⑴ 数控机床的步进电动机伺服系统特点和应用分别是什么#数控机床#
数控机床的步进电动机伺服系统特点和应用
步进电动机伺服系统一般构成典型的开环伺服系统,其基本机构如图所示。在这种开环伺服系统中,执行元件是步进电动机。步进电动机是一种可将电脉冲转换为机械角位移的控制电动机,并通过丝杠带动工作台移动。通常该系统中无位置、速度检测环节,其精度主要取决于步进电动机的步距角和与之相联传动链的精度。步进电动机的最高转速通常均比直流伺服电动机和交流伺服电动机低,且在低速时容易产生振动,影响加工精度。但步进电动机伺服系统的制造与控制比较容易,在速度和精度要求不太高的场合有一定的使用价值,同时步进电动机细分技术的应用,使步进电动机开环伺服系统的定位精度显著提高,并可有效地降低步进电动机的低速振动,从而使步进电动机伺服系统得到更加广泛的应用。特别适合于中、低精度的经济型数控机床和普通机床的数控化改造。步进电动机伺服系统主要应用于开环位置控制中,该系统由环形分配器、步进电动机、驱动电源等部分组成。这种系统简单容易控制,维修方便且控制为全数字化,比较适应当前计算机技术发展的趋势。
⑵ 能否提供更详细的解说:步进电机都应用在那些领域。除了数控机床,尤其是高端的步进电机应用领域。
应用领域非常广泛,很多生产设备的企业都要用到步进电机。
若是价格高出两三千的话,估计不好卖。有这个钱,就直接安装伺服电机了,伺服电机的性能一般比步进电机要好的多。
配置这种步进电机的设备,在国内恐怕不好卖,考虑出口企业吧
⑶ 步进电机与伺服电机分别应用于哪些场合有何区别
应用场合的主要区别:
1、步进电机主要用于一些有定位要求的场合,由于速度正比于脉冲频率,因而有比较宽的转速范围。例如:线切割的工作台拖动,植毛机工作台(毛孔定位),包装机(定长度),基本上涉及到定位的场合都用得到。
2、伺服电机主要适合要求运行平稳、低噪音、响应快、使用寿命长、高输出扭矩的应用场合。广泛应用于ATM机、喷绘机、刻字机、写真机、喷涂设备、医疗仪器及设备、计算机外设及海量存储设备、精密仪器、工业控制系统、办公自动化、机器人等领域。
(3)步进电动机应用于什么型机床扩展阅读:
步进电机与伺服电机的优缺点:
1、步进电机具有优秀的起停和反转响应,并且电机的结构可以比较简单而且控制成本较低。但是如果控制不当容易产生共振并且难以运转到较高的转速。
2、伺服电机持转矩不高,频繁启动反应速度快、运转噪音低、运行平稳、控制性能好、整机成本低。但是在低速时易出现低频振动现象。
⑷ 步进电机在数控机床中的具体应用(要具体啊!谢谢了……)
步进电机在低端数控机床上使用,经济型以上的机床一般不用,精度跟不少。用的较多的数控机床是在快走丝电火花线切割机床中。
⑸ 步进电动机有哪些种类类型
步进电动机是将电脉冲激励信号转换成相应的角位移或线位移的离散值控制电动机,这种电动机每当输入一个电脉冲就动一步,所以又称脉冲电动机。
步进电动机把电脉冲信号变换成角位移以控制转子转动的微特电机。在自动控制装置中作为执行元件。每输入一个脉冲信号,步进电动机前进一步,故又称脉冲电动机。步进电动机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。
步进电动机的驱动电源由变频脉冲信号源、脉冲分配器及脉冲放大器组成,由此驱动电源向电机绕组提供脉冲电流。步进电动机的运行性能决定于电机与驱动电源间的良好配合。
步进电机的优点是没有累积误差,结构简单,使用维修方便,制造成本低,步进电动机带动负载惯量的能力大,适用于中小型机床和速度精度要求不高的地方,缺点是效率较低,发热大,有时会“失步”。
步进电动机的分类:
步进电动机分为机电式、磁电式及直线式三种基本类型。
1、机电式步进电动机
机电式步进电动机由铁心、线圈、齿轮机构等组成。螺线管线圈通电时将产生磁力,推动其铁心心子运动,通过齿轮机构使输出轴转动一角度,通过抗旋转齿轮使输出转轴保持在新的工作位置;线圈再通电,转轴又转动一角度,依次进行步进运动。
2、磁电式步进电动机
磁电式步进电动机其结构简单,可靠性高,价格低廉,应用广泛。主要有永磁式、磁阻式和混合式。
(1)永磁式步进电动机。
其转子有永磁体的磁极,在气隙中产生极性交替磁场,定子由四相绕组组成。当A相绕组通电时,转子将转向该相绕组所确定的磁场方向。当A相断电、B相绕组被通电励磁时,就产生一个新的磁场方向,这时,转子就转动一角度而位于新的磁场方向上,被励磁相的顺序决定了转子转动方向。若定子励磁的变化太快,转子将不能和定子磁场方向的变化保持一致,转子即失步。起动频率和运行频率较低,是永磁式步进电动机的一个缺点。但永磁式步进电动机消耗功率较小,效率较高。20世纪80年代初,出现了转子是盘式的永磁盘式步进电动机,使步距角及工作频率达到磁阻式步进电动机的水平。
(2)磁阻式步进电动机。其定、转子铁芯的内外表面上设有按一定规律分布的相近齿槽,利用定、转子铁芯齿槽相对位置变化引起磁路磁阻的变化,从而产生转矩。其转子铁芯由硅钢片或软磁材料做成,当定子某相被励磁时,转子将转到使磁路磁阻最小的位置。当另一相被励磁,转子转到另一位置,使磁路磁阻为最小时,电动机就停止转动。这时,转子转过一个步距角θb,即式中N为转子转过一个齿距的运行拍数;ZR为转子齿数。
磁阻式步进电动机结构形式较多。定子铁芯有单段式、多段式;磁路有径向、轴向;绕组相数有三相、四相、五相。磁阻式步进电动机步距角可做到1°~15°,甚至更小,精度容易保证,起动与运行频率较高,但功耗较大,效率较低。
(3)混合式步进电动机。它的定、转子铁芯结构与磁阻式步进电动机相似。转子有永磁体在气隙中产生单极性磁场,此磁场还被转子上软磁材料的齿槽调制。
混合式步进电动机兼有永磁式步进电动机与磁阻式步进电动机两者的优点,电动机步距角小,精度高,工作频率高,且功耗小,效率高。
3、直线式步进电动机
有反应式和索耶式两类。索耶式直线步进电动机由静止部分(称为反应板)和移动部分(称动子)组成。反应板由软磁材料制成,在它上面均匀地开有齿和槽。电机的动子由永久磁铁和两个带线圈的磁极A和B组成。动子是由气垫支承,以消除在移动时的机械摩擦,使电机运行平稳并提高定位精度。这种电机的最高移动速度可达1.5米/秒,加速度可达2g,定位精度可达20多微米。由两台索耶式直线步进电动机相互垂直组装就构成平面电动机。给x方向和y方向两台电机以不同组合的控制电流,就可以使电机在平面内做任意几何轨迹的运动。大型自动绘图机就是把计算机和平面电动机组合在一起的新型设备。平面电动机也可用于激光剪裁系统,其控制精度和分辨力可达几十微米。
⑹ 步进电机是如何应用在数控机床的
数控机床一般由:控制介质、数控装置、伺服系统、和机床本体组成。简单的可以将数控机床的工作划分成以下几个部分。
第一步:将编好的程序通过控制介质输入到数控系统。这一步其实就是将编好的程序转化为机器所能识别的数字信息。
第二步:是通过数控装置将那些转化好的数字信息再转化为脉冲信号(也就是电信号)传递给伺服系统。
第三步:伺服系统将来自数控装置的脉冲信号转换为机床移动部件的精确运动。
第四步:机床本体将运动信号通过机床本身的各传动部件来完成最终的机床运动。
从数控机床的工作过程可以看出影响数控机床的精度除了来自机床本身的机械部件和传动部件外,伺服系统的工作情况直接影响数控机床的精度。
下面让我们再来认识下伺服系统。所谓伺服系统是指以位置和速度作为控制对象的自动控制系统,又称拖动系统或随动系统。在数控机床上伺服系统接受来自插补装置或插补软件产生的进给脉冲指令,经过一定的信号变换及电压、功率放大,将其转化为机床工作台相对于切削刀具的运动,主要通过对步进电动机、交/直流伺服电动机等进给驱动元件的控制来实现。可见在使用步进电机的数控机床中,步进电机的性能直接影响到数控系统的精度。
在这里仅对步进电机的工作原理、工作特点和发展的趋势做简单介绍和分析。
步进电机的工作原理:
步进电动机是一种将脉冲信号变换成相应的角位移(或线位移)的开环控制元件,是一种特殊的电动机。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时,每给一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。在非超载的情况IF,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机主要工作特点
1)可以用数字信号直接进行开环控制,整个系统简单廉价。
2)位移与输入脉冲信号数相对应,步距误差不长期积累,可以组成结构较为简单又具有一定精度的开环控制系统,也可在要求更高精度的组成闭环控制系统。
3)无刷,电动机本体部件少,可靠性高。
4)易于起动,停止,正反转及速度响应性好。
5)停止时可有自锁能力。
6)步距角可在大范围内选择,在小步距情况下,通常可以在超低转速下高转距稳定运行,通常可以不经减速器直接驱动负载。
7)速度可在相当宽范围内平滑调节,同时用一台控制器控制几台步进电动机可使它们完全同步运行。
8)步进电动机带惯性负载能力较差。
9)由于存在失步和共振,步进电机的加减速方法根据利用状态的不同而复杂化。
10)需要专用的伺服控制器控制,不能直接使用普通交直流电源驱动。
步进电机的发晨趋势
目前,步进电机驱动系统的发展趋势是高性能、高可靠性、高集成化和低成本。然而,目前市面上的步进电机驱动电源普遍存在一些缺点,表现在以下几个方面:一是电源产品大多采用分离器件构成,其功率消耗大、效率低、体积大,并且一套步进电机驱动电源只能驱动一台步进电机,不易满足数控系统多轴驱动的要求;二是步进电机有二相、三相、四相、五相等多种形式,而目前的步进电机驱动电源通常仅能适用于某一种相数的步进电机,或者虽有驱动多种步进电机的驱动电源,但其驱动能力十分有限:三是各种运行参数在产品出厂时大多已经被设定,很难由用户根据实际工作情况对频率、速度、加速度、角位移等工作参数进行个性化设置,使电机性能受到一定影响。
结束语
在数控机床中步进电机发挥着重大的作用,同时步进电机的发展也推进数控机床的发展。随着步进电机性能的不断改善,它也将给数控机床带来性能上的提升。
⑺ 机床分为几大类
数控车床的外形与普通车床相似,即由床身、主轴箱、刀架、进给系统压系统、冷却和润滑系统等部分组成。数控车床的进给系统与普通车床有质的区别,传统普通车床有进给箱和交换齿轮架,而数控车床是直接用伺服电机通过滚珠丝杠驱动溜板和刀架实现进给运动,因而进给系统的结构大为简化。
数控车床品种繁多,规格不一,可按如下方法进行分类。
1. 按车床主轴位置分类
1) 卧式数控车床 卧式数控车床又分为数控水平导轨卧式车床和数控倾斜导轨卧式车床。其倾斜导轨结构可以使车床具有更大的刚性,并易于排除切屑。
卧式数控车床
2) 立式数控车床 立式数控车床简称为数控立车,其车床主轴垂直于水平面,一个直径很大的圆形工作台,用来装夹工件。这类机床主要用于加工径向尺寸大、轴向尺寸相对较小的大型复杂零件
立式数控车床
2. 按刀架数量分类
1) 单刀架数控车床 数控车床一般都配置有各种形式的单刀架,如四工位卧动转位刀架或多工位转塔式自动转位刀架。
单刀架数控车床
2) 双刀架数控车床 这类车床的双刀架配置平行分布,也可以是相互垂直分布。
双刀架数控车床
3. 按功能分类
1) 经济型数控车床
采用步进电动机和单片机对普通车床的进给系统进行改造后形成的简易型数控车床,成本较低,但自动化程度和功能都比较差,车削加工精度也不高,适用于要求不高的回转类零件的车削加工。
经济型数控车床
2) 普通数控车床 根据车削加工要求在结构上进行专门设计并配备通用数控系统而形成的数控车床,数控系统功能强,自动化程度和加工精度也比较高,适用于一般回转类零件的车削加工。这种数控车床可同时控制两个坐标轴,即X轴和Z轴。
普通数控车床
3) 车削加工中心 在普通数控车床的基础上,增加了C轴和动力头,更高级的数控车床带有刀库,可控制X、Z和C三个坐标轴,联动控制轴可以是(X、Z)、(X、C)或(Z、C)。由于增加了C轴和铣削动力头,这种数控车床的加工功能大大增强,除可以进行一般车削外可以进行径向和轴向铣削、曲面铣削、中心线不在零件回转中心的孔和径向孔的钻削等加工。
⑻ 步进电机应用的领域有哪些
步进电机应用的领域有哪些
步进电机在各个领域的应用都非常的广泛,步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要a/d转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。早期的步进电机输出转矩比较小,无法满足需要,在使用中和液压扭矩放大器一同组成液压脉冲马达。
随着步进电动机技术的发展,步进电机已经能够单独在系统上进行使用,成为了不可替代的执行元件。比如步进电动机用作数控铣床进给伺服机构的驱动电动机,在这个应用中,步进电动机可以同时完成两个工作,其一是传递转矩,其二是传递信息。步进电机也可以作为数控蜗杆砂轮磨边机同步系统的驱动电动机。除了在数控机床上的应用,步进电机也可以并用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。
⑼ 步进电动机的简介
步进电动机(stepping motor)把电脉冲信号变换成角位移以控制转子转动的微特电机。在自动控制装置中作为执行元件。每输入一个脉冲信号,步进电动机前进一步,故又称脉冲电动机。步进电动机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。
步进电动机的驱动电源由变频脉冲信号源、脉冲分配器及脉冲放大器组成,由此驱动电源向电机绕组提供脉冲电流。步进电动机的运行性能决定于电机与驱动电源间的良好配合。
步进电机的优点是没有累积误差,结构简单,使用维修方便,制造成本低,步进电动机带动负载惯量的能力大,适用于中小型机床和速度精度要求不高的地方,缺点是效率较低,发热大,有时会“失步”。