A. 数控坐标系问题
你写的真是复杂啊,兄弟你没在我们厂啊,在了我就演示讲解给你了,怎么叙述的那么吆口,我看着都,机床坐标是死的(但通过参数可以微调);我们在编程序是参考工件坐标,就是你说的参考点,对应的是图纸。但工件坐标是通过对刀来确立的,一般xy是分中,就是你说的归零后对两次刀,但这是方便给我们人看的,机器靠的是机床坐标,我们写的程序它换算后按机床坐标做,在多个工作台做时,程序的首位写的就是机床坐标,不然怎么记得你说的参考点,打得真累,以后就问调机的,这问题打字很麻烦 我觉得网络知道是帮人回答帮忙做雷锋的,加分?那样就不是我了。问题出在我打字慢啊,归零我理解为回原点,主要作用我觉得是避开主轴换刀,举例每次做完一把刀后面会有G91G30(G28)XO.YO.ZO.;工件坐标我想你已经明白是图纸上标注的那个样子的。机床坐标你如果注意的话就看到在控制面板那个键叫什么我忘了,显示有四个坐标位置,工件坐标,机床坐标,待走量,还有个可以随意更改在打坐标用到,你们在输入工件坐标时输入的是中心点吗?那就应该是0.;但实际却不是,虽然写的是0但你们用到测量。实际输入的就机床坐标!那个机床坐标的位置绝对不是0.但工件坐标会认作0.那是为了方便我们编程,你以后用追问不要问题补充
B. 对实验结果分析一下为什么主轴线会出现这样的偏移对机床加工精度有何影响
机床精度分为机床加工精度和机床静态精度;机床加工精度是指被加工零件达到的尺寸精度、形态精度和位置精度;机床静态精度是指机床的几何精度、运动精度、传动精度、定位精度等在空载条件下检测的精度。
数控机床的几何精度反映机床的关键机械零部件(如床身、溜板、立柱、主轴箱等)的几何形状误差及其组装后的几何形状误差,包括
工作
台面的平面度、各坐标方向上移动的相互垂直度、工作台面X、Y坐标方向上移动的平行度、主轴孔的径向圆跳动、主轴轴向的窜动、主轴箱沿z坐标轴心线方向移动时的主轴线平行度、主轴在z轴坐标方向移动的直线度和主轴回转轴心线对工作台面的垂直度等。
常用检测工具有精密水平尺、精密方箱、千分表或测微表、直角仪、平尺、高精度主轴芯棒及千分表杆磁力座等。
1.1 检测方法:
数控机床的几何精度的检测方法与普通机床的类似,检测要求较普通机床的要高。 1.2 检测时的注意事项:
(1)检测时,机床的基座应已完全固化。(2)检测时要尽量减小检测工具与检测方法的误差。(3)应按照相关的国家标准,先接通机床电源对机床进行预热,并让沿机床各坐标轴往复运动数次,使主轴以中速运行数分钟后再进行。(4)数控机床几何精度一般比普通机床高。普通机床用的检具、量具,往往因自身精度低,满足不了检测要求。且所用检测工具的精度等级要比被测的几何精度高一级。(5)几何精度必须在机床精调试后一次完成,不得调一项测一项,因为有些几何精度是相互联系与影响的。(6)对大型数控机床还应实施负荷试验,以检验机床是否达到设计承载能力;在负荷状态下各是否正常工作;机床的工作平稳性、准确性、可靠性是否达标。
另外,在负荷试验前后,均应检验机床的几何精度。有关工作精度的试验应于负荷试验后完成。
C. 为什么数控镗床在关机后,重新启动回零后,移动到原来设置的坐标点时位置不对,希望各位大师指点
问题太笼统???这里详细地介绍了发那克,三菱,西门子几种常用数控系统参考点的工作原理、调整和设定方法,并举例说明参考点的故障现象,解决方法。
关键词:参考点 相对位置检测系统 绝对位置检测系统
前言: 当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内的机械绝对位置数据丢失了,或者机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,所以我们对了解参考点的工作原理十分必要。
参考点是指当执行手动参考点回归或加工程序的G28指令时机械所定位的那一点,又名原点或零点。每台机床有一个参考点,根据需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。通过G28指令执行快速复归的点称为第一参考点(原点),通过G30指令复归的点称为第二、第三或第四参考点,也称为返回浮动参考点。由编码器发出的栅点信号或零标志信号所确定的点称为电气原点。机械原点是基本机械坐标系的基准点,机械零件一旦装配好,机械参考点也就建立了。为了使电气原点和机械原点重合,将使用一个参数进行设置,这个重合的点就是机床原点。
机床配备的位置检测系统一般有相对位置检测系统和绝对位置检测系统。相对位置检测系统由于在关机后位置数据丢失,所以在机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。绝对位置检测系统即使在电源切断时也能检测机械的移动量,所以机床每次开机后不需要进行原点回归。由于在关机后位置数据不会丢失,并且绝对位置检测功能执行各种数据的核对,如检测器的回馈量相互核对、机械固有点上的绝对位置核对,因此具有很高的可信性。当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。
一: 使用相对位置检测系统的参考点回归方式:
1、发那克系统:
1)、工作原理:
当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。当挡块离开参考点接近开关时,继续以FL速度移动。当走到相对编码器的零位时,回归电机停止,并将此零点作为机床的参考点。
2)、相关参数:
参数内容 系统0i/16i/18i/21i0 所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076
各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391
各轴的参考计数器容量18210570~0575 7570 7571
每轴的栅格偏移量18500508~0511 0640 0642 7508 7509
是否使用绝对脉冲编码器作为位置检测器: 0. 不是 、1. 是 1815.50021 7021
绝对脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022
位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037
快速进给加减速时间常数16200522
快速进给速度14200518~0521
FL速度14250534
手动快速进给速度14240559~0562
伺服回路增益18250517
3)、设定方法:
a、 设定参数:
所有轴返回参考点的方式=0;
各轴返回参考点的方式=0;
各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定;
是否使用绝对脉冲编码器作为位置检测器=0 ;
绝对脉冲编码器原点位置的设定=0;
位置检测使用类型=0;
快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定。
b、 机床重启,回参考点。
c、 由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。
4)、故障举例:
一台0i-B机床X轴手动回参考点时出现90号报警(返回参考点位置异常)。
a、机床再回一次参考点,观察X轴移动情况,发现刚开始时X轴不是快速移动,速度很慢;
b、检测诊断号#300,<128;
d、 检查手动快速进给参数1424,设定正确;
e、 检查倍率开关ROV1、ROV2信号,发现倍率开关坏,更换后机床正常。
2、三菱系统:
1)工作原理:
机床电源接通后第一次回归参考点,机械快速移动,当参考点检测开关接近参考点挡块时,机械减速并停止。然后,机械通过参考点挡块后,缓慢移动到第一个栅格点的位置,这个点就是参考点。在回参考点前,如果设定了参考点偏移参数,机械到达第一个栅格点后继续向前移动,移动到偏移量的点,并把这个点作为参考点。
2)、相关参数:
参数内容 系统M60 M64
快速进给速度2025
慢行速度2026
参考点偏移量2027
栅罩量2028
栅间隔2029
参考点回归方向2030 3)、设定方法:
a、设定参数:
参考点偏移量=0
栅罩量=0
栅间隔=滚珠导螺快速进给速度、慢行速度、参考点回归方向依实际情况进行设定。
b、重启电源,回参考点。
C、在|报警/诊断|→|伺服|→|伺服监视(2)|,计下栅间隔和栅格量的值。
d、计算栅罩量:
当栅间隔/2<栅格量时,栅罩量=栅格量-栅间隔/2
当栅间隔/2>栅格量时,栅罩量=栅格量+栅间隔/2
e、把计算值设定到栅罩量参数中。
f、重启电源,再次回参考点。
g、重复c、d过程,检查栅罩量设定值是否正确,否则重新设定。
h、根据需要,设定参考点偏移量。
4)、故障举例:
一台三菱M64系统钻削中心,Z轴回参考点时发生过行程报警。
a、 检查参考点检测开关信号,当移动到参考点挡块位置时,能够从“0”变为“1”;
b、 检查栅罩量参数(2028),正常;
检查参考点偏移量参数(2027),正常;
检查参考点回归方向参数(2030),和其它同型号机床核对,发现由反方向“1”变成了同方向“0”,改正后,重启回参考点,正常。
3、西门子系统:
1)、工作原理:
机床回参考点时,回归轴以Vc速度快速向参考点文件块位置移动,当参考点开关碰上挡块后,开始减速并停止,然后反方向移动,退出参考点挡块位置,并以Vm速度移动,寻找到第一个零脉冲时,再以Vp速度移动Rv参考点偏移距离后停止,就把这个点作为
2)、相关参数:
参数内容 系统802D/810D/840D
返回参考点方向MD34010
寻找参考点开关速度(Vc)MD34020
寻找零脉冲速度(Vm)MD34040
寻找零脉冲方向MD34050
定位速度(Vp)MD34070
参考点偏移(Rv)MD34080
参考点设定位置(Rk)MD34100
3、设定方法:
a、设定参数:
返回参考点方向参数、寻找零脉冲方向参数根据挡块安装方向等进行设定;
寻找参考点开关速度(Vc)参数设定时,要求在该速度下碰到挡块后减速到“0”时,坐标轴能停止在挡块上,不要冲过挡块;
参考点偏移(Rv)参数=0
b、机床重启,回参考点。
C、由于机床参考点与设定前不同,重新调整参考点偏移(Rv)参数。
4、故障举例:
一台西门子810D系统,机床每次参考点返回位置都不一致,从以下几项逐步进行排查:
a、 伺服模块控制信号接触不良;
b、电机与机械联轴节松动;
C、参数点开关或挡块松动;
d、参数设置不正确;
е、位置编码器供电电压不低于4.8V;
f、位置编码器有故障;
g、位置编码器回馈线有干扰;
最后查到参考点挡块松动,拧紧螺丝后,重新试机,故障排除。 二: 绝对位置检测系统:
1. 发那克系统:
1)、工作原理: 绝对位置检测系统参考点回归比较简单,只要在参考点方式下,按任意方向键,控制轴以参考点间隙初始设置方向运行,寻找到第一个栅格点后,就把这个点设置为参考点。
2)、相关参数:
参数内容 系统0i/16i/18i/21i0
所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076
各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391
各轴的参考计数器容量18210570~0575 7570 7571
每轴的栅格偏移量18500508~0511 0640 0642 7508 7509
是否使用绝对脉冲编码器作为位置检测器: 0. 不是 、1. 是 1815.50021 7021
绝对脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022
位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037
快速进给加减速时间常数16200522
快速进给速度14200518~0521
FL速度14250534
手动快速进给速度14240559~0562
伺服回路增益18250517
返回参考点间隙初始方向 0. 正 1. 负10060003 7003 0066
3)、设置方法:
a、设定参数:
所有轴返回参考点的方式=0;
各轴返回参考点的方式=0;
各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定;
是否使用绝对脉冲编码器作为位置检测器=0 ;
绝对脉冲编码器原点位置的设定=0;
位置检测使用类型=0;
快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定;
b、机床重启,手动回到参考点附近;
c、是否使用绝对脉冲编码器作为位置检测器=1 ;
绝对脉冲编码器原点位置的设定=1;
e、机床重启;
f、 由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。
2、三菱系统(M60、M64为例):
1)、无挡块机械碰压方式:
a、设定参数: #2049.= 1 无档块机械碰压方式;
#2054 电流极限; b、选择“绝对位置设定”画面,选择手轮或寸动模式,(也可选择自动初期化模式);
C、在“绝对位置设定”画面,选择“可碰压”;
d、#0绝对位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点的坐标值;
e、移动控制轴,当控制轴碰压上机械挡块,在给定时间内达到极限电流时,控制轴停止并反方向移动。如果b步选择手轮或寸动模式,则控制轴反方向移动移动到第一栅格点,这个点就是电气参考点;如果b步选择“自动初期化”模式,则在第a步还要设置 #2005碰压速度参数和 #2056接近点值,此时控制轴反方向以 #2005(碰压速度)移动到 #2056(接近点)值停止,再以 #2055(碰压速度)向挡块移动,在给定时间内达到极限电流时,控制轴停止并以反方向移动到第一栅格点,这个点就是电气参考点;
g、重启电源。
2)、无挡块参考点方式调整:
a、设定参数: #2049 = 2 无挡块参考点调整方式;
#2050 = 0 正方向、 = 1 负方向;
b、选择“绝对位置设定”画面,选择手轮或寸动模式;
c、在“绝对位置设定”画面,选择“无碰压”方式;
d、#0绝对位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点的坐标值;
e、把控制轴移动到参考点附近。
f、#1 = 1,控制轴以 #2050设置方向移动,达到第一个栅格点时停止,把这个点设定为电气参考点。
g、重启电源。
3、 西门子系统(802D、810D、840D为例):
1)、调试;
a、设置参数:
MD34200=0.绝对编码器位置设定;
MD34210=0.绝对编码器初始状态;
b、选择“手动”模式,将控制轴移动到参考点附近;
c、输入参数:MD34100,机床坐标位置;
d、激活绝对编码器的调整功能:MD34210=1.绝对编码器调整状态;
e、按机床复位键,使机床参数生效;
f、机床回归参考点;
g、机床不移动,系统自动设置参数:34090. 参考点偏移量;34210. 绝对编码器设定完毕状态,屏幕上显示位置是MD34100设定位置。
2)、相关参数:
参数内容 系统 802D. 810D. 840D 参数点偏移量34090
机床坐标位置34100
绝对编码器位置设定34200
绝对编码器初始状态; 0.初始 1.调整 2.设定完成 34210
在相对位置检测系统的参考点回归中,机床第一次参考点回归后,执行手动参考点回归或加工程序的G28指令时机械移动到参考点挡块位置并不减速,而是继续高速定位到事先存在内存中的参考点。机床下载PCL程序时将导致参考点位置丢失,在PCL调试完毕后,再调试绝对值编码器参考点回归设定。
D. 机床坐标系的原点由什么确定
机床坐标系:在数控编程时为了描述机床的运动,简化程序编制的方法及保证记录数据的互换性,数控机床的坐标系和运动方向均已标准化,ISO和我国都拟定了命名的标准。 机床坐标系( Machine Coordinate System )是以机床原点O为坐标系原点并遵循右手笛卡尔直角坐标系建立的由X、Y、Z轴组成的直角坐标系。 机床坐标系是用来确定工件坐标系的基本坐标系。是机床上固有的坐标系,并设有固定的坐标原点。
工件坐标系是编程时使用的坐标系,又称编程坐标系,该坐标系是人为设定的。建立工件坐标系是数控车床加工前的必不可少的一步。不同的系统,其方法各不相同。建立工件坐标系(以在右端面建立工件坐标系为例)采用的是坐标系偏移转换的原理。它的操作原理是通过刀具对工件右端外圆和端面的试切削,及对所切外圆直径Φ的测量,将图示刀具试切后所在位置在工件坐标系中的预设坐标值,通过机床操作面板手动输入到数控车床相应的刀具补偿单元中,数控系统根据此位置预设的坐标值,经过坐标转换计算,确定工件坐标系原点的位置,从而将机床坐标系原点O机床偏移到所需的工件坐标系原点,这样就建立了一个以O为原点的工件坐标系。建立工件坐标系前,机床控制面板所显示的坐标是刀具当前位置在机床坐标系中的坐标:X坐标为Φx机床,Z坐标为ZA。建立了工件坐标系后,机床控制面板所显示的坐标即是刀具当前位置在工件坐标系中的坐标:X坐标为Φx工件,Z坐标为0。
机床原点(机械零点)是指机床坐标系的原点,是机床上的一个固定点.它不仅是在机床上建立工件坐标系的基准点,而且还是机床调试和加工时的基准点.随着数控机床种类型号的不同其机床原点也不同,通常车床的机床原点设在卡盘端面与主轴中心线交点处,而铣床的机床原点则设在机床X、Y、Z三根轴正方向的运动极限位置.
E. 关于数控机床零点偏移的问题
我不知道你是什么系统的
但是零点偏移的指令据我所知大部分应该是G92啊?
G90是绝对值编程
G91是相对值编程
G92才是零点偏移
而且G92是根据当前刀具所在点的偏移,跟G54没什么关系
我这只是猜测啊
因为我是学的数控铣床
但我看你发的“TK6916”,应该是数控镗床吧
要是立镗的话应该和数控立铣差不多
F. 数控机床中零点偏移是什么意思零点偏移的作用是什么为什么会有零点偏移(零点偏移是如何产生的)
零点偏置是数控系统的一种特性,即允许把数控测量系统的原点在相对机床基准的规定范围内移动,而永久原点的位置被存贮在数控系统中。因此,当不用 G92 指令设定工件坐标系时可以用 G54 一 G59 指令设定六个工件坐标系即通过设定机床所特有的六个坐标系原点(即工件坐标系 1 --6 的原点) 在机床坐标系中的坐标值.(即工件零点偏移值)。该值可用 MDI 方式输人相应项中。
对刀方法:
1、试切法对刀
试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。
工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。
例如,2#刀刀架在X为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为
180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数刀长中的X与Z中,在程序中使用T0202就可以成功建立出工件坐标系。
事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。
2、对刀仪自动对刀
现在很多车床上都装备了对刀仪,使用对刀仪对刀可免去测量时产生的误差,大大提高对刀精度。由于使用对刀仪可以自动计算各把刀的刀长与刀宽的差值,并将其存入系统中,在加工另外的零件的时候就只需要对标准刀,这样就大大节约了时间。需要注意的是使用对刀仪对刀一般都设有标准刀具,在对刀的时候先对标准刀。
下面以采用FANUC 0T系统的日本WASINO
LJ-10MC车削中心为例介绍对刀仪工作原理及使用方法。刀尖随刀架向已设定好位置的对刀仪位置检测点移动并与之接触,直到内部电路接通发出电信号(通常我们可以听到嘀嘀声并且有指示灯显示)。在2#刀尖接触到a点时将刀具所在点的X坐标存入到图2所示G02的X中,将刀尖接触到b点时刀具所在点的Z坐标存入到G02的Z中。其他刀具的对刀按照相同的方法操作。
事实上,在上一步的操作中只对好了X的零点以及该刀具相对于标准刀在X方向与Z方向的差值,在更换工件加工时再对Z零点即可。由于对刀仪在机械坐标系中的位置总是一定的,所以在更换工件后,只需要用标准刀对Z坐标原点就可以了。操作时提起Z轴功能测量按钮“Z-axis shift measure”面。
手动移动刀架的X、Z轴,使标准刀具接近工件Z向的右端面,试切工件端面,按下“POSITION
RECORDER”按钮,系统会自动记录刀具切削点在工件坐标系中Z向的位置,并将其他刀具与标准刀在Z方向的差值与这个值相加从而得到相应刀具的Z原点,其数值显示在WORK
SHIFT工作画面上。
G. 数控铣床坐标系的问题
所谓机床坐标系:按下EOP,然后软键的综合按一下..可以看到绝对坐标系和相对坐标系,绝对坐标系就是开机后机床三轴回零后,各自向负方向移动的..也称为是机械坐标
相对坐标系可以随时清零,便于有时候要小移一下..
工件坐标系则是你自己设的,一般在调用G54工件坐标系的时候,要事先在G54内输入当前刀位点的坐标,最简单的方法就是,你想把工件坐标系设在哪就设在哪..就把刀停在那个位置,然后到G54里把当前点设成工件坐标系原点
工件坐标系的原点即是在机床坐标系里的某一点,具体是哪一点你就自己去设咯...
H. FANUC数控车床工件坐标发生偏移是怎么回事请举例说明!
可能是电压不稳,要不然机床坏了。
I. 加工中心坐标偏移有哪些方法,我看到有用#代替的,具体怎么用法呢
相对坐标是让操作者用的,比如对刀,找零点。这个你看几次就会了。机械坐标和绝对坐标有一定联系的,我举个例子,比如一个零件编程时就得有坐标零点,这坐标零点就是绝对坐标X0,Y0.也就是说绝对坐标是编程序用的,再下来这个零件的坐标零点机床怎么知道在哪呢,这时我们就得去找工件的零点了(具体操作我就不讲了,以后你看看就知道了),找到这个零点就是我们要的编程零点,然后就在加工中心上得控制面板上按出刀补那个菜单,下面有坐标系,然后在G54或G55分别按X0测量Y0测量,这样机床就知道工件的零点也就是绝对坐标X0Y0相对于机械坐标的位置了。相对坐标和机械坐标的方向一样,而绝对坐标你得换一种思路去看,你得假设工作台不动,刀具在走。那样就好理解了。