『壹』 超声波仪器有哪几种
超声波检查不仅能够直观地显示胎儿在宫内发育的全过程,还能判断准妈妈相对准确的预产期。最常见的有B超和普通彩超,还有三维彩超和四维彩超,阴式B超。 超声波仪器之B超 二维黑白成像,可以测出胎儿的双顶径、头围、腹围及股骨长度,从而判断胎儿的生长发育情况,进一步推算出预产期。还可以检测出胎儿是否存活、有无异常,及羊水情况。价格相对便宜。 超声波仪器之普通彩超 除了具备B超的功能外,彩超能够更加直观的显示图像,还能发现异常血流,为诊断胎儿是否有先天性心脏缺陷提供依据。彩超的结果出得较快,价格也相对贵一些。 超声波仪器之三维彩超 是立体动态显示的彩超多普勒超声诊断仪,具备普通彩超对所有功能。它可以将胎儿的头面部立体成像,清晰地显示五官状态,判断是否有畸形;对先天性心脏病的诊断也更加精准,无论表面畸形,还是内脏畸形都能查出。所以它的价格大概是普通彩超的1倍,甚至更多。 超声波仪器之四维彩超 是在三维彩超图像的基础上加上时间维度参数,可以观察胎儿实时动态的活动图像。和三维彩超一样,可以确定胎儿在子宫内的精确定位。价格更高。 超声波仪器之阴式B超 是一种腔内超声检查仪器,将超声探头直接至于阴道穹窿部位。大多用于辅助诊断妇科疾病,早孕时,不能通过腹部观察的情况下,一般也会用到,但基本不用于产前检查。
『贰』 怎么检测到超声波,有什么仪器可以检测到超声波存在吗
超声波清洗机作为工业重要清洗设备,其清洗效率和清洗效果成为人们重点关注之事。如果工件清洗效果不佳,将影响工件的二次加工,因此,人们需研究出可监控超声波清洗机清洗效果的方法,确保工件清洗效果良好。根据我国专家的研究,可采用毛玻璃片法、铝箔测试法和超声能量瓶检测法检测工件的清洗效果。
在运用铝箔测试法监测超声波清洗机清洗效果时发现,10μm的铝箔纸在测试时受损较为严重,无法判断清洗效果,而其他厚度的铝箔测试的合格率差距相对较小。通过监测试验发现,厚度超过20μm的铝箔纸作为检测工具时,清洗效果更加明显,监测起来也更加方便。运用毛玻璃片或超声能量瓶监测超声波清洗机清洗效果时发现,监测物品大小并不影响监测效果,但放置的位置会有一定影响。为了确保监测的准确性,需要分别根据清洗时间、清洗温度和清洗频率设计不同的试验组,且每组的试验数量都达到相关要求。
人们同时使用三种方法监测超声波清洗机清洗效果时发现,铝箔测试法和超声能量瓶检测法的监测合格率明显低于毛玻璃片法,监测的结果更为准确。由此可见,铝箔测试法和超声能量瓶检测法更加适合于监测超声波清洗机的清洗效果,如果条件不允许,人们再退而求其次地选择毛玻璃片法,并且将毛玻璃片竖放于清洗机的四角位置,提高监测的难度。
『叁』 什么是超声波
超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。
『肆』 超声波诊疗仪器的介绍
超声仪器又称超声波仪器,是一种根据超声波原理研制的医疗仪器,运用在医疗临床、诊断、卫生领域的医疗器械。超声诊断仪器主要是指医学影像系统中的超声诊断装置,由于其价格比CT与MRI低廉,又具有无创伤和实时获得人体内组织图像特点,所以临床应用范围愈来愈广泛,世界范围总销售额增长预计将超过X 线诊断装置。
『伍』 什么是超声波探伤仪
数字超声波探伤仪是一种便携式工业无损探伤仪器,它能够快速、便捷、无损伤、精确地进行工件内部多种缺陷(焊缝、裂纹、折叠、疏松、砂眼、气孔、夹杂等)的检测、定位、评估和诊断。既可以用于实验室,也可以用于工程现场。广泛应用在锅炉、压力容器、航天、航空、电力、石油、化工、海洋石油、管道、军工、船舶制造、汽车、机械制造、冶金、金属加工业、钢结构、铁路交通、核能电力、高校等行业。 彩屏超声波探伤仪是LED显示屏是彩色的,多颜色选择,适用于不同的光线条件,背光连续可调,更为直观和好看.
那么人们是怎么样利用超声来进行检测的呢?超声波探伤仪现在通常是对被测物体(比如工业材料、人体)发射超声,然后利用其反射、多普勒效应、透射等来获取被测物体内部的信息并经过处理形成图像。超声波探伤仪其中多普勒效应法是利用超声在遇到运动的物体时发生的多普勒频移效应来得出该物体的运动方向和速度等特性;透射法则是通过分析超声穿透过被测物体之后的变化而得出物体的内部特性的,其应用目前还处于研制阶段;超声波探伤仪这里主要介绍的是目前应用最多的通过反射法来获取物体内部特性信息的方法。反射法是基于超声在通过不同声阻抗组织界面时会发生较强反射的原理工作的,正如我们所知道,声波在从一种介质传播到另外一种介质的时候在两者之间的界面处会发生反射,而且介质之间的差别越大反射就会越大,所以我们可以对一个物体发射出穿透力强、能够直线传播的超声波,超声波探伤仪然后对反射回来的超声波进行接收并根据这些反射回来的超声波的先后、幅度等情况就可以判断出这个组织中含有的各种介质的大小、分布情况以及各种介质之间的对比差别程度等信息(其中反射回来的超声波的先后可以反映出反射界面离探测表面的距离,幅度则可以反映出介质的大小、对比差别程度等特性),超声波探伤仪从而判断出该被测物体是否有异常。在这个过程中就涉及到很多方面的内容,包括超声波的产生、接收、信号转换和处理等。其中产生超声波的方法是通过电路产生激励电信号传给具有压电效应的晶体(比如石英、硫酸锂等),使其振动从而产生超声波;而接收反射回来的超声波的时候,这个压电晶体又会受到反射回来的声波的压力而产生电信号并传送给信号处理电路进行一系列的处理,超声波探伤仪最后形成图像供人们观察判断。这里根据图像处理方法(也就是将得到的信号转换成什么形式的图像)的种类又可以分为A型显示、M型显示、B型显示、C型显示、F型显示等。其中A型显示是将接收到的超声信号处理成波形图像,根据波形的形状可以看出被测物体里面是否有异常和缺陷在那里、有多大等,超声波探伤仪主要用于工业检测;M型显示是将一条经过辉度处理的探测信息按时间顺序展开形成一维的"空间多点运动时序图",适于观察内部处于运动状态的物体,超声波探伤仪如运动的脏器、动脉血管等;B型显示是将并排很多条经过辉度处理的探测信息组合成的二维的、反映出被测物体内部断层切面的"解剖图像"(医院里使用的B超就是用这种原理做出来的),超声波探伤仪适于观察内部处于静态的物体;而C型显示、F型显示现在用得比较少。超声波探伤仪检测不但可以做到非常准确,而且相对其他检测方法来说更为方便、快捷,也不会对检测对象和操作者产生危害,所以受到了人们越来越普遍的欢迎,有着非常广阔的发展前景。
仪器原理超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声波检测仪。超声检测方法通常有穿透法、脉冲反射法、串列法等。
数字式超声波探伤仪
现在通常是对被测物体(比如工业材料、人体)发射超声,然后利用其反射、多普勒效应、透射等来获取被测物体内部的信息并经过处理形成图像。其中多普勒效应法是利用超声在遇到运动的物体时发生的多普勒频移效应来得出该物体的运动方向和速度等特性;透射法则是通过分析超声穿透过被测物体之后的变化而得出物体的内部特性的,其应用目前还处于研制阶段; 这里主要介绍的是目前应用最多的通过反射法来获取物体内部特性信息的方法。 反射法是基于超声在通过不同声阻抗组织界面时会发生较强反射的原理工作的。正如我们所知道,声波在从一种介质传播到另外一种介质的时候在两者之间的界面处会发生反射,而且介质之间的差别越大反射就会越大,所以我们可以对一个物体发射出穿透力强、能够直线传播的超声波,然后对反射回来的超声波进行接收并根据这些反射回来的超声波的先后、幅度等情况就可以判断出这个组织中含有的各种介质的大小、分布情况以及各种介质之间的对比差别程度等信息(其中反射回来的超声波的先后可以反映出反射界面离探测表面的距离,幅度则可以反映出介质的大小、对比差别程度等特性),从而判断出该被测物体是否有异常。 在这个过程中就涉及到很多方面的内容,包括超声波的产生、接收、信号转换和处理等。其中产生超声波的方法是通过电路产生激励电信号传给具有压电效应的晶体,使其振动从而产生超声波;而接收反射回来的超声波的时候,这个压电晶体又会受到反射回来的声波的压力而产生电信号并传送给信号处理电路进行一系列的处理,超声波探伤仪最后形成图像供人们观察判断。
图像处理根据图像处理(也就是将得到的信号转换成什么形式的图像)的种类又可以分为A型显示、M型显示、B型显示、C型显示、F型显示等。其中A型显示是将接收到的超声信号处理成波形图像,根据波形的形状可以看出被测物体里面是否有异常和缺陷在那里、有多大等, 主要用于工业检测;M型显示是将一条经过辉度处理的探测信息按时间顺序展开形成一维的"空间多点运动时序图",适于观察内部处于运动状态的物体,如运动的脏器、动脉血管等;B型显示是将并排很多条经过辉度处理的探测信息组合成的二维的、反映出被测物体内部断层切面的"解剖图像"(医院里使用的B超就是用这种原理做出来的),适于观察内部处于静态的物体;而C型显示、F型显示现在用得比较少。 超声波探伤仪检测不但可以做到非常准确,而且相对其他检测方法来说更为方便、快捷,也不会对检测对象和操作者产生危害,所以受到了人们越来越普遍的欢迎,有着非常广阔的发展前景。
『陆』 什么是超声波
超声波
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为16~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生
超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。
超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
量子声学。
『柒』 怎么检测到超声波,有什么仪器可以检测到超声波存在吗
您好。可以检测到的。超声波发射的方向性很强。能量集中,波形为正弦波。
稍微好点的频率表或者示波器都能感应到!
示波器容易买到。您到电子市场去看看。或者直接到网上采购(阿里巴巴)。
如果您检测的超声波是以声波形式的。您还需要配一个声波探头(这个就很贵了,必须要买进口的).
您好。这个肯定是可以测出来的。(潜艇用的就这个方式)。不过这种情况我也没有实践过,
不能实际的回答您了。
您好。 声波探头有一定的频率局限性的。 当然理论上是什么都能测。但考虑到检测的精度,探头有分频率范围的。选择时就看您的需求。
『捌』 能够产生超声波的仪器叫什么
超声波发生器
实际使用的都是和一定的设备结合使用,比方超声波清洗机,超声波加湿器,超声焊接机等等