㈠ 要怎样进行磷化处理
转载以下给你参考:
工艺流程
预脱脂→脱脂→除锈→水洗→(表调)→磷化→水洗→磷化后处理(如电泳或粉末涂装)
主要铝件及锌件
磷化发黑液
常温使用,磷化保护一步成型!又称钢铁着色剂!1:4-5稀释后使用,常温浸泡30分钟左右,最后封闭保护!
处理工艺:除油除锈——防锈水浸泡——磷化发黑——晾干——封闭保护
⒈磷化
工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成一层不溶于水的结晶型磷酸盐转换膜的过程,称之为磷化。
⒉磷化原理
钢铁件浸入磷化液(由Fe(H2PO4)2 Mn(H2PO4)2 Zn(H2PO4)2 组成的酸性稀水溶液,PH值为1-3,溶液相对密度为1.05-1.10)中,生成磷化膜
以上是我个人了解的,仅供参考,若能帮到你,请采纳。
㈡ 谁知道矿用开关防爆面磷化液的配制
网络一下:“防爆产品防爆面环保磷化工艺”。防爆面的磷化膜必须有良好的绝缘性,而且还要有一定的厚度,表面要光滑,有一定的耐腐蚀性。
我们生产这种磷化液。
㈢ 磷化工艺流程
HP-101常温磷化液工艺
说明书
1.产品简介
常温磷化液主要用于钢材表面常温的磷化处理。在家用电器、汽车、摩托车和自行车、机械零配件、五金工具等行业得到广泛的应用。主要与油漆、粉末涂装、阴极电泳等工艺配套。
本产品为浅绿色高浓缩液。一般常温使用,节约能源、成本低、溶液稳定,耐蚀性、结合力、耐热性等性能较同类产品要好。
2.槽液的配制
先在槽中加入1/3体积的水,按常温磷化液与水为1:20的比例加入常温磷化液,再按2ml/L加入助进剂,均得搅拌均匀,然后加水至规定的体积,搅拌均匀后取样测定游离酸度和总酸度。
3.磷化工艺参数
磷化液外观浅绿色
游离酸度(点)0.8
总酸度(点)12
磷化时间(分钟)10-20
磷化温度(℃)10-30
4.工艺流程
除油→水洗→除锈→水洗→表调→磷化→水洗→水洗→烘干(或直接电泳)→喷涂→后处理
①前处理的除油、除锈要彻底
②表调剂的配制为2-4g/L,PH值9-10,溶液呈乳白混浊态。可按每天添加10%表调剂进行调整,也可按具体情况操作,如表调液或透明状则视为失效。工件表调后,可直接进入到磷化槽中磷化处理。
③磷化膜均匀、致密,灰色膜或灰色带浅金黄彩色膜。处理的时间可随温度的升高而缩短,以达到工件磷化要求为准。
④阴极电泳时,磷化后经水洗,再用去离子水清洗后,直接进入电泳槽;
⑤当工件需进行喷粉或喷漆时,磷化、清洗后,需烘干后,再进行后续工序。
5.槽液的调整
槽液在工作过程中,总酸度和游离酸度逐步下降,需要定期测定和补充。需补充调整时,直接添加浓缩液,每添加常温磷化液10ml/L,总酸度上升约2.3个点,游离酸度约0.6个点。当游离酸度偏时,可用碳酸钠调整,加2g/L下降约1个点。
当其它工艺参数正常,而工件表面磷化变慢、结晶变粗时,要适量添加助进剂时,可按正常使用量的5-10%进行补充。
6.注意事项
①该磷化液为弱酸性液体,工件中应注意防护,如有与皮肤、眼睛接触应及时用清水冲洗。
②磷化槽要用耐酸材料制成,如玻璃钢、塑料等。
③对结构复杂、多孔的零件,磷化时要适当搅动。
④工件在表调前必须清洗干净,防止杂质的带入,影响表调液和磷化液的功能和寿命。
㈣ 隔爆产品结合面如何进行防腐处理
1, 隔爆面除油处理:
A,干净棉纱仔细擦拭隔爆面二遍;
B,用脱脂棉浸工业汽油或200#溶剂油仔细擦拭隔爆面二遍;
2,如果隔爆面有锈斑可用油石或400#以上砂纸处理;
3,配制磷化浆料:
A,滑石粉一塑料杯,置于一塑料勺内。
B,磷化液一塑料杯慢慢把滑石粉打湿;
C,再慢慢加磷化液若干把滑石粉调成浆糊状,备用。
4,隔爆面磷化:
A,用漆刷或塑料片将浆料均匀涂抹在隔爆面上;
B,浆料在隔爆面上停留时间与环境温度有关,夏季2h,
冬季8h。
软性括刀将浆料除去,用干净刷子或湿棉纱除去残留物。
隔爆面经检验合格后涂防锈油。
5,隔爆面检验
A,磷化膜外观:低碳钢零件磷化膜颜色较浅,呈灰色,结晶细密。表面不应有沉淀物、锈迹、磷化不到的空白片。
B,耐蚀性:用3%NaCl溶液涂在磷化膜上,15min后清洗干净,30min后不出现黄锈即合
㈤ 磷化工艺的主要危害
(1) 灼烫伤害
灼烫是指火焰烧伤、高温物体烫伤、化学灼伤(酸、碱、盐、有机物引起的体内外灼伤)、物理灼伤(光、放射性物质引起的体内外灼伤),不包括电灼伤和火灾引起的烧伤,电炉等熔炼设备在工作时容易引发灼烫事故。
(2)起重伤害
起重伤害事故主要集中在建筑、冶金、机械、交通运输四大行业.
根据大量事故统计资料可以看出,起重伤害事故的主要类型是:吊物坠落、挤压碰撞、触电和机体倾翻。起重伤害在指在生产用材料、设备的吊装、搬运, 在日常工作中经常存在着发生吊物挤、撞、坠落以及碎块飞出伤人等事故。磷化工艺中包含天车和一些简易的起重设备,其存在起重伤害的可能性.
(3)高、低温危害
现行国家标准《高温作业分级》中规定,其工作地点平均WBGT指数等于或大于25℃的作业,即为高温作业。本项目单位在炼钢过程中存在高温和热辐射危害。研究资料表明,环境温度达到28℃时,人的反应速度、运算能力、感觉敏感性及感觉运动协调功能都明显下降。35℃时则仅为一般情况下的70%左右;极重体力劳动作业能力,30℃时只有一般情况下的50%~70%,35℃时则仅有30%左右。高温使劳动效率降低,增加操作失误率。主要体现在影响人体的体温调节和水盐代谢及循环系统等。高温还可以抑制中枢神经系统,使工人在操作过程中注意力分散,肌肉工作内能力降低,从而导致工伤事故。炼钢炉车间熔炼时温度较高,对操作工人容易造成高温危害。由于本项目中需要使用液氧,因而当大量液氧泄露时也存在冻伤事故的可能。所以,也应做好相应的防护措施。
(4)噪声危害
磷化工艺过程中和自制氧机空压站两台空气压缩机,产生较大的噪声。噪声能引起人听觉功能敏感度下降甚至造成耳聋,或引起神经衰弱、心血管疾病及消化系统等疾病,噪声干扰影响信息交流,促使误操作发生率上升。
(5)机械伤害及高处坠落危险
机械伤害的实质,是机械能(动能和势能)的非正常做功、流动或转化,导致对人员的接触性伤害。其形式因生产设备的差异有以下几种:
①咬人和挤压;
②碰撞和撞击;
③接触:包括夹断、剪切、割伤和擦伤、卡住或缠住等。
本项目机械设备较多,操作人员易于接近的各种可动零、部件和裸露的转动部分都是的危险部位。如果这些机械设备的转动部件外露或防护措施和必要的安全装置不完善,很容易造成人身伤害事故。储罐的维修检查容易发生高处坠落危险。
(6)电气伤害
本项目涉及的电气设备较多,容易导致电气伤害。电气事故可分为触电事故、静电危害事故、雷电灾害事故和电气系统火灾事故等几种。
(Ⅰ)触电事故
触电事故的伤害是由电流的能量造成的。触电事故可分为电击和电伤两种情况。
①电击:电击是电流通过人体内部引起的可感知的物理效应。电击对人体伤害程度与通过人体电流的强度、种类、持续、通过途径及人体状况等多种因素有关。电流破坏人的心脏、呼吸及神经系统的正常工作而造成伤害,会使人出现痉挛、窒息、心室纤维性颤动、心跳骤停等症状,严重时会造成死亡。触电事故绝大多数是由电击造成的。电解还原槽是以低电压高电流串联运转的,因此,电击事件通常并不严重。但是,在电力车间高压电源与电解车间联网路的连接点可能发生严重的电击事故,部分原因是交流高压电流。
②电伤:如果车间内电缆若没有采取有效的阻燃和其他预防电缆层损坏的措施;电气设备接地接零措施不完善;临时性及移动设备(含手持电动工具及插座)的供电没有采用漏电保护器或漏电保护器性能不完善等都会造成生产设备及电动设备,厂房电器设备漏电而引发触电伤亡事故。
(Ⅱ)静电危害事故
在爆炸、火灾危险环境内,可能产生静电危害的设备、除尘管路等如无防静电接地,静电荷将聚集,一旦有放电条件,静电荷通过放电点瞬间放电形成火花,而引起火灾事故。
(Ⅲ)雷电伤害事故
本项目部分厂房高度超过10m,在雷雨天存在着被雷击的危险。因此,雷电伤害应引起一定的重视。
(Ⅳ)电气系统火灾事故
变配电系统有大量变电、配电、用电的电气设备,如变压器、断路器、互感器、配电装置、高低压开关柜、照明装置等,在严重过热和故障情况下,容易引起火灾、爆炸。一般来说,导致火灾的危险因素如下:
①变压器超负荷运行、外部短路及绝缘绕组短路,引起温度升高,烧毁变压器。
②变压器线圈受机械损伤或变压器受潮、绝缘老化,引起层间对地短路;或硅钢片之间绝缘老化,铁芯局部过热严重或者紧夹铁芯的螺栓套管绝缘损坏,引起发热而温度升高,引发火灾。
③过电压或过电流引起变配电设备故障引发火灾。
④电缆过负荷,电缆隔热、散热不良引发火灾。
⑤电缆中间接头制作质量不良、压接头不紧、接触电阻过大,造成的电缆过热而引发火灾。
⑥在设备检修过程中,其焊渣、火星和高温金属碎末极易引燃现场的电缆、油渍、绝缘材料和设备或管道上的保温层等可燃物质,引发火灾事故,甚至会引起乙炔或氧气瓶着火或爆炸。
(7)火灾和爆炸危害
本项目中涉及的压力容器较多形如:氧气储罐、煤气发生器等,容易导致爆炸事故。车间内点火源较多,而氧气为助燃气体,容易引发火灾事故。煤气发生系统中发生意外泄露或煤气积聚,很容易导致火灾爆炸事故。
(8)生产性粉尘
本技改项目中生产性粉尘的危害主要来自:原料运输粉尘,电炉冶炼产生的烟气,轧钢加热炉粉尘。
粉尘根据其理化性质,进入人体的量和作用部位的不同,可以引起以下不同病变:
①职业性呼吸系统疾患,如尘肺、粉尘沉着症,职业性过敏性肺炎,呼吸系统肿瘤等;
②由于粉尘对呼吸道粘膜、皮肤、眼、耳等部位的刺激作用所引起的相应疾病;
③中毒作用。
(9)窒息、中毒
氩气具有高密度性、窒息性。正常空气中氩气沉积在底层容易使人窒息。由于炼钢过程中需要加入氩气精炼,当氩气储罐发生泄露而气流流通不畅时,容易导致局部地域发生缺氧窒息。在煤气发生系统中,当煤气发生意外泄露,同样容易发生煤气中毒事故。
㈥ 防爆箱怎么磷化
涂装磷化膜一般不抄做盐雾试验,原因是磷化膜本身的耐腐蚀性很低(一般小于2小时);防腐蚀磷化膜一般是涂防锈剂之后做盐雾试验,但这不是检测磷化膜的耐腐蚀性,而是检测防锈剂与磷化膜整体的耐腐蚀性。磷化膜裸膜一般采用3%的盐水浸泡测定其耐腐蚀性。涂装磷化膜一般不小于1.5小时为合格;防锈磷化膜一般大于2.5小时为合格。
㈦ 煤矿用井下开关防爆面磷化的原理是什么磷化面是什么成分
原理是增强密封效果,其次是防锈。
㈧ 磷化工艺的涂装工艺
建立涂装前处理生产线,先要完成工艺设计,然后才能进行非标设备的设计、制造和安装。因此工艺设计是建立生产线的基础,正确、合理的路线对生产操作及产品质量将会产生良好的影响。工艺设计的内容主要包括:处理方法,处理时间,工艺流程等。
1 处理方式
工件处理方式,是指工件以何种方式与槽液接触达到化学预处理之目的,包括全浸泡式、全喷淋式、喷淋浸泡组合式、刷涂式等。它主要取决于工件的几何尺寸及形状、场地面积、投资规模、生产量等因素的影响。例如几何尺寸复杂的工件,不适合于喷淋方式;油箱、油桶类工件在液体中不易沉入,因而不适合于浸泡方式。
1.1 全浸泡方式
将工件完全浸泡在槽液中,待处理一段时间后取出,完成除油或除锈磷化等目标的一种常见处理方式,工件的几何形状繁简各异,只要液体能够到达的地方,都能实现处理目标,这是浸泡方式的独特优点,是喷淋、刷涂所不能比拟的。其不足之处,是没有机械冲刷的辅助使用,因此处理速度相对较慢,处理时间较长,特别是象连续悬挂输送工件时,除工件在槽内运行时间外,还有工件上下坡时间,因而使设备增长,场地面积和投资增大。仅对磷化而言,国外比较趋向于采用全浸泡方式,据称全浸泡磷化易形成含铁量较高的颗粒状结晶磷化膜,与阴极电泳具有好的配套性。
1.2 全喷淋方式
用泵将液体加压,并以0.1~0.2Mpa的压力使液体形成雾状,喷射在工件上达到处理效果。由于喷淋时有机械冲刷和液体更新使用,因此处理速度加快、时间缩短。生产线长度缩短,相应节首了场地、设备、不足之处是,几何形状较复杂的工件,像内腔、拐角处等液体不易到达,处理效果不好,因此只适合于处理几何形状简单的工件。喷淋方式也不太适合于酸洗除锈,它会带来设备腐蚀、工序间生锈等一系列问题,因此在选择喷淋酸洗时必须十分慎重。据报道,全喷淋磷化易形成结晶枝状粗大、含铁量较低的磷化膜,国外不提倡作为阴极电泳漆前打底的前处理。全喷淋方式主要应用于家用电器、零部件类的粉末涂装、静电涂漆、阳极电泳等。
1.3 喷淋-浸泡结合式
喷淋-浸泡结合式,一般是在某道工序时,工件先是喷淋,然后入槽浸泡,出槽后再喷淋,所有的喷淋、浸泡均是同一槽液。这种结合方式即保留了喷淋的高效率,提高处理速度,又具有浸泡过程,使工件所有部位均可得到有效处理。因此喷淋-浸泡结合式前处理即能在较短时间内完成处理工序,设备占用场地也相对较少,同时又可获得满意的处理效果。在国内外,对于前处理要求较高的汽车行业,一般都趋向于采取喷淋-浸泡结合方式。
1.4 刷涂方式
直接将处理液通过手工刷涂到工件表面,来达到化学处理的目的,这种方式一般不易获得很好的处理效果,在工厂应用较少。对于某些大型、形状较简单的工件,可以考虑用这种方式。
2 处理温度
从节省能源、改善劳动环境、降低生产成本、化学反应速度、处理时间和生产速度要求出发,在生产应用中普遍采用的是低温或中温前处理工艺。
工件除有液态油污外,还有少量固态油脂,在低温下,固态油脂很难去除,因此脱脂温度不管是浸泡还是喷淋均应选择中温范围。如果只有液态油脂,选用低温脱脂完全可以达到要求。
对一般锈蚀及氧化皮工件,应选择中温酸洗,方可保证在10min内彻底除掉锈蚀物及氧化皮。除非有足够的理由,一般不选择低温或不加温酸洗除锈,低温酸洗仅限于如:工件锈蚀很少、无氧化皮;除锈时间不受限制;允许采用盐酸酸洗等情况。
表面调整工序,通常不需加温,一般就是常温处理。
低温或中温磷化,磷化速度都没有明显的差别,都可在较短的时间内快速形成磷化膜。磷化后的工件,如果要求有较长的工序间存放时间,变应该选择中温磷化,才会有较好的防锈效果。
整个前处理过程,都可采用常温不加温洗方式,如果最后一道水洗是热水烫干,其水温应在80℃以上。
3 处理时间
处理方式、处理温度一旦选定,处理时间应根据工件的油污、锈蚀程度来定。一般可参考前处理药剂使用说明书的处理时间要求。
4 工艺流程
根据工件油污、锈蚀程度以及底漆要求,分为不同的工艺流程。
4.1 完全无锈工件
预脱脂——脱脂——水清洗——表调——磷化——水清洗——烘干(电泳底漆时可不干燥,直接进入电泳槽)。这是标准的四工位流程,应用面广,适合于各类冷轧板及机加工的无锈工件前处理,还可将表调剂加到脱脂槽内,减少一道表调工序。
4.2 一般油污、锈蚀、氧化皮混合工件
脱脂除锈“二合一”——水清洗——中和——表调——磷化——水清洗——烘干(或直接电泳)。这套工艺是国内应用最为广泛的流程,适合各类工件(重油污除外)的前处理;如果采用中温磷化,还可省掉表调工序,简单的板型工件,也可省掉中和工序,成为标准带锈件的四工位工艺。
4.3 重油污、锈蚀、氧化皮类工件
预脱脂——水清洗——脱脂除锈“二合一”——水清洗——中和——表调——磷化——水清洗——烘干(或直接进入电泳槽)。对于重油污的工件,首先应进行预脱脂,除去大部分的油脂,以保证在下一步脱脂除锈“二合一”处理后,得到完全洁净的金属表面。
5 几点注意事项
在工艺设计中有些小地方应该十分注意,即使有些是与设备设计有关的,如果考虑不周,将会对生产线的运行及工人操作产生很多不利的影响,如工序间隔时间,溢流水洗,磷化除渣,工件的工艺孔,槽体及加热管材料等。
5.1 工序间隔时间
各个工序间的间隔时间如果太长,会造成工件在运行过程中二次生锈,特别是有酸洗工艺时,酸洗后工件极易在空气中氧化生锈泛绿,最好设有工序间水膜保护,可减少生锈。生锈泛黄泛绿的工件,严重影响磷化效果,造成工件挂灰、泛黄,不能形成完整的磷化膜,所以应尽量缩短工序间的间隔时间。工序间的间隔时间若太短,工件存水处的水,不能完全有效的沥干,产生串槽现象,特别在喷淋方式时,会产生相互喷射飞溅串槽,使槽液成分不易控制,甚至槽液遭到破坏。因此在考虑工序间隔时,应根据工件几何尺寸、形状选择一个恰当的工序间隔时间。
5.2 溢流水清洗
提倡溢流水洗,以保证工件充分清洗干净,减少串槽现象。溢流时应该从底部进水,对角线上部开溢流孔溢流。
5.3 工件工艺孔
对于某些管形件或易形成死角存水的工件,必须选择适当的位置钻好工艺孔,保证水能在较短的时间内充分流尽。否则会造成串槽或者要在空中长时间沥干,产生二次生锈,影响磷化效果。
5.4 磷化除渣
对于任何一种磷化液都会或多或少产生沉渣(轻铁系彩色磷化沉渣很少),应在工艺予设计时注明设有磷化除渣装置,特别是喷淋磷化时,除渣装置必不可少,典型的除渣装置有:斜板沉淀器、高位沉淀塔、离心除渣器、纸布袋滤渣等都可供选择。
5.5 槽体及加热管材料
虽然对于槽体加热管材料的选择不是工艺设计的内容,如果在工艺设计时不予提醒,可能会造成设备设计人员的疏忽,而影响整个生产线的运行。对于硫酸、盐酸酸洗时,其槽体材料只能选用玻璃钢、花岗岩、塑料,加热管只能选用铅锑合金管、陶瓷管,而不能选用不锈钢材料。如果是采用磷酸酸洗,其槽体及加热管材料均可选用不锈钢材料,当然玻璃钢、塑料、花岗岩均可。
6 几种典型前处理工艺
6.1 汽车车身类
此类工件均为冷轧板冲压焊接而成,要求工件不能有锈蚀,即使有极少量锈点也应在上件前打磨掉。采用阴极电泳底漆,对前处理要求较高。典型工艺为:
(1)手工预擦;
(2)预脱脂 喷淋,50~70℃,1min
(3)脱脂 喷淋-浸泡-喷淋,50~70℃,0.5~2.0~0.5min
(4)水清洗二道 喷淋,常温,1min
(5)表调 喷淋,常温,1min
(6)磷化 喷淋-浸泡-喷淋,50~60℃,1.0~3.0~0.5min
(7)水清洗 喷淋,常温,1min
(8)循环去离子水洗 喷淋,常温,1min
(9)新鲜去离子水洗 喷淋,常温,1min
6.2 家用电器类
一般也是由冷轧板冲压而成,极少量锈蚀预先打磨掉。主要工件是冰箱、洗衣机、空调器、家用小电器等。前处理后是粉末涂装,也有部分是静电或空气喷漆。典型工艺为:
(1)预脱脂 喷淋,50~70℃,1min;
(2)脱脂 喷淋,50~70℃,1.5min;
(3)水清洗 喷淋,常温,1min;
(4)表调 喷淋,常温,0.5min;
(5)磷化 喷淋,30~45℃,2.5min;
(6)水清洗二道 喷淋,常温,1min;
(7)去离子水洗 喷淋,常温,1min;
(8)烘干 10~140℃,10min。
6.3 汽车零部件、家用车、改装车类
这类产品批量一般不是很大,因此工序间时间长,工件带有锈蚀、氧化皮、油污等。常用工艺为:
(1)脱脂除锈“二合一” 浸泡,15~40℃,10min;
(2)水清洗 浸泡,常温,1min ;
(3)中和 浸泡,常温,1min;
(4)表调 浸泡,常温,1min;
(5)磷化 浸泡,15~40℃,10min;
(6)水清洗二道 浸泡,常温,1min;
(7)烘干 110~140℃,10min。
6.4 自行车、摩托车、拖拉机类
因大部分工件有锈蚀、氧化皮、油污,产量一般都较大,要求处理速度快。一般工艺为:
(1)除油除锈“二合一” 浸泡,60~70℃,50~70℃,10min;
(2)水清洗 浸泡,常温,1min;
(3)中和 浸泡,常温,1min;
(4)表调 浸泡,常温,1min;
(5)磷化 浸泡,30~70℃,6min;
(6)水清洗二道 浸泡,常温,1min;
(7)烘干 110~140℃,10min。
磷化(Ⅵ)——质量控制及检测方法
磷化后的工件,根据其用途,对其质量指标进行分项检验。主要质量控制指标,包括磷化膜外观、磷化膜厚度或膜重、磷化膜或后处理以后的耐蚀性三大共性指标。根据磷化用途有时还要检测:磷化与漆膜配套性、磷化膜硬度、摩擦系数、抗擦伤性等指标。关于磷化的三共性指标,可参照如下标准及方法。
磷化膜外观:采用目测法,相关标准GB 11376-89《金属的磷酸盐转化膜》和GB 6807-86《钢铁工件涂漆前磷化处理技术条件》。
磷化膜厚度或膜重:膜厚度测量采用GB 6462《金属的氧化覆盖层横断面厚度显微镜测量法》,也可采用测厚仪,按照GB 4956《磁性金属基体上非磁性覆盖层厚度测量磁性方法》或GB 4957《非磁性金属基体上非导电覆盖层测量涡流方法》。膜重测量采用重量法,可依照GB 6807《钢铁工件涂漆前磷化处理技术条件》或GB 9792《金属材料上的转化膜单位面积上膜层质量的测定》。
耐蚀性:检测磷化膜本身的耐蚀性可采用硫酸铜点滴法,氯化钠盐水浸泡法和盐雾试验法。点滴法和盐水浸泡法可依照GB 6807-86《钢铁件涂漆前磷化处理技术条件》,磷化膜经过后处理如涂油,涂蜡,涂漆后一般进行盐雾试验检验。盐雾试验可依照GB 1771-79《漆膜耐盐雾测定法》或GB 6458《金属覆盖层中性盐雾性试验》。
1 涂漆前打底用磷化
用于漆前打底的磷化处理,其主要目的是提高漆膜的附着力和涂层系统的耐蚀性,因此重点在于与漆膜的配合性能方面。一般对磷化质量检测指标包括膜外观、膜厚度和与漆膜配套后的性能。膜外观应为均匀细密完整的磷化膜,对轻铁系磷化,其外观应为均匀细密完整的磷化膜,对轻铁系磷化,其外观应为完整的红蓝彩色膜。磷化膜不宜过厚,一般膜重应小于7.5g/m2,最佳为1.5~3.0g/m2,对于轻铁系磷化膜重0.5~1.0g/m2为宜,过厚和粗糙的磷化膜是不利涂漆的。耐蚀性指标包括磷化膜本身的耐蚀性和涂漆前不应出现泛黄生锈现象。磷化与漆配合后的耐蚀性是最为重要的,它体现了磷化膜与漆协同后的整体耐蚀能力。磷化膜与涂漆配合后除检测耐蚀性外,一般还需测定其漆膜的机械物理性能,如:附着力、冲击强度、抗弯能力(柔韧性)等。
涂漆前打底用磷化的质量指标及检测方法一般应参照国家标准GB 6807-86《钢铁工件涂漆前磷化处理技术条件》,该标准对磷化膜的各项质量指标及检测评价方法都有较详细的规定,其主要内容如下:
(1)磷化膜外观应为结晶致密、连续均匀的浅灰到深灰色膜,对于轻铁系磷化应为连续彩色膜。允许出现下述缺陷;轻微的水迹,铬酸盐痕迹、轻微挂灰现象,由于热处理焊接及加工等表面状态不同造成的磷化膜缺陷。对于下述则是不允许出现的缺陷:磷化膜出现泛黄生锈、磷化膜疏松、磷化露底局部无膜,严重挂灰。
(2)涂漆用磷化膜重应低于7.5克/m2。
(3)磷化膜的耐蚀性采用盐水浸泡法,磷化工件在3%NaCl水溶液中,在15~25℃温度下,浸泡1h不应出现锈蚀。磷化与漆膜配合后的耐蚀性检测是将磷化工件涂覆25~35μm的A04-9白氨基漆,划痕后进行盐雾试验(按GB 1771-79)经24h盐雾试验(铁系磷化是8h盐雾试验)漆膜应无起泡、生锈、脱落现象。
GB 6807-86对硫酸铜点滴法没有作为必须检测的项目,认为可作为工序间磷化质量的快速检验方法,而对磷化与涂漆配合后的耐蚀性作为必检项目。
对于漆前磷化的检验指标及方法也可参照GB 11376-89《金属的磷酸盐转化膜》。
因此,从标准的规定检验项目看,漆前打底用磷化应该是致密、均匀、薄层磷化膜,应着重检验磷化与油漆配套后的耐蚀性及机械物理性能。
2 对防锈、耐蚀用磷化
对于这类磷化,其主要目的是为了耐蚀防护,其耐蚀性是最为重要的指标。一般的质量检测指标包硫酸铜点滴要大于1min,耐盐水大于2h,盐雾试验大于1.5h。有关涂油或涂蜡后的耐蚀性检测,最好采用盐雾试验,具体应达到的耐盐雾时间,可由供需双方商定。
3 润滑、耐磨减摩磷化
起润滑作用的磷化主要用在冷加工方面,一般是锌系。耐磨减摩磷化是用于载荷摩擦运动的工件,常规的是锰系磷化。
对于起润滑作用的磷化,主要检验外观、膜重、耐蚀性以及皂化后的滑润性,有时要测定摩擦系数。要求磷化膜外观应均匀完整,一般膜重大于5g/m2,以保证有一定的膜厚,经皂化后,明显降低摩擦力,减少模具损伤,减少工件冷作时的开裂。
对于耐磨减摩磷化,一般为锰系磷化,其磷化膜外观应为均匀完整深灰或黑色膜。对于配合间隙小的零部件,其膜重应在1~3g/m2,动配合间隙大的工件,其膜重应在5g/m2以上。要求这类磷化有较高的硬度和抗擦伤性能,具体指标可由供需双方商定。同时耐磨减摩磷化应有较好的耐蚀性,通常耐盐雾应在1.5h以上。对于润滑、耐磨减摩磷化同样可参照GB 11976-89。
4 其它用途的磷化
磷化除了用上述三个领域外,还可用于电绝缘方面,装饰性方面。其常规质量检测指标为外观、膜重和耐蚀性。对电绝缘磷化,要求检测单位面积上的表面电阻。对装饰性磷化要根据不同的要求进行染色处理,要求不同的颜色色度和耐蚀性,这些指标的检测方法和控制范围一般由供需双方商定。
磷化质量指标的检测和控制,是根据其用途的不同要有各种不同的要求,除常规的外观、膜重,某些磷化的耐蚀性有标准可遵循外,大部分指标及检测方法都是由供需双方商定。
㈨ 磷化工艺的原理
磷化过程包括化学与电化学反应。不同磷化体系、不同基材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:
8Fe+5Me(H2PO4)2+8H2O+H3PO4- Me2Fe(PO4)2·4H2O(膜)+Me3(PO4)·4H2O(膜)+7FeHPO4(沉渣)+8H2↑
Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步骤组成:
① 酸的浸蚀使基体金属表面H+浓度降低
Fe – 2e→ Fe2+
2H2-+2e→2[H] (1)
H2
② 促进剂(氧化剂)加速
[O]+[H] → [R]+H2O
Fe2++[O] → Fe3++[R]
式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。
③ 磷酸根的多级离解
H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H- (3)
由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。
④ 磷酸盐沉淀结晶成为磷化膜
当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数Ksp时,就会形成磷酸盐沉淀
Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2·4H2O↓ (4)
3Zn2++2PO43-+4H2O=Zn3(PO4)2·4H2O↓ (5)
磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。
磷酸盐沉淀的副反应将形成磷化沉渣
Fe3++PO43-=FePO4 (6)
以上机理不仅可解释锌系、锰系、锌钙系磷化成膜过程,还可指导磷化配方与磷化工艺的设计。从以上机理可以看出:适当的氧化剂可提高反应(2)的速度;较低的H+浓度可使磷酸根离解反应(3)的离解平衡更易向右移动离解出PO43-;金属表面如存在活性点面结合时,可使沉淀反应(4)(5)不需太大的过饱和即可形成磷酸盐沉淀晶核;磷化沉渣的产生取决于反应(1)与反应(2),溶液H+浓度高,促进剂强均使沉渣增多。相应,在实际磷化配方与工艺实施中表面为:适当较强的促进剂(氧化剂);较高的酸比(相对较低的游离酸,即H+浓度);使金属表面调整到具备活性点均能提高磷化反应速度,能在较低温度下快速成膜。因此在低温快速磷化配方设计时一般遵循上述机理,选择强促进剂、高酸比、表面调整工序等。
关于磷化沉渣。因为磷化沉渣主要是FePO4,要相减少沉渣量就必须降低Fe3+的产生量,即通过两个方法:降低磷化液的H+浓度(低游离酸度);降低促进剂浓度,以减少Fe2+氧化成为Fe3+。
锌材与铝材磷化机理基本与上相同。锌材的磷化速度较快,磷化膜只有磷酸锌盐单一组成,并且沉渣很少。铝材磷化一般要加入较多的氟化合物,使之形成AlF3、 AlF63-,铝材磷化步聚与上述机理基本相同。
㈩ 隔爆型电气设备隔爆面防止锈蚀有哪些
井下电气设备的隔爆与失爆
井下防爆电气设备完好标准
一、紧固件类 紧固件应齐全、完整、可靠。同一部位的紧固件(螺 母、螺栓)其规格要求一致。螺栓的裸露部分一般不得超 过三扣,否则,本设备为不完好。凡用螺栓连接紧固的部 件,其间夹有弹性物者(如密封圈和橡套电缆)可不再加 弹簧垫圈。 隔爆外壳结合面的紧固件(螺栓、螺母)要上满扣, 不满扣为失爆。紧固螺钉伸入螺孔长度应不小于螺纹直径 的尺寸(铸铁、铜、铝件等不小于直径的1.5倍)如螺孔深 度不够螺纹直径尺寸,则螺钉必须拧满螺孔,否则,均属 失爆。 隔爆结合面紧固件(螺栓)应加装弹簧垫圈或背帽 (用弹簧垫圈时其规格应与螺栓保持一致,紧固程度应以 将其压平为合格),螺栓松动,无弹簧垫圈(或背帽)和 弹垫不合格均为失爆。
1、防爆上盖紧固螺栓短,不露丝为失爆(标准为露 出1~3个螺距),太长不完好
2、缺少弹簧垫圈或螺栓为失爆
3、螺丝所垫弹簧垫 太大,属于失爆
4、使用双弹簧垫,属于失爆
5、防爆面螺栓未上紧(以弹簧垫圈压平为准)、垫圈失效 或压不平,属于失爆
6、防爆面规格螺栓不一致,属于失爆
7、喇叭嘴缺螺栓,属于失爆
8、进线未压紧,属于失爆
9、喇叭嘴未拧紧,手能晃动,属于失爆
10、螺母式引入装置紧不到位,用一只手能使压紧螺母向紧的 方向旋进超过半圈,属于失爆
11、螺栓(或螺 孔)滑扣,属于 失爆
二、接线装置类 不使用的进出线嘴要分别用密封圈和挡板 依次装入、压紧后封堵,否则为失爆。螺旋式 进出线嘴如上金属圈时应装在挡板外面,否则 也属于失爆。
1、胶圈薄或无胶圈导致接线嘴与接线腔直接接触 (俗称“亲嘴”,如下图喇叭嘴亲嘴),属于失爆
2、把胶圈割开使用,属于失爆
3、高压铠装电缆接线盒 高压铠装电缆接线 盒没有灌绝缘胶,绝 缘胶没有灌到电缆端 分口以上或采用压盘 式均属于失爆。
4、电缆压扁量超过规定 (压叠式线嘴压紧电缆的压 扁量不超过电缆直径的10%)
5、挡板小 挡板、金属圈外径与进线 装置内径间隙大于2mm (厚度小于2mm,挡板直 径在110mm及以上时厚度 小于3mm,所有挡板应镀锌)
6、一处进线装置的密封圈单 孔内传进多根电缆,属于失爆
7、闲置进线装置内无 挡板
8、利用开关控制装置出入动力线,属于失爆
9、进线装置无金 属圈,属于失爆
10、密封圈上反, 属于失爆 合格 不合格
11、喇叭嘴内钢圈,挡板生锈,属于不完好
12、接线嘴旋入深度不够6扣(旋入深度应不小于 6扣,外露3扣),属于失爆 正确拧入 不合格拧入
三、橡套电缆的接线要求 橡套电缆的护套伸入接线腔器壁内要 符合5-15mm的要求,小于5mm为失爆;大于 15mm为不完好。当粗电缆穿不进接线嘴时, 可将伸入器壁部分的护套锉细。
1、电缆护套进入接线室5~15mm为合格
2、大于15mm为不完好
3、小于5mm为失爆
4、进出线嘴应平行压紧,两压紧螺丝 入扣差应不大于5mm,下图均为不完好
5、电缆在引入装置能轻易来回抽,属于失爆
四、电缆破口、鸡爪子、羊尾巴、明接头
1、破口: ①橡套电缆的护套损坏,露出芯线或露出屏蔽层者; ②橡套电缆的护套损坏伤痕深度达最薄处二分之一以上,长度达20mm, 或沿周长三分之一以上者。 出现以上四种情况之一者(包括安全火花型电气元件)均为电缆不合 格接头,均属防爆电气设备的安全隐患点。
2、鸡爪子: ①橡套电缆的连接不采用硫化热补或同等效能的冷补者; ②橡套电缆(包括通讯、照明、信号、控制以及高低压橡套电缆)的 连接不采用接线盒的接头; ③铠装电缆的连接不采用接线盒或不灌注绝缘充填物和充填不严密 (漏出芯线)的接头。
3、羊尾巴: 在供配电电缆的末端不接装防爆电气设备或防爆元件者为羊尾巴。距 离电气设备接线嘴(包括五小电气元件)2米内的不合格接头或明线破口 者均属羊尾巴。 4、明接头: 电气设备与电缆有裸露的导体或明火操作者均为明接头。 1、鸡爪子 2、羊尾巴 3、明接头 电气设备与电缆有裸 露的导体或明火操作者均 为明接头。
4、电缆破皮露芯线 5、橡套电缆护套损坏 橡套电缆护套损坏伤痕深度达最薄处1/2,长度达 20mm以上或沿圆长三分之一以上
五、隔爆结合面 防爆隔爆电气设备是危险性较大的特种设备,一旦 隔爆面产生锈迹、锈斑,使接触面接触不严,有害介质 就会趁机而入,腐蚀机内零件及绕组绝缘。同时,隔爆 接合面必须保持标准规定的长度、间隙及粗糙度。防爆 电气一旦失爆,腔体内出现的电火花、电弧、热表面和 灼热颗粒等就有可能点燃矿井瓦斯、煤尘,造成瓦斯、 煤尘爆炸事故的发生,后果不堪设想。为此,在维修这 类设备过程中,应采取有效的措施来降低此种风险。主 要措施是:认真解决防爆设备维修时操作不当的作法, 维修人员坚持采用专用工具拆装。维修过程中应特别注 意的是隔爆设备隔爆面不得有碰撞,划痕等损伤和锈蚀。 隔爆外壳结合面的要求:
1、 隔爆外壳结合面应涂以适量的中性凡士林等合格的防锈 油(如医用凡士林油)或进行磷化处理(磷化后也可涂凡士林 油),如无防锈油或磷化面脱落均属失爆。涂油应在结合面上形 成一层薄膜为宜,涂油过多为不完好。如磷面脱落小于隔爆外壳 结合面宽度的1/5并涂有防锈油可不算失爆,但为不完好。
2、 隔爆外壳结合面上不允许涂有油漆和存在机械性杂物, 否则为失爆(如属于无意造成的油漆痕迹不超过隔爆面宽度的1/8 不在此限)。 隔爆外壳结合面宽度减去超限间隙部分的宽度不得小于所规定的 结合面宽度,否则为失爆。 ①转盖式或插盖式的隔爆外壳结合面宽度不小于25mm,间隙不大 于0.5mm; ②隔爆外壳静止结合面的间隙与宽度如下表: 隔爆空腔净容积(L)≤0.50.5--2>2 间 隙(mm) ≤0.3≤0.4≤0.5 结合面 宽 度(mm) ≥8≥12.5≥25 1、隔爆面有油漆超过隔爆面宽度的1/8,属于失爆
2、隔爆结合面之间渗入油 漆,属于失爆
3、用塞尺检查旋转前盖防爆结合面间隙过大,属于失爆
4、电机接线盒盖上反,属于失爆
5、隔爆面有杂物或 锈迹,属于失爆
6、防爆外壳结 合面有伤深痕, 深度度、宽度 超过0.5mm,属 于失爆
7、隔爆结合面无防锈油 或磷化面脱落均属失爆 (如磷化面脱落小于隔爆 外壳结合面宽度的1/5并 涂有防锈油可不算失爆, 但为不完好)
8、观察窗孔胶封、玻璃损坏,破裂等,属于失爆
9、隔爆外壳变形长度超过50mm,凸凹深度超过 5mm为失爆
10、隔爆外壳外油漆脱落,锈蚀严重为不完好
11、隔爆电气设备的隔爆腔之间严禁直接贯通,必须 保持原始设计的防爆性能,否则为失爆(接线柱、接 线座有裂缝也属失爆)
12、防爆外壳锈死打不开盖,属于失爆
六、保护闭锁装置
1、高低压防爆电气设备甩掉保护使用,属于失 爆。
2、高低压防爆电气设备的机械闭锁装置起不到 闭锁作用者为失爆。
1、打连、甩保护,属于失爆 正常 失爆
2、高低压防爆电气设备的机械闭锁装置 不全、变形,起不到闭锁作用者为失爆
3、接地线的长度太短,属于不完好 接线腔接地线的长度应适宜, 以松开接线嘴卡兰拉动电缆 后,三根火线拉紧或松脱时, 以接地线不掉下为宜。接地 螺栓、螺母、垫圈不允许涂 绝缘物。卡爪(或平垫圈) 要镀锌或镀锡,如出现不符 合以上要求者均为不完好。 4、开关内电源线处应该有危险警示牌, 否则属于不完好
七、密封圈的要求
1、密封圈须采用邵氏硬度45~50度的橡胶制造,否则为失爆。 密封圈的分层侧在接线时,应朝向接线腔里面,否则为不完好 (但煤电钻除外)。
2、密封圈尺寸须符合以下规定,如有一项达不到要求均属 失爆。
①密封圈外径与接线装置内径差应符合下表: D(mm)D0-D(mm)备 注D≤20≤1D0 :表示接线装置内径D : 表示密封圈外径20<D≤60≤1.560<D≤2
②密封圈内径与电缆外 径的配合为±1mm,但如属于4mm2及以下电缆者,密封圈内径应 不大于电缆外径。
③密封圈的宽度不小于电缆外径的0.7倍,且不小于10mm。
④密封圈的厚度不小于电缆外径0.3倍(70mm2的电缆除外),且 不小于4mm。
3、 密封圈用刀削后应整齐圆滑,不得出现锯齿状,锯齿直 径差大于2mm(包括2mm)为失爆,小于2mm为不完好。
1、电缆外径与密封圈内径间隙大于1mm,属于失爆
2、胶圈与电缆之间包扎胶 物(电缆与密封圈之间不 得包扎其他物体),属于失 爆
3、单胶圈厚度不够使 用双胶圈,增加了厚 度,属于失爆
4、密封圈和电缆中间有 包扎物
5、两个密封圈套用
6、胶圈外径小,属于失爆 密封圈外径与进线装置内径间隙大于1mm
7、密封圈用刀削后应整齐 圆滑,不得出现锯齿状,否 则为失爆 尽量按橡胶圈层拨开, 确保接触面平滑。 锯齿直径差大于2mm (包括2mm) 属于失爆,小于2mm 为不完好
8、挡板厚度不小于2mm ,金属圈厚度应不小于1mm, 否则属于失爆。