陷探傷。

(8)用什麼儀器產生伽馬射線擴展閱讀:

危害

γ射線具有極強的穿透本領。

人體受到γ射線照射時,γ射線可以進入到人體的內部,並與體內細胞發生電離作用,電離產生的離子能侵蝕復雜的有機分子,如蛋白質、核酸和酶,它們都是構成活細胞組織的主要成分,一旦它們遭到破壞,就會導致人體內的正常化學過程受到干擾,嚴重的可以使細胞死亡。

人體受到γ射線照射時,γ射線可以進入到人體的內部,並與體內細胞發生電離作用,電離產生的離子能侵蝕復雜的有機分子,如蛋白質、核酸和酶,它們都是構成活細胞組織的主要成分,一旦它們遭到破壞,就會導致人體內的正常化學過程受到干擾,嚴重的可以使細胞死亡。

閱讀全文

與用什麼儀器產生伽馬射線相關的資料

熱點內容
網路安全設備怎麼工作總結 瀏覽:42
上海良工閥門廠南京銷售 瀏覽:578
軸承鑽頭怎麼做 瀏覽:983
鑄造暖氣片堵了怎麼辦 瀏覽:51
天然氣閥門打開方向 瀏覽:760
愛奇藝怎麼解除登錄設備登錄 瀏覽:965
初中物理實驗工具箱 瀏覽:175
超聲波不穩定怎麼回事 瀏覽:271
源泉工具箱命令丟失 瀏覽:475
綜合單價中的機械費用包含什麼 瀏覽:28
冷藏車用什麼製冷液 瀏覽:903
燃氣閥門井巡檢周期 瀏覽:931
主軸軸承溫度一般多少度 瀏覽:581
現代滅蚊材料和滅蚊器材有哪些 瀏覽:674
自動旋轉裝置爐石 瀏覽:91
工具箱標准 瀏覽:289
怎麼查看家用雲視通設備號 瀏覽:808
霸州市瀚潔五金製品廠 瀏覽:419
化工廠設備員是干什麼的 瀏覽:465
美容潔牙和超聲波潔牙有什麼區別 瀏覽:550