❶ 神經網路工具箱與編程實現哪個更好
首先說一下神經網路工具箱,在我剛剛接觸神經網路的時候,我就利用工具箱去解決問題,這讓我從直觀上對神經網路有了了解,大概清楚了神經網路的應用范圍以及它是如何解決實際問題的。
工具箱的優勢在於我們不用了解其內部的具體實現,更關注於模型的建立與問題的分析,也就是說,如果拋開演算法的錯誤,那麼用工具箱來解決實際問題會讓我們能把更多的精力放在實際問題的模型建立上,而不是繁瑣的演算法實現以及分析上。
其次談談編程實現神經網路,由於個人能力有限,所以只是簡單的編程實現過一些基本神經演算法,總的體會就是編程的過程讓我對演算法有了更透徹的理解,可以更深入的分析其內部運行機制,也同樣可以實現一下自己的想法,構建自己的神經網路演算法。
以上是我對兩個方法的簡單理解。那究竟哪個方法更好些呢?我個人的看法是要看使用者的目的是怎樣的。
如果使用者的目的在於解決實際問題,利用神經網路的函數逼近與擬合功能實現自己對實際問題的分析與模型求解,那我的建議就是利用神經網路工具箱,學過編程語言的人都知道,無論用什麼編程語言將一個現有的演算法編程實現達到可用的結果這一過程都是及其繁瑣與復雜的,就拿簡單的經典BP神經網路演算法來說,演算法本身的實現其實並不難,可根據不同人的能力,編出來的程序的運行效率是大不相同的,而且如果有心人看過matlab的工具箱的源碼的話,應該能發現,裡面採用的方法並不完全是純粹的BP經典演算法,一個演算法從理論到實現還要依賴與其他演算法的輔助,計算機在計算的時候難免出現的舍入誤差,保證權值的時刻改變,這都是編程人員需要考慮的問題,可能還有很多的問題
這樣的話,如果自己單人編程去實現神經網路來解決實際問題的話,整體效率就沒有使用工具箱更好。
如果使用者的目的在於分析演算法,構造新的網路的話那當然首推自己編程實現。個人的感覺就是,如果真的是自己完全編程實現的話,對演算法會有很深入的理解,在編程的調試過程中,也會領悟到很多自己從前從來沒有考慮過的問題,像權值的初始的隨機選取應該怎麼樣,將訓練樣本按什麼順序輸入等,這都是編程實現所要考慮的問題,不同的方法得到的結果會有很大的差距。
❷ MATLAB神經網路擬合工具箱Neural Net Fitting實現回歸預測
本文講解在MATLAB軟體中利用神經網路擬合(Neural Net Fitting)工具箱實現回歸預測的具體方法。首先,導入數據時通過readtable()函數從Excel讀取數據,隨後將因變數Y與自變數X准備就緒。對於多個自變數,需合並放置於單一變數X中。
接著,運行MATLAB軟體並選擇「APP」→「Neural Net Fitting」打開工具箱。在「Neural Network Start」界面,選擇輸入與輸出數據。通過滑鼠在MATLAB工作區找到對應變數,確保數據維度正確設置。
繼續點擊「Next」,進入數據集劃分界面。在此選擇驗證集與測試集比例,一般數據量少時採用6:2:2比例,數據量大時則為98:1:1,依據實際情況調整。
接著,點擊「Next」進入神經網路結構配置界面。僅能配置隱藏層神經元數量,默認為1層,不能修改。對於隱藏層數量,建議先填寫默認值10,根據模型精度與運行時間進行二次調整。
點擊「Next」後,進入神經網路模型訓練界面。選擇訓練演算法,提供三種選項:Levenberg-Marquardt演算法、Bayesian regularization演算法、Scaled conjugate gradient backpropagation演算法。結合數據特性,一般優先選擇Levenberg-Marquardt演算法。
訓練模型後,界面顯示訓練結果窗口與精度評定指標數值。如對模型不滿意,可多次重復訓練並調整參數重新構建模型。若模型基本滿意,點擊「Next」進入模型調整界面,可進一步優化模型。
繼續點擊「Next」,進入解決方案部署界面。此界面提供代碼生成、關鍵參數保存等功能。選擇「Generate Scripts」自動生成MATLAB代碼,簡化後續模型訓練。在「Save Data to Workspace」中保存模型參數,以便未來直接調用模型。
保存完畢後,點擊「Finish」退出神經網路擬合工具箱。系統若未保存任何代碼或參數,會彈出提示確認退出。