❶ 如何将驱动添加进内核
一、 驱动程序编译进内核的步骤 在 linux 内核中增加程序需要完成以下三项工作: 1. 将编写的源代码复制到 Linux 内核源代码的相应目录; 2. 在目录的 Kconfig 文件中增加新源代码对应项目的编译配置选项; 3. 在目录的 Makefile 文件中增加对新源代码的编译条目。 bq27501驱动编译到内核中具体步骤如下: 1. 先将驱动代码bq27501文件夹复制到 ti-davinci/drivers/ 目录下。 确定bq27501驱动模块应在内核源代码树中处于何处。 设备驱动程序存放在内核源码树根目录 drivers/ 的子目录下,在其内部,设备驱动文件进一步按照类别,类型等有序地组织起来。 a. 字符设备存在于 drivers/char/ 目录下 b. 块设备存放在 drivers/block/ 目录下 c. USB 设备则存放在 drivers/usb/ 目录下。 注意: (1) 此处的文件组织规则并非绝对不变,例如: USB 设备也属于字符设备,也可以存放在 drivers/usb/ 目录下。 (2) 在 drivers/char/ 目录下,在该目录下同时存在大量的 C 源代码文件和许多其他目录。所有对于仅仅只有一两个源文件的设备驱动程序,可以直接存放在该目录下,但如果驱动程序包含许多源文件和其他辅助文件,那么可以创建一个新子目录。 (3) bq27501的驱动是属于字符设备驱动类别,虽然驱动相关的文件只有两个,但是为了方面查看,将相关文件放在了bq27501的文件夹中。在drivers/char/目录下增加新的设备过程比较简单,但是在drivers/下直接添加新的设备稍微复杂点。所以下面首先给出在drivers/下添加bq27501驱动的过程,然后再简单说明在drivers/char/目录下添加的过程。 2. 在/bq27501下面新建一个Makefile文件。向里面添加代码: obj-$(CONFIG_BQ27501)+=bq27501.o 此时,构建系统运行就将会进入 bq27501/ 目录下,并且将bq27501.c 编译为 bq27501.o 3. 在/bq27501下面新建Kconfig文件。添加代码: menu "bq27501 driver" config BQ27501 tristate"BQ27501" default y ---help--- Say 'Y' here, it will be compiled into thekernel; If you choose 'M', it will be compiled into a mole named asbq27501.ko. endmenu 注意:help中的文字不能加回车符,否则make menuconfig编译的时候会报错。 4. 修改/drivers目录下的Kconfig文件,在endmenu之前添加一条语句‘source drivers/bq27501/Kconfig’ 对于驱动程序,Kconfig 通常和源代码处于同一目录。 若建立了一个新的目录,而且也希望 Kconfig 文件存在于该目录中的话,那么就必须在一个已存在的 Kconfig 文件中将它引入,需要用上面的语句将其挂接在 drivers 目录中的Kconfig 中。 5. 修改/drivers目下Makefile文件,添加‘obj-$(CONFIG_BQ27501) +=bq27501/’。这行编译指令告诉模块构建系统在编译模块时需要进入 bq27501/ 子目录中。此时的驱动程序的编译取决于一个特殊配置 CONFIG_BQ27501 配置选项。 6. 修改arch/arm目录下的Kconfig文件,在menu "Device Drivers……endmenu"直接添加语句 source "drivers/bq27501/Kconfig"
❷ 设备树何时加入linux内核的
Linux and the Device Tree
Linux内核设备树数据使用模型。
Open Firmware Device Tree (DT) 是一个数据结构,也是一种描述硬件的语言。准确地说,它是一种能被操作系统解析的描述硬件的语言,这样操作系统就不需要把硬件平台的细节在代码中写死。
从结构上来说,DT是一个树形结构,或者有名结点组成的非循环图,结点可能包含任意数量的有名属性,有名属性又可以包含任意数量的数据。同样存在一种机制,可以创建从一个结点到正常树形结构之外的链接。
从概念上讲,一套通用的使用方法,即bindings。Bindings定义了数据如何呈现在设备树中,怎样描述典型的硬件特性,包括数据总线,中断线,GPIO连接以及外设等。
尽可能多的硬件被描述从而使得已经存在的bindings最大化地使用源代码,但是由于属性名和结点名是简单字符串, 可以通过定义新结点和属性的方式很方便地扩展已经存在的bindings或者创建一个新的binding。在没有认真了解过已经存在的bindings的情况下,创建一个新的binding要慎之又慎。对于I2C总线,通常有两种不同的,互不相容的bindings出现,就是因为新的binding创建时没有研究I2C设备是如何在当前系统中被枚举的。
1. 历史
略
2. 数据模型
请参考Device Tree Usage章节
2.1 High Level View
必须要认识到的是,DT是一个描述硬件的数据结构。它并没有什么神奇的地方,也不能把所有硬件配置的问题都解决掉。它只是提供了一种语言,将硬件配置从Linux Kernel支持的board and device driver中提取出来。DT使得board和device变成数据驱动的,它们必须基于传递给内核的数据进行初始化,而不是像以前一样采用hard coded的方式。
观念上说,数据驱动平台初始化可以带来较少的代码重复率,使得单个内核映像能够支持很多硬件平台。
Linux使用DT的三个主要原因:
1) 平台识别 (Platform Identification)
2) 实时配置 (Runtime Configuration)
3) 设备植入 (Device Population)
2.2 平台识别
第一且最重要的是,内核使用DT中的数据去识别特定机器。最完美的情况是,内核应该与特定硬件平台无关,因为所有硬件平台的细节都由设备树来描述。然而,硬件平台并不是完美的,所以内核必须在早期初始化阶段识别机器,这样内核才有机会运行特定机器相关的初始化序列。
大多数情况下,机器识别是与设备树无关的,内核通过机器的核心CPU或者SOC来选择初始化代码。以ARM平台为例,setup_arch()会调用setup_machine_fdt(),后者遍历machine_desc链表,选择最匹配设备树数据的machine_desc结构体。它是通过查找设备树根结点的compatible属性并与machine_desc->dt_compat进行比较来决定哪一个machine_desc结构体是最适合的。
Compatible属性包含一个有序的字符串列表,它以确切的机器名开始,紧跟着一个可选的board列表,从最匹配到其他匹配类型。以TI BeagleBoard的compatible属性为例,BeagleBoard xM Board可能描述如下:
compatible = "ti,omap3-beagleboard", "ti,omap3450", "ti,omap3";
compatible = "ti,omap3-beagleboard-xm", "ti,omap3450", "ti,omap3";
在这里,”ti, omap3-beagleboard-xm”是最匹配的模型,"ti,omap3450"次之,"ti,omap3"再次之。
机敏的读者可能指出,Beagle xM也可以声明匹配"ti,omap3-beagleboard",但是要注意的是,板级层次上,两个机器之间的变化比较大,很难确定是否兼容。从顶层上来看,宁可小心也不要去声明一个board兼容另外一个。值得注意的情况是,当一个board承载另外一个,例如一个CPU附加在一个board上。(两种CPU支持同一个board的情况)
❸ linux中内核使用设备树时,驱动加载的时候,device的数据怎么传给驱动
linux设备树驱动exynos4412怎么写
系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能:
1、对设备初始化和释放。
2、把数据从内核传送到硬件和从硬件读取数据。
3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据。
4、检测和处理设备出现的错误。
在Linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。
已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。
最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。
读/写时,它首先察看缓冲区的内容,如果缓冲区的数据未被处理,则先处理其中的内容。
❹ linux中驱动放在哪个目录下
这些文件在正常操作中不会被改变的。这个目录也包含你的Linux发行版本的主要的应用程序,譬如,Netscape。 /var 目录包含在正常操作中被改变的文件:假脱机文件、记录文件、加锁文件、临时文件和页格式化文件等。 /home 目录包含用户的文件:参数设置文件、个性化文件、文档、数据、EMAIL、缓存数据等。这个目录在系统省级时应该保留。 /proc 目录整个包含虚幻的文件。它们实际上并不存在磁盘上,也不占用任何空间。(用ls –l 可以显示它们的大小)当查看这些文件时,实际上是在访问存在内存中的信息,这些信息用于访问系统 /bin 系统启动时需要的执行文件(二进制),这些文件可以被普通用户使用。 /sbin 系统执行文件(二进制),这些文件不打算被普通用户使用。(普通用户仍然可以使用它们,但要指定目录。) /etc 操作系统的配置文件目录。 /root 系统管理员(也叫超级用户或根用户)的Home目录。 /dev 设备文件目录。LINUX下设备被当成文件,这样一来硬件被抽象化,便于读写、网络共享以及需要临时装载到文件系统中。正常情况下,设备会有一个独立的子目 录。这些设备的内容会出现在独立的子目录下。LINUX没有所谓的驱动符。 /lib 根文件系统目录下程序和核心模块的共享库。 /boot 用于自举加载程序(LILO或GRUB)的文件。当计算机启动时(如果有多个操作系统,有可能允许你选择启动哪一个操作系统),这些文件首先被装载。这个目录也会包含LINUX核(压缩文件vmlinuz),但LINUX核也可以存在别处,只要配置LILO并且LILO知道LINUX核在哪儿。 /opt 可选的应用程序,譬如,REDHAT 5.2下的KDE (REDHAT 6.0下,KDE放在其它的XWINDOWS应用程序中,主执行程序在/usr/bin目录下) /tmp 临时文件。该目录会被自动清理干净。 /lost+found 在文件系统修复时恢复的文件 “/usr”目录下比较重要的部分有: /usr/X11R6 X-WINDOWS系统(version 11, release 6) /usr/X11 同/usr/X11R6 (/usr/X11R6的符号连接) /usr/X11R6/bin 大量的小X-WINDOWS应用程序(也可能是一些在其它子目录下大执行文件的符号连接)。 /usr/doc LINUX的文档资料(在更新的系统中,这个目录移到/usr/share/doc)。 /usr/share 独立与你计算机结构的数据,譬如,字典中的词。 /usr/bin和/usr/sbin 类似与“/”根目录下对应的目录(/bin和/sbin),但不用于基本的启动(譬如,在紧急维护中)。大多数命令在这个目录下。 /usr/local 本地管理员安装的应用程序(也可能每个应用程序有单独的子目录)。在“main”安装后,这个目录可能是空的。这个目录下的内容在重安装或升级操作系统后应该存在。 /usr/local/bin 可能是用户安装的小的应用程序,和一些在/usr/local目录下大应用程序的符号连接。 /proc目录的内容: /proc/cpuinfo 关于处理器的信息,如类型、厂家、型号和性能等。 /proc/devices 当前运行内核所配置的所有设备清单。 /proc/dma 当前正在使用的DMA通道。/proc/filesystems 当前运行内核所配置的文件系统。 /proc/interrupts 正在使用的中断,和曾经有多少个中断。 /proc/ioports 当前正在使用的I/O端口。 举例,使用下面的命令能读出系统的CPU信息。 cat /proc/cpuinfo /bin bin是binary的缩写。这个目录沿袭了UNIX系统的结构,存放着使用者最经常使用的命令。例如cp、ls、cat,等等。 /boot 这里存放的是启动Linux时使用的一些核心文件。 /dev dev是device(设备)的缩写。这个目录下是所有Linux的外部设备,其功能类似DOS下的.sys和Win下的.vxd。在Linux中设备和文件是用同种方法访问的。例如:/dev/hda代表第一个物理IDE硬盘。 /etc 这个目录用来存放系统管理所需要的配置文件和子目录。 /home 用户的主目录,比如说有个用户叫wang,那他的主目录就是/home/wang也可以用~wang表示。 /lib 这个目录里存放着系统最基本的动态链接共享库,其作用类似于Windows里的.dll文件。几乎所有的应用程序都须要用到这些共享库。 /lost+found 这个目录平时是空的,当系统不正常关机后,这里就成了一些无家可归的文件的避难所。对了,有点类似于DOS下的.chk文件。 /mnt 这个目录是空的,系统提供这个目录是让用户临时挂载别的文件系统。 /proc 这个目录是一个虚拟的目录,它是系统内存的映射,我们可以通过直接访问这个目录来获取系统信息。也就是说,这个目录的内容不在硬盘上而是在内存里。 /root 系统管理员(也叫超级用户)的主目录。作为系统的拥有者,总要有些特权啊!比如单独拥有一个目录。 /sbin s就是Super User的意思,也就是说这里存放的是系统管理员使用的管理程序。 /tmp 这个目录不用说,一定是用来存放一些临时文件的地方了。 /usr 这是最庞大的目录,我们要用到的应用程序和文件几乎都存放在这个目录下。其中包含以下子目录; /usr/X11R6 存放X-Window的目录; /usr/bin 存放着许多应用程序; /usr/sbin 给超级用户使用的一些管理程序就放在这里; /usr/doc 这是Linux文档的大本营; /usr/include Linux下开发和编译应用程序需要的头文件,在这里查找; /usr/lib 存放一些常用的动态链接共享库和静态档案库; /usr/local 这是提供给一般用户的/usr目录,在这里安装软件最适合; /usr/man man在Linux中是帮助的同义词,这里就是帮助文档的存放目录; /usr/src Linux开放的源代码就存在这个目录,爱好者们别放过哦! /var 这个目录中存放着那些不断在扩充着的东西,为了保持/usr的相对稳定,那些经常被修改的目录可以放在这个目录下,实际上许多系统管理员都是这样干的。顺带说一下系统的日志文件就在/var/log目录中。 总结来说: · 用户应该将文件存在/home/user_login_name目录下(及其子目录下)。 · 本地管理员大多数情况下将额外的软件安装在/usr/local目录下并符号连接在/usr/local/bin下的主执行程序。 · 系统的所有设置在/etc目录下。 · 不要修改根目录(“/”)或/usr目录下的任何内容,除非真的清楚要做什么。这些目录最好和LINUX发布时保持一致。 · 大多数工具和应用程序安装在目录:/bin, /usr/sbin, /sbin, /usr/x11/bin,/usr/local/bin。 · 所有的文件在单一的目录树下。没有所谓的“驱动符”
❺ linux gpio设备驱动在哪
设备树有设备信息,gpio驱动可以根据设备树的信息自己写的
❻ 如何在Yocto中使用自己的设备树dts和内核配置
LinuxandtheDeviceTreeLinux内核设备树数据使用模型。OpenFirmwareDeviceTree(DT)是一个数据结构,也是一种描述硬件的语言。准确地说,它是一种能被操作系统解析的描述硬件的语言,这样操作系统就不需要把硬件平台的细节在代码中写死。从结构上来说,DT是一个树形结构,或者有名结点组成的非循环图,结点可能包含任意数量的有名属性,有名属性又可以包含任意数量的数据。同样存在一种机制,可以创建从一个结点到正常树形结构之外的链接。从概念上讲,一套通用的使用方法,即bindings。Bindings定义了数据如何呈现在设备树中,怎样描述典型的硬件特性,包括数据总线,中断线,GPIO连接以及外设等。尽可能多的硬件被描述从而使得已经存在的bindings最大化地使用源代码,但是由于属性名和结点名是简单字符串,可以通过定义新结点和属性的方式很方便地扩展已经存在的bindings或者创建一个新的binding。在没有认真了解过已经存在的bindings的情况下,创建一个新的binding要慎之又慎。对于I2C总线,通常有两种不同的,互不相容的bindings出现,就是因为新的binding创建时没有研究I2C设备是如何在当前系统中被枚举的。1.历史略2.数据模型请参考DeviceTreeUsage章节2.1HighLevelView必须要认识到的是,DT是一个描述硬件的数据结构。它并没有什么神奇的地方,也不能把所有硬件配置的问题都解决掉。它只是提供了一种语言,将硬件配置从LinuxKernel支持的boardanddevicedriver中提取出来。DT使得board和device变成数据驱动的,它们必须基于传递给内核的数据进行初始化,而不是像以前一样采用hardcoded的方式。观念上说,数据驱动平台初始化可以带来较少的代码重复率,使得单个内核映像能够支持很多硬件平台。Linux使用DT的三个主要原因:1)平台识别(PlatformIdentification)2)实时配置(RuntimeConfiguration)3)设备植入(DevicePopulation)2.2平台识别第一且最重要的是,内核使用DT中的数据去识别特定机器。最完美的情况是,内核应该与特定硬件平台无关,因为所有硬件平台的细节都由设备树来描述。然而,硬件平台并不是完美的,所以内核必须在早期初始化阶段识别机器,这样内核才有机会运行特定机器相关的初始化序列。大多数情况下,机器识别是与设备树无关的,内核通过机器的核心CPU或者SOC来选择初始化代码。以ARM平台为例,setup_arch()会调用setup_machine_fdt(),后者遍历machine_desc链表,选择最匹配设备树数据的machine_desc结构体。它是通过查找设备树根结点的compatible属性并与machine_desc->dt_compat进行比较来决定哪一个machine_desc结构体是最适合的。Compatible属性包含一个有序的字符串列表,它以确切的机器名开始,紧跟着一个可选的board列表,从最匹配到其他匹配类型。以TIBeagleBoard的compatible属性为例,BeagleBoardxMBoard可能描述如下:compatible="ti,omap3-beagleboard","ti,omap3450","ti,omap3";compatible="ti,omap3-beagleboard-xm","ti,omap3450","ti,omap3";在这里,”ti,omap3-beagleboard-xm”是最匹配的模型,"ti,omap3450"次之,"ti,omap3"再次之。机敏的读者可能指出,BeaglexM也可以声明匹配"ti,omap3-beagleboard",但是要注意的是,板级层次上,两个机器之间的变化比较大,很难确定是否兼容。从顶层上来看,宁可小心也不要去声明一个board兼容另外一个。值得注意的情况是,当一个board承载另外一个,例如一个CPU附加在一个board上。(两种CPU支持同一个board的情况)
❼ 如何使用dtc编译设备树 devicetree
DTS (device tree source)
.dts文件是一种ASCII 文本格式的Device
Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM
Linux在,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts就include这个.dtsi。譬如,对于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用,
vexpress-v2p-ca9.dts有如下一行:
/include/
"vexpress-v2m.dtsi"
当然,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM
SoC的.dtsi都引用了skeleton.dtsi。
.dts(或者其include的.dtsi)基本元素即为前文所述的结点和属性:
[plain] view
plainprint?
/ {
node1 {
a-string-property = "A string";
a-string-list-property = "first string", "second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = "Hello, world";
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
/ {
node1 {
a-string-property = "A string";
a-string-list-property = "first string", "second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = "Hello, world";
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
上述.dts文件并没有什么真实的用途,但它基本表征了一个Device
Tree源文件的结构:
1个root结点"/";
root结点下面含一系列子结点,本例中为"node1" 和
"node2";
结点"node1"下又含有一系列子结点,本例中为"child-node1" 和
"child-node2";
各结点都有一系列属性。这些属性可能为空,如"
an-empty-property";可能为字符串,如"a-string-property";可能为字符串数组,如"a-string-list-property";可能为Cells(由u32整数组成),如"second-child-property",可能为二进制数,如"a-byte-data-property"。
下面以一个最简单的machine为例来看如何写一个.dts文件。假设此machine的配置如下:
1个双核ARM
Cortex-A9 32位处理器;
ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和
0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中断控制器(位于0x10140000)和一个external
bus桥;
External bus桥上又连接了SMC SMC91111
Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR
Flash(位于0x30000000);
External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim
DS1338实时钟(I2C地址为0x58)。
其对应的.dts文件为:
[plain] view
plainprint?
/ {
compatible = "acme,coyotes-revenge";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a9";
reg = <1>;
};
};serial@101f0000 {
compatible = "arm,pl011";
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};serial@101f2000 {
compatible = "arm,pl011";
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};gpio@101f3000 {
compatible = "arm,pl061";
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};intc: interrupt-controller@10140000 {
compatible = "arm,pl190";
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};spi@10115000 {
compatible = "arm,pl022";
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flashethernet@0,0 {
compatible = "smc,smc91c111";
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};i2c@1,0 {
compatible = "acme,a1234-i2c-bus";
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = "maxim,ds1338";
reg = <58>;
interrupts = < 7 3 >;
};
};flash@2,0 {
compatible = "samsung,k8f1315ebm", "cfi-flash";
reg = <2 0 0x4000000>;
};
};
};
/ {
compatible = "acme,coyotes-revenge";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a9";
reg = <1>;
};
};
serial@101f0000 {
compatible = "arm,pl011";
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
serial@101f2000 {
compatible = "arm,pl011";
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
gpio@101f3000 {
compatible = "arm,pl061";
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: interrupt-controller@10140000 {
compatible = "arm,pl190";
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
spi@10115000 {
compatible = "arm,pl022";
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ethernet@0,0 {
compatible = "smc,smc91c111";
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
i2c@1,0 {
compatible = "acme,a1234-i2c-bus";
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = "maxim,ds1338";
reg = <58>;
interrupts = < 7 3 >;
};
};
flash@2,0 {
compatible = "samsung,k8f1315ebm", "cfi-flash";
reg = <2 0 0x4000000>;
};
};
};
上述.dts文件中,root结点"/"的compatible 属性compatible =
"acme,coyotes-revenge";定义了系统的名称,它的组织形式为:<manufacturer>,<model>。Linux内核透过root结点"/"的compatible
属性即可判断它启动的是什么machine。
在.dts文件的每个设备,都有一个compatible
属性,compatible属性用户驱动和设备的绑定。compatible
属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为"<manufacturer>,<model>",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:
[plain] view
plainprint?
flash@0,00000000 {
compatible = "arm,vexpress-flash", "cfi-flash";
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
flash@0,00000000 {
compatible = "arm,vexpress-flash", "cfi-flash";
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。
再比如,Freescale
MPC8349 SoC含一个串口设备,它实现了国家半导体(National Semiconctor)的ns16550
寄存器接口。则MPC8349串口设备的compatible属性为compatible = "fsl,mpc8349-uart",
"ns16550"。其中,fsl,mpc8349-uart指代了确切的设备, ns16550代表该设备与National Semiconctor
的16550
UART保持了寄存器兼容。
接下来root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible
属性为"arm,cortex-a9"。
注意cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:<name>[@<unit-address>],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如3com
Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。ePAPR标准给出了结点命名的规范。
❽ 求助AM335X在设备树中添加GPMC设备的写法
终端匹配电阻通常用于串接式连接的总线。如果采用星形连接,可选择最远的一个内模块作为匹容配终端。星形连接总线中,如果设备数量不大,可以每个都接,但是,注意匹配电阻的取值要相对增大,否则,超过总线驱动能力,将会影响总线正常工作。
❾ linux怎么编译进驱动进内核
一、 驱动程序编译进内核的步骤
在 linux 内核中增加程序需要完成以下三项工作:
1. 将编写的源代码复制到 Linux 内核源代码的相应目录;
2. 在目录的 Kconfig 文件中增加新源代码对应项目的编译配置选项;
3. 在目录的 Makefile 文件中增加对新源代码的编译条目。
bq27501驱动编译到内核中具体步骤如下:
1. 先将驱动代码bq27501文件夹复制到 ti-davinci/drivers/ 目录下。
确定bq27501驱动模块应在内核源代码树中处于何处。
设备驱动程序存放在内核源码树根目录 drivers/ 的子目录下,在其内部,设备驱动文件进一步按照类别,类型等有序地组织起来。
a. 字符设备存在于 drivers/char/ 目录下
b. 块设备存放在 drivers/block/ 目录下
c. USB 设备则存放在 drivers/usb/ 目录下。
注意:
(1) 此处的文件组织规则并非绝对不变,例如: USB 设备也属于字符设备,也可以存放在 drivers/usb/ 目录下。
(2) 在 drivers/char/ 目录下,在该目录下同时存在大量的 C 源代码文件和许多其他目录。所有对于仅仅只有一两个源文件的设备驱动程序,可以直接存放在该目录下,但如果驱动程序包含许多源文件和其他辅助文件,那么可以创建一个新子目录。
(3) bq27501的驱动是属于字符设备驱动类别,虽然驱动相关的文件只有两个,但是为了方面查看,将相关文件放在了bq27501的文件夹中。在drivers/char/目录下增加新的设备过程比较简单,但是在drivers/下直接添加新的设备稍微复杂点。所以下面首先给出在drivers/下添加bq27501驱动的过程,然后再简单说明在drivers/char/目录下添加的过程。
2. 在/bq27501下面新建一个Makefile文件。向里面添加代码:
obj-$(CONFIG_BQ27501)+=bq27501.o
此时,构建系统运行就将会进入 bq27501/ 目录下,并且将bq27501.c 编译为 bq27501.o
3. 在/bq27501下面新建Kconfig文件。添加代码:
menu "bq27501 driver"
config BQ27501
tristate"BQ27501"
default y
---help---
Say 'Y' here, it will be compiled into thekernel; If you choose 'M', it will be compiled into a mole named asbq27501.ko.
endmenu
注意:help中的文字不能加回车符,否则make menuconfig编译的时候会报错。
4. 修改/drivers目录下的Kconfig文件,在endmenu之前添加一条语句‘source drivers/bq27501/Kconfig’ 对于驱动程序,Kconfig 通常和源代码处于同一目录。 若建立了一个新的目录,而且也希望 Kconfig 文件存在于该目录中的话,那么就必须在一个已存在的 Kconfig 文件中将它引入,需要用上面的语句将其挂接在 drivers 目录中的Kconfig 中。
5. 修改/drivers目下Makefile文件,添加‘obj-$(CONFIG_BQ27501) +=bq27501/’。这行编译指令告诉模块构建系统在编译模块时需要进入 bq27501/ 子目录中。此时的驱动程序的编译取决于一个特殊配置 CONFIG_BQ27501 配置选项。
6. 修改arch/arm目录下的Kconfig文件,在menu "Device Drivers……endmenu"直接添加语句
source "drivers/bq27501/Kconfig"
❿ clover里driversx64uefi里应该放哪些驱动,各
在drivers64UEFI目录下:
1、CsmVideoDxe-64.efi:Clover图形界复面制的图像驱动,可以有更多的分辨率选择。(仅限于启动界面)。他基于UEFI BIOS的CSM模块,因此需要CSM可用。
2、DataHubDxe-64.efi:DataHub协议是MacOSX的强制支持的。通常它是已经存在的,但有时它可能会丢失,在这种情况下,你应该看到屏幕上的警告信息。该文件的存在始终是安全的。
3、EmuVariableUefi-64.efi:大多数UEFI主板有NVRAM硬件,这个驱动提供支持MacOSX在一些罕见情况下需要的NVRAM变量。 仅当你不使用这个驱动出现问题时才使用这个驱动 。
4、OsxAptioFixDrv-64.efi:AMIApti UEFI主板内存修复。
5、OsxLowMemFixDrv-64.efi:OsxAptioFixDrv-64.efi的简化版,不能和OsxAptioFixDrv-64.efi同时使用。
6、PartitionDxe-64.efi:支持非常用的分区图表,比如混合GPT/MBR 或 苹果分区图表。这个文件的存在始终是安全的。