❶ 彭苏萍的科研获奖
2004年,获孙越崎能源大奖、光华工程科技青年奖。
(一)国家级奖
1 2002年度国家科技进步二等奖:《煤矿高分辨三维地震勘探技术体系及其在煤炭工业中的应用》,获奖证书编号:J210-2-04-R01
2 1999年度国家科技进步二等奖:《煤层顶板稳定性地质预测技术与方法》,获奖证书编号:04-2-007-01
3 2011年度国家科学技术进步奖二等奖:《中国中高煤阶煤层气地质理论、关键技术与工业化应用 》
(二) 省部级奖
1 2001年度煤炭科技进步特等奖:《煤矿高分辨三维地震勘探技术体系及其在煤炭工业中的应用》,2006-4-18获奖证书编号:2001-T01-R01
2 1998年度煤炭科技进步二等奖:《煤层顶板稳定性地质预测技术与方法》,获奖证书编号:98-2-03-01
3 1999年度煤炭科技进步二等奖:《应用三维地震信息和地质预测技术对煤层顶板控制与管理的研究》,获奖证书编号:99-2-02-01
4 2000年度中国高校科学技术(推广类)二等奖:《三维地震信息和地质预测技术用于煤层顶板控制与管理》,获奖证书编号:2000-232
5 2002年度军队科技进步奖二等奖:《复杂地质条件下战略导弹阵地围岩探测技术及控制对策》,获奖证书编号:
6 2011年度中国煤炭工业协会科学技术奖一等奖:《大倾角煤层地震成像、煤厚预测及陷落柱探测研究》
7 2012年度中国煤炭工业协会科学技术奖二等奖:《浅埋深矿井复杂地质构造综合物探技术 》
获专利和软件版权情况:
1. 2002年度发明专利:《 防爆地质雷达采集系统》,01109040.5(公布号)
2. 2001年度发明专利:《地质雷达防爆天线外壳》,99107711.3(公布号)
3. 2002年度发明专利:《智能三分量地震检波器》,02116297.2(申请号)
4. 2002年度发明专利:《多波多分量地震数据采集系统》,02124275.5(申请号)
5. 2002年度实用新型专利:《地质雷达碟型天线屏蔽罩》,03200054.5
6. 2002年度软件著作权:《地质雷达处理分析系统》,005408
7. 2002年度软件著作权:《三维地震解释系统(微机版)》,200310097
荣誉称号
1997年,入选煤炭工业部学术带头人;2002年,获全国优秀博士论文指导教师称号;
2005年,领导的团队被评为教育部首批优秀研究团队;
2006年,被评为 “国家653工程”煤炭地质与测绘领域首席专家;
2007年,当选中国工程院院士(为该学部最年轻的院士)。
❷ 坑道物探
坑道物探,是指把接收传感器置于坑道中采集有关物理量数据,从而获得坑道周围隐伏探测目标有用信息的各种物探方法。
这里所说“坑道”,包括矿井、巷道、隧道、硐室、洞穴等一切可以容人进入活动的地下空间。和前节井中物探的主要区别是,在坑道物探数据采集过程中,整个数据采集系统和操作人员可以进入坑道作业。
(一)应用发展
坑道物探最主要的应用领域是煤炭勘查,特别是在煤矿开采阶段。显然,这是因为多数煤矿的井下开采方式最需要也最有利于坑道物探工作的开展,也因此我国物探工作者又常把坑道物探称为“矿井物探”。在煤矿井下,坑道物探可有效地以较高精度探测巷道两侧、顶底板上下、掘进头(掌子面)前方以及巷道间的煤层及其他地质小构造,如煤层赋存状态、厚度变化、夹矸分布、断层、陷落柱、冲刷带、破碎带、软弱带、溶洞、老窑等,为煤炭开采特别是综采机采作业及安全生产提供重要资料。国外煤炭领域坑道物探应用始于20世纪60年代初,并迅速在各产煤国家得到发展。我国煤矿坑道物探起步较晚。1974年和1977年煤炭部门科研单位和有关院校、工厂、矿山合作先后开始了坑道电磁波法和槽波地震法试验。20世纪80年代在推广这些方法的同时又相继开发使用了矿井直流和音频电法、矿井地质雷达、矿井反射和瑞利波地震等方法[1~11]。20世纪90年代,又开发了接收井下天然电磁辐射和声发射异常预测煤与瓦斯突出的技术[12,13]。坑道物探方法在我全国上百个局矿单位获得广泛应用。一些矿务局已明文规定,综采机采工作面地质说明书必须有坑道电磁波法等资料方可批准投产[3,10]。
20世纪80年代末以来,我国在某些铜、镍、锡、金等金属矿山的采矿巷道中使用物探方法探测巷道外、巷道间或更深部隐伏矿体取得不同程度成效。工作中使用了自然电场、直流电剖面、直流电测深、频率测深、激发极化、充电、电磁波、弹性波等方法,但工作量尚很有限[14~17]。
坑道物探在我国一些隧道工程特别是铁路隧道、公路隧道、大型输水涵洞及水电站地下厂房施工过程中也有较广泛应用。其中包括预报掘进掌子面前方可能出现的断层、破碎带、含水带、岩溶、岩脉等异常地质情况,检测隧道、硐室岩壁稳定性及人工衬砌质量等。主要使用了浅层地震、声波、电阻率及探地雷达等方法[18,19]。
(二)技术进步
原则上,几乎所有地面物探方法都有可能在坑道中应用。当然,由于坑道的特殊条件,需要在技术上采取某些相应的措施。如采集设备的小型化轻便化及在许多煤矿井下的防爆化,坑道中各种工业设备干扰的防避或消除,坑道空间影响的校正,全空间位场数据的特殊处理解释方法等等。就具体方法而言,坑道磁法和核法工作与地面工作差别最小。坑道重力法数据的外部校正及处理解释有自己的特点[20]。这几种方法在我国坑道中实际应用不多,仅见有个别煤矿井下微重力测量案例[21]。下面我们将仅重点涉及在我国得到发展的坑道电法和坑道弹性波法。
1.坑道电法
在我国坑道中曾应用多种电法方法,其中应用较多的是电磁波法和直流(或低频)电法。
A.坑道电磁波法
坑道电磁波法又常被称为坑道无线电波透视法。它在我国起步早,应用广。早在1960年,我地质部门科研单位就自制实验设备在关门山铅锌矿坑道中进行了电磁波透视矿体的试验[22]。1967年地质部门工厂小批量生产了DKT型坑道无线电波透视仪。1976年和1978年煤炭部门相继研制了WKT-J1型和WKT-J2型坑道无线电波透视仪,并在短短数年内生产百余台装备了数十个局矿单位[3]。这些仪器使用晶体管电路,表头读数,透距较小,不防爆。此后十余年中,煤炭部门和地质部门又分别先后研制生产了七种型号的坑道无线电波透视仪近二百台。它们由模拟式进展到数字式微机化,频带拓宽,频点增多,功能增强,透距增大(可达350~450m,个别煤层可达600m),安全防爆,并有配套软件[10,23]。
坑道电磁波法的数据处理解释和井中电磁波法类同,井中电磁波法数据处理解释技术在我国的进展也适用于坑道电磁波法,有些研究成果则明确面对这两类工作方法[24~26]。我国物探工作者还就煤矿井下电磁波法实际工作中某些特殊问题,如巷道相对位置的影响,人工导体的干扰,场强衰减与煤层倾角的关系等进行了专门讨论[27,28]。
B.坑道直流及低频电法
为适应坑道特别是矿山巷道的特殊条件,传导类的直流或低频电法采用了各种特殊的电极布设方式,其中包括在同一巷道内不同位置不同方式排列及在相邻巷道内的不同位置不同方式排列。我国物探工作者给它们赋以层测深、电穿透、电透视等多种名称。它们可以分别在探测巷道四周或巷道间煤层赋存状态及其构造,巷道顶板上方、底板下方及迎头前方异常地质构造等方面发挥优势作用。我国煤炭部门于20世纪80年代后期开始推广这种方法,研制生产了多种型号的井下防爆直流电法仪和低频电法仪,在许多矿山井下应用并在技术上有所发展提高[29~34]。在有关数据处理解释研究方面,包括巷道空间影响分析,巷道电法物理及数值模拟,处理解释软件研制等,取得了一些实用成果[35~38]。
C.其他电法
探地雷达在矿井下可用于探测巷道上下左右及掘进前方数十米范围内的矿体矿层及各种异常地质情况。我国煤炭部门于20世纪70年代中期开始矿井探地雷达的专题研究。针对煤矿井下小型轻便、安全防爆等特殊要求,我煤炭部门科研单位自20世纪80年代中期至20世纪末已先后研制出逐步升级的六种型号KDL系列矿井探地雷达产品,并和有关单位合作研制生产出新的低功耗液晶显示矿井探地雷达。坑道探地雷达技术已在我国煤矿开采及铁道、公路隧道施工中日益发挥更多作用[39]。
20世纪90年代初,我煤炭部门科研单位基于岩石破裂产生电磁辐射的原理,研制了在煤矿巷道掘进过程中连续自动检测异常天然电磁辐射信号的煤与瓦斯突出危险检测仪。它能探测采掘工作面前方10~16m距离范围内危险带(应力集中区)的方位,初步试验应用取得较好效果[12]。
前已提及,其他一些电法,如自然电场法、充电法、激发极化法、频率测深法等也曾在我国少数矿山巷道中应用。这些工作在技术上和地面工作类同,不必赘述。
2.坑道弹性波法
在我国坑道中使用的弹性波法有面波类的槽波地震法和瑞利波地震法,以及体波类的反射波和透过波地震(或声波)法。
A.槽波地震法
槽波地震法观测在煤层(作为在顶底板界面约束下的低速波导)中激发和传播的导波——通常称为槽波。它以其具有探测距离远,精度高,环境适应性强等特点而成为在煤矿井下探测煤层内小构造的一种重要物探方法。国外于20世纪60年代开始槽波地震法的实验研究,70年代末开始正式应用和得到发展。我煤炭部门各有关单位20世纪70年代末起积极开展了有关研究工作。20世纪80年代先后研制生产了井下用非防爆型和防爆型模拟磁带式矿井地震仪,并开发了槽波地震专用数据处理软件。1986年煤炭部门引进了德国SEAMAX数字槽波地震仪和专用软件,在此基础上进一步开展了槽波数字地震勘查方法技术的系统研究。我国物探工作者结合物理和数值模拟及现场实际工作结果,在煤层中导波形成理论及槽波传播特性,数据采集方法及井下施工技术,数据处理解释方法及软件等方面取得了若干创新性研究成果,编写出版了专著[40~44]。20世纪80年代末我国研制生产并推广应用了自己的多道遥测数字矿井地震仪[45]。槽波地震方法在我国各矿务局许多采煤工作面上探测小断层、陷落柱、冲刷带等小构造取得了明显成效。
B.瑞利波地震法
1988~1989年我煤炭部门引进了日本GR-810瑞利波地震仪及稳态瑞利波勘查技术,1991年将它应用于井下煤层残厚及巷道独头前方探测[5]。随后煤炭部门科研单位研究开发了瞬态瑞利波技术并研制生产了适用于井下的瑞利波探测仪器。井下瞬变瑞利波法由于具有设备轻便,施工场地小,数据处理解释相对简单,成果比较直观实时等特点,很快在许多煤矿井下推广应用。在巷道侧壁、顶底板及掘进前方探测煤层及小构造取得明显成效。瑞利波地震法在我国工程隧道掘进前方预测方面也获有效应用。我国物探工作者在坑道瑞利波地震方法技术及仪器的发展方面,其中包括24位A/D高分辨率本安型矿井瑞利波探测仪的研制,多分量瑞利波探测系统的试验等,也取得若干新的进展[46~48]。
C.其他弹性波方法
浅层弹性波(地震或声波)反射法在我国矿山地下巷道及工程隧道中也有较多应用。在煤矿井下较多用于分层采煤过程中测定残煤厚度。为此,我煤炭部门研制生产了数种型号被称为“底煤厚度测定仪”或“煤层厚度探测仪”的井下浅层地震仪。在工程隧道及硐室施工中较多用于掘进前方地质情况预测,使用方法主要有震源及检波器沿隧道轴线排列的“坑道垂直地震剖面法”,及可在掘进掌子面上排列的“陆地声纳”法。这两种在20世纪80年代由我国物探工作者首创的方法在煤矿巷道掌子面前方预测中也有应用[6,18,19]。
20世纪80年代后期,地下巷道间的弹性波层成像方法在我国一些金属矿及煤矿井下得到应用。这些工作主要观测透过波的初至走时并使用射线层析处理解释方法[14,16,50]。显然,前面“井中物探”一节中我国在弹性波层析成像处理解释技术方面的进展也可用于坑道弹性波法。
近年我国物探工作者利用岩石在应力集中突发性破裂过程中的声发射现象,研制出多道非接触式声发射实时监测预报系统及有关软件,用于预测预报煤矿井下煤与瓦斯突出,并解决了不均匀介质条件下小尺度声发射源的定位问题。现场试验初步取得良好效果[13]。
(三)总的评价
我国作为一个世界性煤炭生产大国,随着机采综采作业的普遍应用,对坑道物探工作的需求日益迫切。大规模基础建设中日益增多的大型复杂隧道及其他地下工程也提出了这种需求。我国物探工作者及有关单位对坑道物探的发展给予了充分重视,在有关方法技术的研究开发,专用仪器的研制生产,以及积极推广应用方面做了大量工作,取得良好成效。总的可以认为,我国坑道物探技术和应用已跻身世界先进水平行列。随着我国危机矿山的增多,有必要进一步加强在各处老矿山特别是老金属矿山井下找寻矿井周边及深部隐伏矿体的坑道物探工作,并进一步发展提高有关技术。
❸ 探测与监测
一、矿井物探技术应用
随着矿井开采深度的增加和开采强度的加大,煤层底板突水的频率也日益增加,焦作矿区除了加强水文地质预测预报及井下钻探工作外,还大力开展了物探技术的推广与应用,先后引进了矿井直流电法仪、无线电波坑透仪、瑞雷波仪、音频电透仪、加拿大GEONICS公司TEM47瞬变电磁仪、地质雷达和超低频遥感地质探测仪,应用效果非常显著。这里主要研究的是矿井物探技术在防治水方面的应用,另外介绍了超低频遥感地质探测仪的应用,它和其他物探仪器原理差别较大。
矿井物探技术在矿井防治水方面主要用于探测工作面顶、底板含水层贫富水区域划分;巷道顶底板及侧帮构造带和富水区;巷道掘进头前方构造带和富水区;放水孔或底板注浆孔孔位确定;工作面内部隐伏构造带、夹矸及薄煤带位置;煤层厚度快速探测等。以下就各类物探技术的特点和应用效果加以综述。
1.直流电法
矿井下通常应用三极测深法和对称四极测深法。根据探测目的不同,直流电法工作装置形式有多种形式。三极测深法工作装置形式为A—M-O-N—B(∞),四极测深法工作装置形式为A—M-O-N—B。两种方法M、N均为测量电极,用于探测地电场电压,根据测出的电流、电压值结合装置系数就可以换算出地层视电阻率值;A、B均为供电电极,用于向岩层供电。直流电法一般供电极距越长,供电电场分布范围越广,探测深度和两边辐射范围越大。通过对不同地点、不同深度地层的视电阻率值进行全方位探测和综合分析,就可以达到研究岩层、矿体或构造等的目的。
直流电法探测是以煤、岩层的导电性差异为基础,通过人工向地下供入稳定电流,观测大地电流场的分布规律,从而确定岩、矿体物性分布规律或地质构造特征。
直流电法具有方法灵活、理论成熟、抗干扰能力强、仪器简便的优点,可用于划分岩层贫富水区域、探测巷道附近构造破碎带位置、工作面采煤时的易煤层底板突水地段或确定放水孔孔位等。以下为几个探测实例。
图3-23为焦作矿区某工作面回风巷直流电法探测富水性区域断面图。直流电法探测结果认为,该工作面切巷往外0~100m段采煤时煤层底板极易发生煤层底板突水灾害。在生产工程中,实际采煤时到65m处底板发生煤层底板突水,煤层底板突水量达160m3/h。对此及时进行了预测预报,矿井提前采取了防治水措施,该工作面得以安全采煤。该工作面切巷向外0~220m段采煤时煤层底板极易发生煤层底板突水灾害。通过对地质资料分析也认为,此段L8灰岩可能与下伏L2灰岩甚至O2灰岩导通,煤层底板突水水源补给充分。井下数据采集重复了3次,结果雷同,因此建议此段跳采。焦作煤业集团公司有关领导研究直流电法探测结果后,决定在220m处重开切巷向外采煤,目前已按新方案安全采煤。
图3-23 焦作矿区某工作面回风巷直流电法探测富水性区域断面图
该图中较深蓝色代表低阻区,可以看出低阻区距巷道底板距离较远,L8灰岩含水层导高较小。直流电法探测结果认为,该工作面采煤时煤层底板不会发生煤层底板突水灾害。实际生产过程中采煤非常顺利,证明直流电法探测结果是正确的。
图3-24 焦作矿区某工作面低阻异常中心区域放水孔布置图
图3-24为焦作矿区某工作面低阻异常中心区域放水孔布置图。根据直流电法探测结果,在该工作面低阻异常中心区域布置了4#放水孔,钻孔涌水量为82m3/h。
2.无线电波坑透
无线电波坑透仪可以探测工作面内部隐伏构造带、夹矸及薄煤带等异常体,从而为工作面采煤设计提供依据。无线电波坑透技术的原理主要如下:将发射机和接收机分别放置于采煤工作面两条相对巷道(运输巷和回风巷)中,利用发射机发出的无线电波在煤层中传播时被与煤层电性不同的地质体如断层、陷落柱、夹矸或其他地质体等吸收,造成衰减系数的差异,从而形成接收信号的阴影区。交替变换发射机和接收机的位置,就可以对阴影区进行交会,从而确定异常体位置和大小。
图3-25为焦作矿区某工作面无线电波坑透探测成果图。无线电波坑透探测结果认为,工作面切巷到回风巷43号测点和运输巷41号测点连线处圈定区域为异常区,结合地质资料分析为薄煤带。经钻探验证确实为薄煤带,因此根据无线电波坑透探测结果,改变原来设计方案,在回风巷39号点和运输巷40号点连线处(图中红线)重开切巷,再开始生产。
图3-25 焦作矿区某工作面无线电波坑透探测成果图
图3-26为焦作矿区某工作面无线电波坑透探测成果图。无线电波坑透探测结果认为,圈定的回风巷里段断层位置与工作面采煤时实际揭露情况完全吻合。
图3-26 焦作矿区某工作面无线电波坑透探测成果图
3.瑞雷波
瑞雷波技术探测优点是快速,全方位,施工灵活,定位误差小。瑞雷波技术探测的原理主要如下:根据不同频率的瑞雷波沿深度方向衰减的差异,通过测量不同频率成分(反映不同深度,高频反映浅,低频反映深)瑞雷波的传播速度来探测不同深度煤层和顶、底板岩层及其中的断层、喀斯特等地质异常体。
图3-27为焦作矿区某巷道瑞雷波超前探测成果图。在巷道迎头瑞雷波技术超前探测时,发现前方20.78~25.28m段为断裂破碎区,实际钻探证实为20.35m见断层,误差仅为0.43m。
图3-27 焦作矿区某巷道瑞雷波超前探测成果图
4.音频电透
音频电透视技术是根据CT扫描工作原理,利用两条相对巷道(如工作面回风巷和运输巷)交替进行发射和接收,记录发射电流和接收的一次场电位差,结合工作面几何参数(宽度、长度等位置关系)计算出每个发射点对应的每个接收点的视电导率值(视电阻率值的倒数),通过多重交会,绘制出工作面内部一定深度范围内岩层视电导率值的平面等值线图,从而得知此范围内富、导水区域平面分布的位置与特征。音频电透视技术是以煤、岩层的导电性差异为基础,通过人工向地下供入音频范围内的低频电流,观察大地电流场的分布规律,从而确定岩、矿体物性分布规律或地质构造特征。一般情况下,工作频率为15Hz时,探测深度大约为工作面宽度的一半,选用的工作频率越低则电场穿透深度越大。
图3-28为焦作矿区某工作面音频电透探测成果图。音频电透探测结果认为,该图中蓝线视电导率值为6所圈蓝色区域为煤层底板相对富水区,应为煤层底板注浆改造重点区域,需要加密钻孔;其他区域可少布钻孔;工作面回风巷116号点与运输巷19号点连线往外可以不进行煤层底板注浆改造。实际在煤层底板注浆改造时,布置在高导异常区内的钻孔平均出水量为86.3m3/h,低导正常区内钻孔平均出水量是37.5m3/h,前者水量是后者的2倍多。工作面回风巷116号点与运输巷19号点连线往外段打了4个钻孔,平均水量是8.6m3/h,为相对不富水区。钻探证实揭露情况与音频电透探测结果相吻合。
图3-28 焦作矿区某工作面音频电透探测成果图
5.瞬变电磁
瞬变电磁仪具有布置灵活、探测方向性强、对低阻区敏感、施工快速的优点,可以全方位探测巷道各个方向或工作面内部的相对富水区位置及形态、顶底板构造破碎区,确定工作面采煤时容易发生煤层底板突水地段、煤层底板注浆改造重点注意区域、放水孔位置等。
图3-29瞬变电磁技术原理图可以说明,瞬变电磁技术原理是利用不接地回线或接地线源向地下发射一次脉冲磁场,当脉冲结束、发射回线中电流突然断开后,地下介质中就要激励起感应涡流场,以维持在断开电流以前存在的磁场,此二次涡流场呈多个层壳的环带型,随着时间的延长,由发射回线附近介质逐步向下及向外扩展,不同时间到达不同深度和范围。二次涡流场仅仅与地下介质的电性有关,因此利用线圈或接地电极观测二次场即可了解地下介质的电阻率分布情况,从而达到探测目标体的目的。
图3-29 瞬变电磁技术原理图
图3-30为焦作矿区某巷道瞬变电磁视电阻率图。在煤层底板L8灰岩中开拓疏水巷时,在迎头处利用瞬变电磁法,超前探测到迎头前方33~42m段为相对低阻区,该方法判断为相对富水区并得到钻探证实。
图3-31为焦作矿区瞬变电磁视电阻率断面图。利用该方法探测到巷道底板存在隐伏断裂构造。通过在此布置放水孔,钻孔涌水量为60m3/h此隐伏断裂的含水性得到了证实。
图3-30 焦作矿区某巷道瞬变电磁视电阻率图
图3-31 瞬变电磁视电阻率断面图
图3-32焦作矿区某巷道瞬变电磁视电阻率断面图。在某运输巷向下帮侧(平行岩层倾向)探测距离110m处有无平行运输巷走向、断距为25m的断层(该断层为原地质勘探报告推断结论),利用该方法否定了此处该断层的存在(110m处为相对高阻),并得到钻探证实。
图3-32 焦作矿区某巷道瞬变电磁视电阻率断面图
图3-33焦作矿区某工作面瞬变电磁视电阻率断面图。该图为某工作面运输巷瞬变电磁45°斜下方探测结果。探测时0~430m段已经完成煤层底板注浆改造,大部分区域显示为相对高阻,但0~100m段下部阻值不高,认为是注浆改造效果差,需补打少量钻孔;460~590m段因尚未注浆改造,显示为相对低阻区,为煤层底板注浆改造重点区域。
图3-33 焦作矿区某工作面运输巷瞬变电磁视电阻率断面图
6.地质雷达
地质雷达是在矿井井下利用电磁波的传播时间来确定所需探测反射体(断层、陷落柱、喀斯特等地质异常体)的距离,它是矿井井下用于超前探测的有力工具。
7.超低频遥感地质探测仪
北京大学课题组在国家863计划资助下,研制了超低频遥感地质探测仪,并于2002年5月成功申请专利,该装置在石油天然气勘探和水文工程地质勘探领域获得较好应用。在煤田瓦斯方面,课题组研究成员已经在河南伊川郑煤集团公司暴雨山煤矿和登封金岭煤矿,进行了超低频遥感地质探测试验,探测曲线解释基本正确,反映明显,具有推广应用价值。之后在郑煤集团公司大平矿、超化矿进行超低频遥感地质探测试验。目前在郑州矿区和将在焦作矿区应用。
8.综合应用评述
直流电法技术主要用于划分岩层贫富水区域,探测巷道附近构造破碎带位置,工作面采煤时的易突水地段或确定放水孔孔位等。该方法优点是仪器简便、理论成熟、抗干扰能力强、方法灵活;缺点是井下数据采集时必须保证电极接地条件良好,体积效应影响资料解释时对异常区具体方位的准确判断。
无线电波坑透技术主要用于探测工作面内部陷落柱形态,隐伏断层构造带位置,富水性区域,夹矸和薄煤带等地质异常体。该仪器优点是仪器简便,对异常区定位效果好,施工快速;缺点是同象异质现象明显,井下数据采集时需断开测区内电缆,避免电磁干扰,资料解释时对异常区的定性判断仍需与地质资料结合。
瑞雷波技术主要用于全方位探测巷道附近的喀斯特、岩层界面及断层带、富水区、裂隙发育区等地质异常体。该仪器优点是全方位、快速、定位误差小、施工灵活;缺点是资料解释时“定量”易而定性难,较易引起多解性,井下工作时需多次重复探测,提高结果的可靠性,探测深度较浅,一般不超过40m。
音频电透技术主要用于探测整个工作面富水性的横向变化情况和顶、底板岩层岩性。该方法优点是井下抗干扰能力较强,仪器精度高;缺点是资料解释时对异常区的纵深位置不易准确判断。
瞬变电磁技术主要用于全方位探测巷道各方向或工作面内部的顶底板相对富水区位置及形态、构造破碎区,确定工作面采煤时的易突水地段或放水孔位置,划定煤层底板注浆改造重点区域等。该方法优点是适用于各种角度和方位探测,探测方向性强,对低阻区敏感,布置灵活,施工高效;缺点是井下工作时需注意尽量避开大的金属干扰体,在某些理论问题上需要进一步研究。
矿井地质雷达探测技术的最大优点,既是矿井井下超前探测(探距30~40m)的有力工具,又具有施工点面积小,垂直、水平方向探测均可,探测的精度也比较高;缺点是抗干扰差。
物探技术经过几十年发展,呈现出应用广泛、技术丰富、仪器多样的特点,但各种仪器和技术方法都有自己的适用范围和优缺点。焦煤集团公司在多年推广应用上述各种物探技术的实践中,深感应充分了解各种物探仪器和技术的特点,针对性地使用的重要性。
总之,实际应用时应尽可能采用综合物探手段,优缺互补,相互取长补短,多种方法并用,对目标体做出正确判断,尽可能消除多解性,这样才能满足矿井生产多方面的需求,使得物探工作快速准确向着定性又定量的方向发展。应当指出,矿井物探技术的发展是几十年来焦作矿区防治水工作者们积极探索的结果,这和前辈们与地测处防治水中心同行们的集体努力分不开。作者参加了部分实验与研究工作。
二、焦作矿区井下水位监测系统
随着矿井水平的延伸和采区的推进,目前大量的水文观测孔被破坏,部分观测孔因长期锈蚀而失去观测价值,使一些生产地区没有地下水水位资料,直接影响着这些地区的安全生产。往往花费几十万元施工的水文观测孔,仅投入使用1~2个月就被破坏。如果在地面施工水文观测孔,不仅需花费高额的资金,而且地面观测孔容易遭受人为破坏。因此,建立井下水位监测系统已成为当务之急。
焦作煤业集团公司采取了许多行之有效的防治水措施,其中地下水位观测系统的建立就是有效的防治水措施之一。地下水位观测系统为工程技术人员及时准确地掌握地下水水位变化情况,制订切实可行的防治水措施提供了依据。特别是当煤层底板突水发生后,地下水位动态变化能为准确判断煤层底板突水水源,预测煤层底板突水水量的变化趋势,采取相应的防治水措施提供依据。焦作矿区积极开展防治水工作,通过各种途径同煤层底板突水灾害作斗争,到目前为止,已连续20年未发生淹井事故,矿井涌水量也由过去的650m3/min减少至目前的280m3/min。
1.水位监测系统
(1)水位监测系统在焦作矿区的发展历史:20世纪80年代中、后期,焦作矿区就开始建立地面水文观测孔水位遥测监测系统,但仪器供电电源为电池供电,没有及时更换电池,而使仪器损坏。另外,野外遥测系统也容易遭受破坏。不易保护。因此,该系统没有得到推广应用。
20世纪90年代,因地面观测孔的急剧减少,又缺乏资金在地面施工水文观测孔,为满足安全生产的需要,就在井下施工放水测压孔,以了解地下水位的动态变化。水位的观测部分矿井使用压力表,另一部分矿井使用水位自动记录。水位自动记录仪虽然比用压力表观测井下水位先进得多,但水位自动记录仪供电电源为充电电池,数据的存储模块必须上井后才能传输到微机,才能输出水位数据,使用起来不方便,且使用寿命短。
21世纪初期,随着信息技术迅猛发展,现代传感技术的日趋成熟,采用先进的自动监测方法已是大势所趋。焦煤集团公司与煤科总院抚顺分院合作,于2001年成功地在演马庄矿建立起一套井下水位监测系统,该系统将计算机测控技术、计算机网络技术、远程数据通信技术融为一体,强有力地实现了远距离的井下水位数据采集、传输、实时数据集中监测、处理。该系统克服了以前水位监测系统的缺点,供电电源采用井下防爆供电电源,实现了全自动实时对井下水位进行监测,具有投资少,精度高,使用寿命长,操作方便的优点。
(2)水位监测系统组成及主要功能:系统由主站(地面监测中心站)和N个分站(井下水压观测站点)构成。
主站:由计算机、打印机、远程数据通信设备及系统应用软件(含系统控制、数据通讯、数据处理等),设在地面监测中心机房。
主站是通过远程数据通信设备对井下分站进行远程控制,实时获取井下各观测点的水压数据,同步监测井下各水压观测点的水压变化情况。并通过系统应用软件将水压数据进行整理、辑录、显示。根据需要利用系统应用软件生成相关数据报表、绘制各类曲线、图形、打印输出等,同时还可以在网上,将相关数据传输。
分站:由高精度水压传感器(或高精度压力变送器)、数据采集器、数据通讯接口、远程数据通信装置、防爆电源、安全保护罩等组成。安装在井下水压观测点。
分站完成水压数据采集,实现水压数据的远距离传输。分站系统是通过压力传感器反映水压变化的物理量转换为电压(电流)形式的模拟量。该模拟量经由放大、模数转换电路处理后再将其转换为数字信号,通过数据采集器内置计算机系统对该数字信号进行处理并记录到存储器中,完成数据采集。与此同时数据采集器内置远程通信接口设备也在不断检测主站信息。当检测到主站要求发送数据指令信息时则由数据采集器内置计算机控制,通过远程数据通信设备将数据采集器记录的水压数据发送至主站。
(3)系统主要技术指标
主站:硬件配置:intel P4 2.53 G/256 M DDR/80 G/16 倍 DVD/17 英寸液晶/56 K/100 M/A3幅面激光及彩色喷墨打印机;系统运行环境:Windows98 se/windows Me/win dows2000/windows XP;操作方式:全中文菜单式;观测方式:实时监测;数据记录方式:自动、手动任选;测量时间间隔:任意设置;暂存数据:≥1000组。
分站:防爆类型:本质安全型;压力测量范围:0~10MPa;传感器精度:±0.3%F·S;分辨率:2.0cm;通讯距离:>500m;传输速率:>300pbS;分站个数:1~255(255Max);环境温度:0~+40℃。
2.井下水位监测系统使用情况
焦作矿区演马庄矿于2001年12月建立了井下水位监测系统,由于资金等原因,当时仅设立了两个分站,即在该矿25采区下山施工两个测压孔(L8灰岩含水层),安装SY1151压力传感器,SY-1型数据采集器,数据通讯口,防爆电源。水压数据经通讯电缆传输到地面主站,再根据用户的需要,利用系统应用软件生成相关数据报表(如日报、月报、年报),绘制各类曲线、图形(如月曲线图、月柱状图、年曲线图、年柱状图),对水位进行实时监测。通过近几年的使用,井下水位监测系统具有投资低、操作方便、数据准确可靠,使用寿命长等优点,克服了过去地面观测孔测水位难,数据不准确,观测孔易遭破坏等缺点。即使发生淹井事故,井下无供电电源,系统亦能利用本身电池正常工作一个月。2002年5月10日,井下水位监测系统显示L8灰岩含水层水位下降,就立即与井下联系,得知25031工作面煤层底板突水,根据井下水位监测系统显示的水位平稳下降趋势,且没有发现L8灰岩含水层水位有反弹现象,判断该煤层底板突水点水源为L8灰岩,煤层底板突水点涌水量不会急剧增大,对安全生产不会造成大的影响。由此可见,井下水位监测系统能了解地下水位的动态变化,为判断煤层底板突水水源,采取相应的防治水措施提供依据。
该系统于2003年底已建成投入使用,井下的水文孔资料直接在各矿计算机上显示。目前焦作煤业集团公司和北京龙软公司合作,将各矿与集团公司网络联系起来,只要在集团公司的任何一部上网计算机上,进入水文监测系统网站,就能查阅到各生产矿井下各含水层的水位资料。目前正在进入试运行阶段。
可以认为井水位监测系统是一项经实践证明了的成熟技术。井下水位监测系统具有投资少、操作方便、数据准确可靠、使用寿命长等优点,能够代替地面水文观测网。井下水位监测系统具有推广应用前景。探测和监测技术是高承压水上采煤水害综合控制技术的重要组成部分。
❹ 探地雷达(GPR)
探地雷达是一种既古老而又年轻的物探技术,90年代以后才在我国得到较多的应用。
早在90多年以前,国外就曾利用该技术作过不可见目标的探测试验,但是直到70年代美国地球物理勘查设备公司(GSSI)才第一次研制成功SIR探地雷达系列,并取得一批实用成果。由于GPR技术具有其他物探方法无与伦比的浅层高分辨率的特点,20多年来该项技术已取得长足的进展。仪器不断更新换代,资料采集、处理、显示和解释方法不断革新,应用领域不断扩大。目前,GPR技术已成为地质调查的一种重要技术。
一、基本原理简介
GPR技术是一种高频(10~1000MHz)电磁技术。但是,它的工作方法却与地震相似。通过GPR天线向地质体内发射一短脉冲信号。信号在地质体内的传播主要取决于地质材料的电特性。当这种电特性发生变化时,GPR信号将发生反射、折射等现象。利用放置在相应位置上的接受器将信号接受下来,经放大、数字化处理和显示,为解释提供必要的数据和图像。除人们熟悉的反射工作方式外,GPR还有多种工作方式,如共中心点、广角反射、折射和透射等。各种方式都可以用于探测信号在地下的传播速度和能量衰减。影响GPR探测深度的因素主要有雷达系统的本身性能(如频率、能量等),被探测材料的物理特性。
二、仪器的发展
1.国外的主要进展
(1)70年代中期,GSSI公司的SIR探地雷达系列代表了首批可在商业上使用的仪器系统。日本的OYO公司推出了GeoRadar系列;微波公司推出了MK探地雷达系列。80年代中期,A-Cubed公司与加拿大地调所(GSC)合作,推出了高性能的Pulse EKKO数字雷达;瑞典地质公司及日本公司等还研制了可用于跨孔测量的孔中透视雷达系列。
(2)90年代以后,GPR仪器又有了一些新发展,相继推出了多态雷达系统、层析雷达系统。三维雷达技术具有明显提高解决浅层地质问题的能力,但却因耗时费力得不到普遍的应用。为此,Frank Lehman等研制出全自动的组合地质雷达激光经纬仪系统。利用该系统,一人可在2h内完成25m×25m范围的三维数据采集。三个方向上的定位精度为±2.5cm。数据处理、成图可在1h内完成,比传统方法的效率提高5~10倍。
(3)仪器轻便、结实、通用是仪器厂商和用户追求的目标之一。为实现该目标,1998和1999年加拿大的SSI公司先后推出了NogGin250、500型GPR仪器,将该公司生产的Pulse EKKO系统的全部雷达功能压缩在一个简单的NogGin轻便仪器箱内。但该仪器不仅是对原仪器进行简单的压缩,而是从基本设计原理上进行了改进。将NogGin与该公司研制的软件“SPIView”配合使用,用户则可以通过简单的操作在无限卷图上查看数据图像。
2.国内的进展
90年代我国引进了一批地质雷达仪器并将它们用于工程和灾害地质调查。近年来,国内地质雷达仪器的研制也取得了较大的进展。煤炭科学院西安分院物探所研制成功了适用于矿山防爆要求的DVL防爆型矿井雷达系列。原电子工业部第二十二研究所相继研究成功了LT-1,2,3型探地雷达。航天工业总公司爱迪尔国际探测技术公司推出了商品化的探地雷达系列产品。国内外生产的多种类型的GPR仪器,一般都具有较好的性能,可供不同探测目标选用。
三、资料采集、处理和显示技术的进展
(1)90年代初,GPR资料由单点采集过渡到连续采集,使GPR技术的应用向前迈进了一大步。
(2)地震资料处理的方式基本适用于GPR资料的处理。为了更好地将石油地震的先进技术引进到GPR领域,一些公司之间开展了合作。比如,1990年后SSI公司与地震图像软件公司(SISL)达成协议,SSI公司按地震资料输出格式设计Pulse EKKO探地雷达系统,将SISL公司开发的地震资料处理软件用于GPR资料的处理。这些软件包括各类滤波、反褶积及资料显示等。
(3)近几年来,国内外专家对各类模拟方法作了研究,如How-Wei Chen等利用时间域交叉网格有限差分数值法,在二维介质内研究、试验、补充了数值探地雷达波传播的模拟。出现了一些利用GPR信号能量衰减层析成像的方法,如应用频率漂移法的电磁波衰减层析成像法、利用形心频率下移的雷达衰减成像方法等。
(4)据SSI公司1998年底披露,该公司即将发行改进型的软件-EKKO三维2型软件。采用2型三维软件,用户可以在方便的条件下试验下述不同软件的组合处理,以便提高数据的立体特征。该三维软件包括去频率颤动、噪声滤波、背景清除、包络线和偏移。在资料显示方面,有的学者提出了将石油工业的四维技术用于时空域内采集的GPR资料,这样就有可能制成流体(如污染物羽状流)在地下传播的电影图像。
(5)透射法取得的资料必须经过处理才能显示成解释所需的资料。SSI公司于1997年开发出可用于将GPR透射资料变换成可用于解释图像的软件。实施步骤包括:原始资料编辑和归类、采集波至、利用美国矿业局的地震层析软件对资料进行层析成像处理,绘制速度、衰减及波散图件以及图像处理等。
(6)针对当前GPR技术的应用研究中,只侧重探测能力试验和数字模拟研究而对GPR资料解释研究不够的现状,雷林源提出了与GPR资料解释工作有关的基本理论和方法以及一些基本问题的求解。提出的基本问题包括电磁波在地层中传播的波阻抗;地层分界面上电磁波场强的反射与透射系数;地层中电磁波速度和反射波的相位以及GPR探测深度等。
四、应用及应用研究实例
GPR技术经过多年的发展,证明具有多方面的用途。国内刊物对一些普通的应用已给予了较多的介绍。这些应用包括:在水文地质方面可以用于浅部地下环境调查,土壤-基岩面探测,基岩节理、裂隙和层理的确定;在工程地质勘察方面可用于调查地下埋藏物,隧道、岩溶、建筑地基评价,道路、桥梁、水坝探测和质量无损检测;在灾害地质勘察方面可以用于滑坡、隐伏洞穴的探测以及考古方面的用途等。本文谨就GPR在地质环境污染、农业、军事等方面的应用实例作一简单的介绍。
1.调查地质环境污染
(1)一座建立在石灰岩地区的硝化纤维厂,由于污水的泄漏导致硝化纤维对地质环境的污染。为了探测地表至潜水面(约60m)岩溶结构可能捕获的硝化纤维,在18个30米深和7个50m深的钻孔中作了井中雷达探测。对收集到的资料作常规处理后,采用惠更斯-基尔霍夫(HK)叠加法绘制出三维雷达图。从深度为10m的重建图像上可以看出几个受硝化纤维污染的位置。在后来的开挖中,证示了GPR的探测成果。
(2)探测碳氢污染物试验。多年来的野外工作和试验已证明GPR具有调查地质环境污染的能力。国外专家在1m×0.4m×0.5m箱体中作了精心的试验,试图再一次验证GPR探测污染的能力,并用相关模型说明雷达响应与一些水文参数间的关系。通过试验和GPR数据的处理和解释得出结论:在污染物达到饱和时,利用GPR探不到潜水面;在相邻未受污染区可探到潜水面时,GPR可用于监测潜水面上的污染物;小型实验有助于探测或验证砂质土壤的水文地质参数,如毛细作用水头、污染物羽状流的传播速度;GPR能成功探测石油污染。
2.农业方面的应用
(1)沙漠中的沙丘和沙席是雨水良好的储集层,有可能成为灌溉的水源。利用GPR在沙特东部沙漠区作了探测。探测结果划出了圆顶形沙丘上部与其下部盐层间的界面、沙丘内的交错层理及潮湿带;探测还指出,圆顶沙丘可能是新月形沙丘的演变结果。在另一个沙漠场地的调查成果指出了沙丘内水流传播的两条可能途径。
(2)探测土壤含水量。自然土壤中的含水量是影响介电常数变化的主要因素。A.Chanzy等利用地面和空中两种方式的GPR试验,证明GPR测量数据与土壤含水量间具有很强的联系。可以用GPR技术探测土壤中的含水量。
(3)美国正在形成现代化的农业生产,GPR技术被用于探测特殊农业场地的土层、上层滞水、脆盘土、水文优先流径和压实土壤等与现代化农业有关的土壤信息。
3.探测古灰岩洞
前几年已有一些介绍利用GPR技术探测一般洞穴的文章,但未见到探测古灰岩洞及其塌陷特征的报道。为了配合开发美国得克萨斯州老灰岩洞的地下水,对该区的溶洞系统作了详细的研究。GPR资料显示了未扰动的主岩、过渡构造(如张性裂隙、古溶洞壁及洞顶等)和各种规格的角砾岩的分布。本探测成果证明,GPR技术是调查与近表灰岩系统及塌陷古溶洞有关特征的有效方法。
4.南极永冻场地安全检查
在一个南极考查计划利用的场地内,发现地下0.3~0.5m位置的冰内有一些融水坑(据2000年初中央电视台报道,我国南极科考队也发现了与此相似的冰水湖),它们将给场地的利用带来负面的影响。为此,利用GPR对场地进行了调查。通过对记录的绕射波结构及其他信息的分析,在3.5m左右深度发现一些有40m长、含分散水的冰层带,但含水量较少。另外,根据GPR资料显示,咸水层以上各层次的振幅没出现异常,说明场地下不可能存在其他融水坑。后来经重车和飞行器作了大量荷载试验,场地没出现任何与冰密度有关的事故。由此可见,GPR可作为南极冰盖场地安全检查的工具。
5.军事用途
瑞士科学家正在研制一种可用于排除地雷的GPR探测系统。该系统以探地雷达和用于成像的金属探测器为基础。探测器可以区别那些与GPR信号相似而金属含量不同的目标(如同样大小的地雷和石头);而GPR则可以将探测器给出的相似结果(如地雷和金属垃圾)区分开来。另外,据SSI公司1999年10月披露,利用GPR散射能量平面图可以发现塑料性地雷。
6.区域水文地质调查
雷达相图被定义为某一特定地层产生的雷达反射图像特征的总和,指的是雷达剖面资料上肉眼可见的反射波的不同组合形式。雷达资料观测中,地质体的构造和结构特征会影响雷达响应并产生特征效应。这些特征效应被称为雷达相图元素。自1990年以来,荷兰TNO应用地学研究所在荷兰30多个适合于GPR调查试验的点上作了测量,用于评价GPR对不同水文地质目标成像和描述目标特征的可能性。探查成果揭示出荷兰不同沉积环境下雷达相图元素的特征,将具有代表性的反射图像编成简要的“雷达相图集”,该相图集对确定地下水文地质层序的位置有益。据悉,美国也利用GPR对多个州做了类似的调查。