導航:首頁 > 五金知識 > matlabsvr工具箱

matlabsvr工具箱

發布時間:2024-04-22 04:20:29

㈠ 高分求助 matlab自帶工具箱中的svmtrain用法,要中文的,詳細點

Svmtrain的用法:
svmtrain [options] training_set_file [model_file]
Options:可用的選項即表示的涵義如下
-s svm類型:SVM設置類型(默認0)
0 -- C-SVC
1 --v-SVC
2 – 一類SVM
3 -- e -SVR
4 -- v-SVR
-t 核函數類型:核函數設置類型(默認2)
0 – 線性:u'v
1 – 多項式:(r*u'v + coef0)^degree
2 – RBF函數:exp(-r|u-v|^2)
3 –sigmoid:tanh(r*u'v + coef0)
-d degree:核函數中的degree設置(默認3)
-g 函數設置(默認1/ k)r(gama):核函數中的
-r coef0:核函數中的coef0設置(默認0)
-c cost:設置C-SVC, -SVR的參數(默認1)-SVR和
- SVR的參數(默認0.5)-SVC,一類SVM和-n nu:設置
-SVR-p e:設置的值(默認0.1)中損失函數
-m cachesize:設置cache內存大小,以MB為單位(默認40)
-e :設置允許的終止判據(默認0.001)
-h shrinking:是否使用啟發式,0或1(默認1)
-wi C(C-SVC中的C)(默認1)weight:設置第幾類的參數C為weight
-v n: n-fold交互檢驗模式
其中-g選項中的k是指輸入數據中的屬性數。option -v 隨機地將數據剖分為n部分並計算交互檢驗准確度和均方根誤差。以上這些參數設置可以按照SVM的類型和核函數所支持的參數進行任意組合,如果設置的參數在函數或SVM類型中沒有也不會產生影響,程序不會接受該參數;如果應有的參數設置不正確,參數將採用默認值。training_set_file是要進行訓練的數據集;model_file是訓練結束後產生的模型文件,文件中包括支持向量樣本數、支持向量樣本以及lagrange系數等必須的參數;該參數如果不設置將採用默認的文件名,也可以設置成自己慣用的文件名。

㈡ matlab 支持向量機工具箱怎麼用

有的工具箱有用戶交互界面,可以直接在MATLAB的啟動菜單下進入;
有的沒有用戶界面,但是有相關的程序(或者說函數)供調用;即使有界面的工具箱,也是有相應的函數的。

可以從幫助(Help)中查詢MATLAB的工具箱的詳細使用方法。
幫助裡面對主題進行了分類,進入工具箱那一類即可

㈢ 怎麼在libsvm安裝包基礎上進行特徵加權

一 安裝
1. 下載
在LIBSVM的主頁上下載最新版本的軟體包,並解壓到合適目錄中。

2. 編譯
如果你使用的是64位的操作的系統和Matlab,那麼不需要進行編譯步驟,因為自帶軟體包中已經包含有64位編譯好的版本:libsvmread.mexw64、libsvmwrite.mexw64、svmtrain.mexw64、svmpredict.mexw64。否則,需要自己編譯二進制文件。

首先在Mtlab中進入LIBSVM根目錄下的matlab目錄(如C:\libsvm-3.17\matlab),在命令窗口輸入

>>mex –setup

然後Matlab會提示你選擇編譯mex文件的C/C++編譯器,就選擇一個已安裝的編譯器,如Microsoft Visual C++ 2010。之後Matlab會提示確認選擇的編譯器,輸入y進行確認。

然後可以輸入以下命令進行編譯。

>>make

注意,Matlab或VC版本過低可能會導致編譯失敗,建議使用最新的版本。

編譯成功後,當前目錄下會出現若干個後綴為mexw64(64位系統)或mexw32(32位系統)的文件。

3. 重命名(可選,但建議執行)
編譯完成後,在當前目錄下回出現svmtrain.mexw64、svmpredict.mexw64(64位系統)或者svmtrain.mexw32、svmpredict.mexw32(32位系統)這兩個文件,把文件名svmtrain和svmpredict相應改成libsvmtrain和libsvmpredict。

這是因為Matlab中自帶有SVM的工具箱,而且其函數名字就是svmtrain和svmpredict,和LIBSVM默認的名字一樣,在實際使用的時候有時會產生一定的問題,比如想調用LIBSVM的變成了調用Matlab SVM。

如果有進行重命名的,以後使用LIBSVM時一律使用libsvmtrain和libsvmpredict這兩個名字進行調用。

4. 添加路徑
為了以後使用的方便,建議把LIBSVM的編譯好的文件所在路徑(如C:\libsvm-3.17\matlab)添加到Matlab的搜索路徑中。具體操作為:(中文版Matlab對應進行)

HOME -> Set Path -> Add Folder -> 加入編譯好的文件所在的路徑(如C:\libsvm-3.17\matlab)

當然也可以把那4個編譯好的文件復制到想要的地方,然後再把該路徑添加到Matlab的搜索路徑中。

二 測試
LIBSVM軟體包中自帶有測試數據,為軟體包根目錄下的heart_scale文件,可以用來測試LIBSVM是否安裝成功。這里的heart_scale文件不能用Matlab的load進行讀取,需要使用libsvmread讀取。

進入LIBSVM的根目錄運行以下代碼(因為heart_scale文件沒有被添加進搜索路徑中,其他路徑下無法訪問這個文件):

[heart_scale_label, heart_scale_inst] = libsvmread('heart_scale');
model = libsvmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07');
[predict_label, accuracy, dec_values] = libsvmpredict(heart_scale_label, heart_scale_inst, model);
如果LIBSVM安裝正確的話,會出現以下的運行結果,顯示正確率為86.6667%。

*
optimization finished, #iter = 134
nu = 0.433785
obj = -101.855060, rho = 0.426412
nSV = 130, nBSV = 107
Total nSV = 130
Accuracy = 86.6667% (234/270) (classification)
三 原理簡介
使用SVM前首先得了解SVM的工作原理,簡單介紹如下。

SVM(Support Vector Machine,支持向量機)是一種有監督的機器學習方法,可以學習不同類別的已知樣本的特點,進而對未知的樣本進行預測。

SVM本質上是一個二分類的演算法,對於n維空間的輸入樣本,它尋找一個最優的分類超平面,使得兩類樣本在這個超平面下可以獲得最好的分類效果。這個最優可以用兩類樣本中與這個超平面距離最近的點的距離來衡量,稱為邊緣距離,邊緣距離越大,兩類樣本分得越開,SVM就是尋找最大邊緣距離的超平面,這個可以通過求解一個以超平面參數為求解變數的優化問題獲得解決。給定適當的約束條件,這是一個二次優化問題,可以通過用KKT條件求解對偶問題等方法進行求解。

對於不是線性可分的問題,就不能通過尋找最優分類超平面進行分類,SVM這時通過把n維空間的樣本映射到更高維的空間中,使得在高維的空間上樣本是線性可分的。在實際的演算法中,SVM不需要真正地進行樣本點的映射,因為演算法中涉及到的高維空間的計算總是以內積的形式出現,而高維空間的內積可以通過在原本n維空間中求內積然後再進行一個變換得到,這里計算兩個向量在隱式地映射到高維空間的內積的函數就叫做核函數。SVM根據問題性質和數據規模的不同可以選擇不同的核函數。

雖然SVM本質上是二分類的分類器,但是可以擴展成多分類的分類器,常見的方法有一對多(one-versus-rest)和一對一(one-versus-one)。在一對多方法中,訓練時依次把k類樣本中的某個類別歸為一類,其它剩下的歸為另一類,使用二分類的SVM訓練處一個二分類器,最後把得到的k個二分類器組成k分類器。對未知樣本分類時,分別用這k個二分類器進行分類,將分類結果中出現最多的那個類別作為最終的分類結果。而一對一方法中,訓練時對於任意兩類樣本都會訓練一個二分類器,最終得到k*(k-1)/2個二分類器,共同組成k分類器。對未知樣本分類時,使用所有的k*(k-1)/2個分類器進行分類,將出現最多的那個類別作為該樣本最終的分類結果。

LIBSVM中的多分類就是根據一對一的方法實現的。

四 使用
關於LIBSVM在Matlab中的使用,可以參看軟體包中matlab目錄下的README文件,這里對裡面內容做一個翻譯和一些細節的講解。

1. 訓練
libsvm函數用於對訓練集的數據進行訓練,得到訓練好的模型。

model = libsvmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']);

這個函數有三個參數,其中

-training_label_vector:訓練樣本的類標,如果有m個樣本,就是m x 1的矩陣(類型必須為double)。這里可以是二分類和多分類,類標是(-1,1)、(1,2,3)或者其他任意用來表示不同的類別的數字,要轉成double類型。
-training_instance_matrix:訓練樣本的特徵,如果有m個樣本,每個樣本特徵是n維,則為m x n的矩陣(類型必須為double)。
-libsvm_options:訓練的參數,在第3點詳細介紹。
2. 預測
libpredict函數用於對測試集的數據進行測試,還能對未知樣本進行預測。

[predicted_label, accuracy, decision_values/prob_estimates]
= libsvmpredict(testing_label_vector, testing_instance_matrix, model [, 'libsvm_options']);

這個函數包括四個參數,其中

-testing_label_vector:測試樣本的類標,如果有m個樣本,就是m x 1的矩陣(類型必須為double)。如果類標未知,可以初始化為任意m x 1的double數組。
-testing_instance_matrix:測試樣本的特徵,如果有m個樣本,每個樣本特徵是n維,則為m x n的矩陣(類型必須為double)。
-model:使用libsvmtrain返回的模型
-libsvm_options:預測的參數,與訓練的參數形式一樣。
3. 訓練的參數
LIBSVM訓練時可以選擇的參數很多,包括:

-s svm類型:SVM設置類型(默認0)
0 — C-SVC; 1 –v-SVC; 2 – 一類SVM; 3 — e-SVR; 4 — v-SVR
-t 核函數類型:核函數設置類型(默認2)
0 – 線性核函數:u』v
1 – 多項式核函數:(r*u』v + coef0)^degree
2 – RBF(徑向基)核函數:exp(-r|u-v|^2)
3 – sigmoid核函數:tanh(r*u』v + coef0)
-d degree:核函數中的degree設置(針對多項式核函數)(默認3)
-g r(gamma):核函數中的gamma函數設置(針對多項式/rbf/sigmoid核函數)(默認1/k,k為總類別數)
-r coef0:核函數中的coef0設置(針對多項式/sigmoid核函數)((默認0)
-c cost:設置C-SVC,e -SVR和v-SVR的參數(損失函數)(默認1)
-n nu:設置v-SVC,一類SVM和v- SVR的參數(默認0.5)
-p p:設置e -SVR 中損失函數p的值(默認0.1)
-m cachesize:設置cache內存大小,以MB為單位(默認40)
-e eps:設置允許的終止判據(默認0.001)
-h shrinking:是否使用啟發式,0或1(默認1)
-wi weight:設置第幾類的參數C為weight*C (C-SVC中的C) (默認1)
-v n: n-fold交互檢驗模式,n為fold的個數,必須大於等於2
以上這些參數設置可以按照SVM的類型和核函數所支持的參數進行任意組合,如果設置的參數在函數或SVM類型中沒有也不會產生影響,程序不會接受該參數;如果應有的參數設置不正確,參數將採用默認值。

4. 訓練返回的內容
libsvmtrain函數返回訓練好的SVM分類器模型,可以用來對未知的樣本進行預測。這個模型是一個結構體,包含以下成員:

-Parameters: 一個5 x 1的矩陣,從上到下依次表示:
-s SVM類型(默認0);
-t 核函數類型(默認2)
-d 核函數中的degree設置(針對多項式核函數)(默認3);
-g 核函數中的r(gamma)函數設置(針對多項式/rbf/sigmoid核函數) (默認類別數目的倒數);
-r 核函數中的coef0設置(針對多項式/sigmoid核函數)((默認0)
-nr_class: 表示數據集中有多少類別,比如二分類時這個值即為2。
-totalSV: 表示支持向量的總數。
-rho: 決策函數wx+b中的常數項的相反數(-b)。
-Label: 表示數據集中類別的標簽,比如二分類常見的1和-1。
-ProbA: 使用-b參數時用於概率估計的數值,否則為空。
-ProbB: 使用-b參數時用於概率估計的數值,否則為空。
-nSV: 表示每類樣本的支持向量的數目,和Label的類別標簽對應。如Label=[1; -1],nSV=[63; 67],則標簽為1的樣本有63個支持向量,標簽為-1的有67個。
-sv_coef: 表示每個支持向量在決策函數中的系數。
-SVs: 表示所有的支持向量,如果特徵是n維的,支持向量一共有m個,則為m x n的稀疏矩陣。
另外,如果在訓練中使用了-v參數進行交叉驗證時,返回的不是一個模型,而是交叉驗證的分類的正確率或者回歸的均方根誤差。

5. 預測返回的內容
libsvmtrain函數有三個返回值,不需要的值在Matlab可以用~進行代替。

-predicted_label:第一個返回值,表示樣本的預測類標號。
-accuracy:第二個返回值,一個3 x 1的數組,表示分類的正確率、回歸的均方根誤差、回歸的平方相關系數。
-decision_values/prob_estimates:第三個返回值,一個矩陣包含決策的值或者概率估計。對於n個預測樣本、k類的問題,如果指定「-b 1」參數,則n x k的矩陣,每一行表示這個樣本分別屬於每一個類別的概率;如果沒有指定「-b 1」參數,則為n x k*(k-1)/2的矩陣,每一行表示k(k-1)/2個二分類SVM的預測結果。
6. 讀取或保存
libsvmread函數可以讀取以LIBSVM格式存儲的數據文件。

[label_vector, instance_matrix] = libsvmread(『data.txt』);

這個函數輸入的是文件的名字,輸出為樣本的類標和對應的特徵。

libsvmwrite函數可以把Matlab的矩陣存儲稱為LIBSVM格式的文件。

libsvmwrite(『data.txt』, label_vector, instance_matrix]

這個函數有三個輸入,分別為保存的文件名、樣本的類標和對應的特徵(必須為double類型的稀疏矩陣)。

五 更新:svdd擴展安裝(2014.10)
從libsvm官網下載svdd工具箱,目前使用libsvm3.18以及svdd3.18版本。

svdd工具箱裡面有一個matlab文件夾和3個文件svm.cpp、svm.h、svm-train.c。
將matlab文件夾中的文件svmtrain.c覆蓋原libsvm的matlab文件夾中的文件。
將svm.cpp、svm.h、svm-train.c這3個文件覆蓋libsvm文件夾下的相同文件。
按本文剛開始講述的方法進行mex -setup、make等完成安裝,根據需要進行改名以及添加Path。

閱讀全文

與matlabsvr工具箱相關的資料

熱點內容
機械作業合同應交多少稅 瀏覽:998
雲南有哪些機械製造廠 瀏覽:319
機械鍵盤怎麼拔空格 瀏覽:261
山東民緣機械質量如何 瀏覽:464
東莞市鼎誠五金製品廠 瀏覽:603
軸承架松動如何解決 瀏覽:971
水泵軸承體的跳動多少 瀏覽:270
什麼排卵儀器最好 瀏覽:153
認識蒸發與過濾裝置的實驗器材 瀏覽:554
河南新飛飲水機怎麼製冷 瀏覽:45
中山市華騰五金製品有限公司 瀏覽:823
活下去工具箱升級 瀏覽:87
空氣能製冷需要什麼 瀏覽:464
製冷量12000w的一小時多少度電 瀏覽:26
閥門pn是什麼意思啊 瀏覽:333
奧迪儀表功率顯示怎麼調右邊 瀏覽:426
叮咚如何添加智能設備 瀏覽:59
手持式電動工具絕緣電阻檢查 瀏覽:532
製作個pe工具箱u盤要多久 瀏覽:42
閘北機器設備吊裝哪裡有 瀏覽:874