① 超声波具有什么特点超声波的主要应用有什么
1
超声波的束射性:由于超声波频率很高,所以方向性就相对要强,方向性即柬射性。当超声波发生体压电晶体的直径尺寸远大于超声波波长时,则晶体所产生的超声波就类似于光的特性,也就是方向性好。
2
能量大:声强与振幅,质点震动频率的关系i=1/2ρca^2ω^2,相同振幅条件下,能量与频率的平方正比。由于频率很高,所以具有很大的能量。
3
透射、反射和折射:在两种不同媒质的分界面上,会出现类似于光线一样的透射、反射和折射现象,普通声波也有此性质。
② 超声波具有怎样的特点
1、超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4、超声波可在气体、液体、固体、固熔体等介质中有效传播。
5、超声波可传递很强的能量。
6、超声波会产生反射、干涉、叠加和共振现象。
(2)物理学中超声波具有什么特点扩展阅读
超声波检查对人体无害
超声波是一种高频率的声波,它没有放射性,对人体安全、无害,应用于全身各器官系统以及用于产检,对孕妇和胎儿也是非常安全的。在检查时,医生会为患者涂上一层黏黏的东西,这种液体叫做耦合剂,目的是使探头与皮肤之间更好地接触,有利于声波的传导并提高成像质量。耦合剂对人体无毒、无害,检查后擦净或用温水清洗就可以了,不用担心。
参考资料来源:网络-超声波
参考资料来源:人民网-超声检查对人体有害吗?
③ 超声有什么物理特性
声速
声速与介质的体弹性系数和密度有关。由于介质的弹性系数与温度有关,因此声速也与温度有关。在超声诊断的频段中,人体组织的超声速度与频率无关,而且软组织中的声速都很接近,约为1540m/s。
波长、周期和频率
声波在介质中传播时,两个相邻的同相位点之间的距离,如相邻两点稠密部之间的距离(超声波在人体中一般是以纵波方式传播),称为声波的波长,以λ表示。波向前移动一个波长的距离所需的时间,称为声波的周期,以T表示。介质中任何一给定点在单位时间内通过的波敝,称为声波的频率,以f表示。它们之间的关系为
λ=C/f=CT
式中为声波的传播速度。
医学诊断中采用的超声波频率在1-20MHz范围内。
声阻抗
介质中任意点的密度ρ与该点处声波的传播速度C之积为此介质在该点处的声阻抗,以Z表示,即Z=ρC。它是表征介质的声学特性的一个重要物理量。声阻抗的变化将影响超声波的传播。声阻抗是采用反射回波法进行超声诊断的物理基础。
声压级与声强级
声压级LP是以分贝表示的某个声压P与参考分压P0的比值,即LP=20lg(P/P0)
声强级LI是以分贝表示的某个声强I与参考声强I0的比值,即LI=10lg(I/I0)
声强是表示声的客观强弱的物理量,它表示通过垂直于传播方向上单位面积的能流率。声强为
I=1/2(ρCω02A2)= p02/(2Z)
声强的单位是mW/cm2或W/m2。
声强与声源的振幅有关,振幅越大,声强也越大。对于平面超声波,他的总功率为强度I和面积S的乘积,即W=IS。
由于超声强度太大会破坏人体正常细胞组织,因其不可逆的生物效应。因此,国际上对诊断用超声强度安全剂量作出规定,一般接受的安全剂量为20mW/cm2。
超声波的指向性
对于平面园片换能器,在无吸收的介质中其波束形状有两个不同的区域即园柱形区和发散区或称为近场区和远场区。近场区的长度为D2/4λ,D为晶片直径,λ为该介质中传播的超声波长。在远场区,发散角由sinθ=1.22λ/D给出。可见,减小直径可缩短近场长度和增大,即加宽了波束。增加频率即减小波长时,加长了近场区,减少了发散角,可获得较窄的波束。
声强度沿中心轴距离的分布,近场区声强度有剧烈的起伏变化,存在着许多声强度为极小值的节点。这些节点可引起不希望有的盲点。在远场区声强都变化趋于平稳,单随着距离的增加,声强逐渐减弱。
超声波的反射与折射
当一束平面超声波入射到两种介质交界面上时,或者声阻抗的不连续处时,会产生反射和折射,并遵从反射和折射定律。
θI=θR
SinθI/SinθT=C1/C2
超声波的衰减
超声在介质中传播,其能量将随着距离的增加而减小,这种现象称为超声波的衰减。噪声衰减的因素主要有两类。一类是声束本身扩散,使单位面积上的能量下降,或反射,散射的结果,使能量不能再沿着原来的方向传播。在这一类事件中,声波的总能量并没有减少。另一类是,超声传播中,由于介质的吸收,将声能转换成为热能,因而使声能减小。着后一类的机理比较复杂,主要有粘滞吸收;弛豫吸收、相对运动吸收及空化气泡吸收。
对于给定的频率的超声波,其强度和压强幅度都随着距离的增大而按指数规律下降,可表示为:
I(x)=I0e-2αx
P(x)=P0e-αx
式中α为衰减系数。α是频率的函数。αmm = βfMHz。为常数。
衰减系数在很大程度上依赖于频率。这一点,我们在设计还是临床操作上都具有重大影响意义。实验结果表明,在医学超声频率范围内,人体组织对超声波的吸收系数几乎与超声波频率成正比。
④ 超声波有什么特点
超声波特点
1)超声波在传播时,波长短,方向性强,能量易于集中。
2)超声波能在各种不同媒质中传播,且可传播足够远的距离。
3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4)超声波可在气体、液体、固体、固熔体等介质中有效传播。
5)超声波可传递能量。
6)超声波会产生反射、干涉、叠加和共振现象。
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等)用作诊断;超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响、改变以致破坏后者的状态、性质及结构用作治疗。
(4)物理学中超声波具有什么特点扩展阅读
超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。
超声成像是利用超声波呈现不透明物内部形象的技术。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息,经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。
参考资料来源:网络-超声波
⑤ 超声波具有哪三种特点
超声波特点:
1、超声波在传播时,波长短,具有各向异性。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4、超声波可在气体、液体、固体、固熔体等介质中有效传播。
5、超声波会产生反射、干涉和叠加现象。
超声波是一种波长极短的机械波,在空气中波长一般短于2cm(厘米)。它必须依靠介质进行传播,无法存在于真空(如太空)中。它在水中传播距离比空气中远,但因其波长短,在空气中则极易损耗,容易散射,不如可听声和次声波传得远,不过波长短更易于获得各向异性的声能,可用于清洗、碎石、杀菌消毒等。在医学、工业上有很多的应用。
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介用作诊断;超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响、改变以致破坏后者的状态、性质及结构用作治疗。
⑥ 超声波的特点是什么
束射特性
由于超声波的波长短,超声波射线可以和光线一样,能够反射、折射,也能聚焦,而且.遵守几何光学上的定律。即超声波射线从一种物质表面反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要改变它的传插方向,两种物质的密度差别愈大,则折射也愈大。
吸收特性
声波在各种物质中传播时,随着传播距离的增加,强度会渐进减弱,这是因为物质要吸收掉它的能量。对于同一物质,声波的频率越高,吸收越强。对于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比较弱,在固体中传播时吸收最小。
超声波的能量传递特性
超声波所以往各个工业部门中有广泛的应用,主要之点
还在于比声波具有强大得多的功率。为什么有强大的功率呢?因为当声波到达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率―样,分子振动的频率决定了分子振动的速度。频率愈高速度愈大。物资分子由于振动所获得的能量除了与分子的质量有关外,是由分子的振动速度的平方决定的,所以如果声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波可以高很多,所以它可以使物资分子获得很大的能量;换句话说,超声波本身可以供给物质足够大的功率。
超声波的声压特性
当声波通入某物体时,由于声波振动使物质分子产生压缩和稀疏的作用,将使物质所受的压力产生变化。由于声波振动引起附加压力现象叫声压作用。
由于超声波所具有的能量很大,就有可能使物质分子产生显诸的声压作用、例如当水中通过一般强度的超声波时,产生的附加压力可以达到好几个大气压力。液体中存起着如此巨大的声压作用,就
会引起值得注意的现象。当超声波振动使液体分子压缩时,好象分子受到来直四面八方的压力;当超声波振动使液体分子稀疏时,好象受到向外散开的拉力,对于液体,它们比较受得住附加压力的作用,所以在受到压缩力的时候;不大会产生反常情形。但是在拉力的作用下,液体就会支持不了,在拉力集中的
地方,液体就会断裂开来,这种断裂作用特别容易发生在液体中存在杂质或气泡的地方,因为这些地方液体的强度特别
低,也就特别经受不起几倍于大气压力的拉力作用。由于发生断裂的结果,液体中会产生许多气泡状的小空腔,这种空泡存在的时间很短,一瞬时就会闭合起来。空腔闭合的时候会
产生很大的瞬时压力,一般可以达到几千甚至几万个大气压力。液体在这种强大的瞬时
⑦ 超声波有哪些特点
由于其频率高,因而具有许多特点:
首先是功率大,其能量比一般声波大得多,因而可以用来切削、焊接、钻孔等。再者由于它频率高,波长短,衍射不严重,具有良好的定向性,工业与医学上常用超声波进行超声探测。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20000HZ 之间)。
超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的一般上限(20000Hz),人们将这种听不见的声波叫做超声波。
超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,该特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在介质的传播过程中,存在一个正负压强的交变周期,在正压相位时,超声波对介质分子挤压,改变介质原来的密度,使其增大;在负压相位时,使介质分子稀疏,进一步离散,介质的密度减小,当用足够大振幅的超声波作用于液体介质时,介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。
⑧ 超声波的特征
1、超声波:频率高于人们的听觉上限(20000 Hz)不能再激起听觉的声波叫超声波.由于超声波的波长很短,所以只能是近似地做直线传播.超声波与一切波一样会发生反射、折射、干涉、衍射等现象.超声波在介质中传播时,超声波与介质间因相互作用而发生一系列的物理或化学变化.超声波引起的效应很多,主要表现是,介质中的质点在超声波的作用下做受迫振动,产生机械效应,会使悬浮粒子凝聚;强度很大的超声波能引起物体破碎;超声波可用做清洗、乳化,以促进化学反应,以及在此基础上发展起来的超声探伤、测距,医学上广泛应用的超声波诊断成像(B超)等等.现在,超声波与电磁辐射、粒子轰击已成为研究物质微观结构的三大重要手段.
2、次声波:次声波是指频率低于人们的听觉下限(20Hz)的声波.例如,火山爆发、地震、海啸、台风等所含能量巨大的自然现象及核爆中都会产生次声波.次声波传播的特点是,能量衰减小,易受重力影响;在空气中传播易引起空气分子的振动,使部分声能转化为空气的内能.次声波由于受重力影响,主要是沿地面传播,因而次声波可以传播很远的距离。次声波常用于探测波源(如爆炸点)的位置、预测火山爆发、雷暴及异常的气象变化等
⑨ 超声波的特点是什么
超声波是频率高于20000赫兹的声波,方向性好,穿透能力强,在水中传播距离远,可用于测距,测速,清洗,碎石、杀菌消毒等。
⑩ 超声波具有哪些物理特性
超声波测厚仪原理
超声波清洗属物理清洗,把。由于超声波与声波一样是一种疏密的振动波,在传播过程中,介质的压力作交替变化。在负压区域,液体中产生撕裂的力,并形成真空的气泡。当声压达到一定值时,气泡迅速增长,在正压区域气泡由于受到压力挤破灭、闭合。此时,液体间相互碰撞产生强大的冲击波。虽然位移、速度都非常小,但加速度却非常大,局部压力可达几千个大气压,这就是所谓的空化效应。
影响因素
(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。
(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。
(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。
(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。
(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。
(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。
(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。
(8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。
(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。
(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。
(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。
(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。
(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。
(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。
两点校准功能,使得测量值更为准确独有蓝色背景灯光,各种环境下清晰可视低功耗,两节干电池可使用200小时以上适合测量所有导声材料,如钢、铁、塑料、陶瓷、有机玻璃等