① 超声检测原理是什么
超声波是频率高于20千赫的机械波。在超声探伤中常用的频率为0.5~10兆赫。这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射、折射和波形转换。这种现象可被用来进行超声波探伤,最常用的是脉冲反射法,探伤时,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制成的探测元件),探头发出的超声波脉冲通过声耦合介质(如机油或水等)进入材料并在其中传播,遇到缺陷后,部分反射能量沿原途径返回探头,探头又将其转变为电脉冲,经仪器放大而显示在示波管的荧光屏上。根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。除反射法外,还有用另一探头在工件另一侧接受信号的穿透法以及使用连续脉冲信号进行检测的连续法。利用超声法检测材料的物理特性时,还经常利用超声波在工件中的声速、衰减和共振等特性。
② 超声波探伤仪 的应用原理是什么
原理就是:
超声波在均匀的物质里面传递的速度是一定的,遇到有断裂面或者其他非均匀状态时候
会有回波反射,探伤仪根据反射大小和时间来判定
“伤”的大小和位置
③ 超声波无损检测的超声波检测(UT)
1、超声波检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
2、超声波工作的原理:主要是基于超声波在试件中的传播特性。a.声源产生超声波,采用一定的方式使超声波进入试件;b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
3、超声波检测的优点:a.适用于金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
4、超声波检测的局限性a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
5、超声检测的适用范围a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
④ 超声波探伤原理的探伤作用
超声波探伤作用
无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声探伤仪、磁粉探伤仪、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,建筑业市场主要采用此种方法进行检测。下面介绍一下超声波探伤在实际工作中的应用。接到探伤任务后,首先要了解图纸对焊接质量的技术要求。钢结构的验收标准是依据GB50205-95《钢结构工程施工及验收规范》来执行的。标准规定:对于图纸要求焊缝焊接质量等级为一级时评定等级为Ⅱ级时规范规定要求做100%超声波探伤;对于图纸要求焊缝焊接质量等级为二级时评定等级为Ⅲ级时规范规定要求做20%超声波探伤;对于图纸要求焊缝焊接质量等级为三级时不做超声波内部缺陷检查。在此值得注意的是超声波探伤用于全熔透焊缝,其探伤比例按每条焊缝长度的百分数计算,并且不小于200mm。对于局部探伤的焊缝如果发现有不允许的缺陷时,应在该缺陷两端的延伸部位增加探伤长度,增加长度不应小于该焊缝长度的10%且不应小于200mm,当仍有不允许的缺陷时,应对该焊缝进行100%的探伤检查,其次应该清楚探伤时机,碳素结构钢应在焊缝冷却到环境温度后、低合金结构钢在焊接完成24小时以后方可进行焊缝探伤检验。另外还应该知道待测工件母材厚度、接头型式及坡口型式。至今为止我在实际工作中接触到的要求探伤的绝大多数焊缝都是中板对接焊缝的接头型式,所以我下面主要就对焊缝探伤的操作做针对性的总结。一般地母材厚度在8-16mm之间,坡口型式有I型、单V型、X型等几种形式。在弄清楚以上这此东西后才可以进行探伤前的准备工作。在每次探伤操作前都必须利用标准试块(CSK-IA、CSK-ⅢA)校准仪器的综合性能,校准面板曲线,以保证探伤结果的准确性。1、探测面的修整:应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等,光洁度一般低于▽4。焊缝两侧探伤面的修整宽度一般为大于等于2KT+50mm,(K:探头K值,T:工件厚度)。一般的根据焊件母材选择K值为2.5探头。例如:待测工件母材厚度为10mm,那么就应在焊缝两侧各修磨100mm。2、耦合剂的选择应考虑到粘度、流动性、附着力、对工件表面无腐蚀、易清洗,而且经济,综合以上因素选择浆糊作为耦合剂。3、由于母材厚度较薄因此探测方向采用单面双侧进行。4、由于板厚小于20mm所以采用水平定位法来调节仪器的扫描速度。5、在探伤操作过程中采用粗探伤和精探伤。为了大概了解缺陷的有无和分布状态、定量、定位就是精探伤。使用锯齿形扫查、左右扫查、前后扫查、转角扫查、环绕扫查等几种扫查方式以便于发现各种不同的缺陷并且判断缺陷性质。6、对探测结果进行记录,如发现内部缺陷对其进行评定分析。焊接对头内部缺陷分级应符合现行国家标准GB11345-89《钢焊缝手工超声波探伤方法和探伤结果分级》的规定,来评判该焊否合格。如果发现有超标缺陷,向车间下达整改通知书,令其整改后进行复验直至合格。一般的焊缝中常见的缺陷有:气孔、夹渣、未焊透、未熔合和裂纹,至今还没有一个成熟的方法对缺陷的性质进行准确的评判,只是根据荧光屏上得到的缺陷波的形状和反射波高度的变化结合缺陷的位置和焊接工艺对缺陷进行综合估判。对于内部缺陷的性质的估判以及缺陷的产生的原因和防止措施大体总结了以下几点:1、气孔:单个气孔回波高度低,波形为单缝,较稳定。从各个方向探测,反射波大体相同,但稍一动探头就消失,密集气孔会出现一簇反射波,波高随气孔大小而不同,当探头作定点转动时,会出现此起彼落的现象。产生这类缺陷的原因主要是焊材未按规定温度烘干,焊条药皮变质脱落、焊芯锈蚀,焊丝清理不干净,手工焊时电流过大,电弧过长;埋弧焊时电压过高或网络电压波动太大;气体保护焊时保护气体纯度低等。如果焊缝中存在着气孔,既破坏了焊缝金属的致密性,又使得焊缝有效截面积减少,降低了机械性能,特别是存链状气孔时,对弯曲和冲击韧性会有比较明显降低。防止这类缺陷防止的措施有:不使用药皮开裂、剥落、变质及焊芯锈蚀的焊条,生锈的焊丝必须除锈后才能使用。所用焊接材料应按规定温度烘干,坡口及其两侧清理干净,并要选用合适的焊接电流、电弧电压和焊接速度等。2、夹渣:点状夹渣回波信号与点状气孔相似,条状夹渣回波信号多呈锯齿状波幅不高,波形多呈树枝状,主峰边上有小峰,探头平移波幅有变动,从各个方向探测时反射波幅不相同。这类缺陷产生的原因有:焊接电流过小,速度过快,熔渣来不及浮起,被焊边缘和各层焊缝清理不干净,其本金属和焊接材料化学成分不当,含硫、磷较多等。防止措施有:正确选用焊接电流,焊接件的坡口角度不要太小,焊前必须把坡口清理干净,多层焊时必须层层清除焊渣;并合理选择运条角度焊接速度等。3、未焊透:反射率高,波幅也较高,探头平移时,波形较稳定,在焊缝两侧探伤时均能得到大致相同的反射波幅。这类缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险性缺陷。超声波探伤在无损检测焊接质量中的作用其产生原因一般是:坡口纯边间隙太小,焊接电流太小或运条速度过快,坡口角度小,运条角度不对以及电弧偏吹等。防止措施有:合理选用坡口型式、装配间隙和采用正确的焊接工艺等。4、未熔合:探头平移时,波形较稳定,两侧探测时,反射波幅不同,有时只能从一侧探到。其产生的原因:坡口不干净,焊速太快,电流过小或过大,焊条角度不对,电弧偏吹等。防止措施:正确选用坡口和电流,坡口清理干净,正确操作防止焊偏等。5、裂纹:回波高度较大,波幅宽,会出现多峰,探头平移时反射波连续出现波幅有变动,探头转时,波峰有上下错动现象。裂纹是一种危险性最大的缺陷,它除降低焊接接头的强度外,还因裂纹的末端呈尖销的缺口,焊件承载后,引起应力集中,成为结构断裂的起源。裂纹分为热裂纹、冷裂纹和再热裂纹三种。热裂纹产生的原因是:焊接时熔池的冷却速度很快,造成偏析;焊缝受热不均匀产生拉应力。防止措施:限制母材和焊接材料中易偏析元素和有害杂质的含量,主要限制硫含量,提高锰含量;提高焊条或焊剂的碱度,以降低杂质含量,改善偏析程度;改进焊接结构形式,采用合理的焊接顺序,提高焊缝收缩时的自由度。冷裂纹产生的原因:被焊材料淬透性较大在冷却过程中受到人的焊接拉力作用时易裂开;焊接时冷却速度很快氢来不及逸出而残留在焊缝中,氢原子结合成氢分子,以气体状态进到金属的细微孔隙中,并造成很大的压力,使局部金属产生很大的压力而形成冷裂纹;焊接应力拉应力并与氢的析集中和淬火脆化同时发生时易形成冷裂纹。防止措施:焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解能在足够的温度区间内进行,避免淬硬组织的产生,同时有减少焊接应力的作用;焊接后及时进行低温退火,去氢处理,消除焊接时产生的应力,并使氢及时扩散到外界去;选用低氢型焊条和碱性焊剂或奥氏体不锈钢焊条焊丝等,焊材按规定烘干,并严格清理坡口;加强焊接时的保护和被焊处表面的清理,避免氢的侵入;选用合理的焊接规范,采用合理的装焊顺序,以改善焊件的应力状态。
⑤ 超声波探伤仪原理技术的其他
4.超声波探伤与X射线探伤相比较有何优的缺点?
答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探 伤适合于厚度较大的零件检验。
5、超声波探伤的主要特性有哪些?
答:(1)超声波在介质中传播时,在不同质界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等于或大于超声波波长时,则超声波在缺陷上反射回来,探伤仪可将反射波显示出来;如缺陷的尺寸甚至小于波长时,声波将绕过缺陷而不能反射;
(2)波声的方向性好,频率越高,方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。
(3)超声波的传播能量大,如频率为1MHZ(100赫兹)的超生波所传播的能量,相当于振幅相同而频率为1000HZ(赫兹)的声波的100万倍。
6、超生波探伤板厚14毫米时,距离波幅曲线上三条主要曲线的关系怎样?
答:测长线 Ф1 х 6 -12dB
定量线 Ф1 х 6 -6dB
判度线 Ф1 х 6 -2dB
7、用超生波探伤时,底波消失可能是什么原因造成的?
答:(1)近表表大缺陷;(2)吸收性缺陷;(3)倾斜大缺陷;(4)氧化皮与钢板结合不好。
8、简述超生波探伤中,超生波在介质中传播时引起衰减的原因是什么?
答:(1)超声波的扩散传播距离增加,波束截面愈来愈大,单位面积上的能量减少。
(2)材质衰减一是介质粘滞性引起的吸收;二是介质界面杂乱反射引起的散射。
9、CSK-ⅡA试块的主要作用是什么?
答:(1)校验灵敏度;(2)校准扫描线性。
10、用超声波对饼形大锻件探伤,如果用底波调节探伤起始灵敏度对工作底面有何要求?
答:(1)底面必须平行于探伤面;
(2)底面必须平整并且有一定的光洁度。
11.超声波探伤选择探头K值有哪三条原则?
答:(1)声束扫查到整个焊缝截面;
(2)声束尽量垂直于主要缺陷;
(3)有足够的灵敏度。
12、超声波探伤仪主要有哪几部分组成?
答:主要有电路同步电路、发电路、接收电路、水平扫描电路、显示器和电源等部份组成。
13、发射电路的主要作用是什么?
答:由同步电路输入的同步脉冲信号,触发发射电路工作,产生高频电脉冲信号激励晶片,产生高频振动,并在介质内产生超声波。
14、超声波探伤中,晶片表面和被探工件表面之间使用耦合剂的原因是什么?
答:晶片表面和被检工件表面之间的空气间隙,会使超声波完全反射,造成探伤结果不准确和无法探伤。
15、JB1150-73标准中规定的判别缺陷的三种情况是什么?
答:(1)无底波只有缺陷的多次反射波。
(2)无底波只有多个紊乱的缺陷波。
(3)缺陷波和底波同时存在。
16、JB1150-73标准中规定的距离――波幅曲线的用途是什么?
答:距离――波幅曲线主要用于判定缺陷大小,给验收标准提供依据它是由判废线、定量线、测长线三条曲线组成;
判废线――判定缺陷的最大允许当量;
定量线――判定缺陷的大小、长度的控制线;
测长线――探伤起始灵敏度控制线。
17、什么是超声场?
答:充满超声场能量的空间叫超声场。
18、反映超声场特征的主要参数是什么?
答:反映超声场特征的重要物理量有声强、声压声阻抗、声束扩散角、近场和远场区。
19、探伤仪最重要的性能指标是什么?
答:分辨力、动态范围、水平线性、垂直线性、灵敏度、信噪比。
20、超声波探伤仪近显示方式可分几种?
答:(1)A型显示示波屏横坐标代表超声波传递播时间(或距离),纵坐标代表反射回波的高度;(2)B型显示示波屏横坐标代表超声波传递播时间(或距离),这类显示得到的是探头扫查深度方向的断面图;(3)C型显示仪器示波屏代表被检工件的投影面,这种显示能绘出缺陷的水平投影位置,但不能给出缺陷的埋藏深度。
21、超声波探头的主要作用是什么?
答:1、探头是一个电声换能器,并能将返回来的声波转换成电脉冲;2、控制超声波的传播方向和能量集中的程度,当改变探 头入射 角或改变超声波的扩散角时,可使声波的主要能量按不同的角度射入介质内部或改变声波的指向性,提高分辨率;3、实现波型转换;4、控制工作频率;适用于不同的工作条件。
22、为什么要加强超波探伤合录和报告工作?
答:任何工件经过超声波探伤后,都必须出据检验报告以作为该工作质量好坏的凭证,一份正确的探伤报告,除建立可靠的探测方法和结果外,很大程度上取决于原始记录和最后出据的探伤报告是非常重要的,如果我们检查了工件不作记录也不出报告,那么探伤检查就毫无意义。
23、无损检测有哪些应用
应用时机:设计阶段;制造过程;成品检验;在役检查。
应用对象:各类材料(金属、非金属等);各种工件(焊接件、锻件、铸件等);各种工程(道路建设、水坝建设、桥梁建设、机场建设等)。
24、超声波焊缝探伤时为缺陷定位仪器时间扫描线的调整有哪几种方法?
答:有水平定位仪、垂直定位、声程定位三种方法
25、在超声波探伤中把焊缝中的缺陷分几类?怎样进行分类?
答:在焊缝超声波探伤中一般把焊缝中的缺陷 分成三类:点状缺陷、线状缺陷、面状缺陷。
在分类中把长度小于10mm的缺陷叫做点状缺陷;一般不测长,小于10mm的缺陷按5mm计。把长度大于10mm的缺陷叫线状缺陷。把长度大于10mm高度大于3mm的缺陷叫面状缺陷。
26、超声波试块的作用是什么?
答:超声波试块的作用是校验仪器和探头的性能,确定探伤起始灵敏度,校准扫描线性。
27、什么是斜探头折射角β的正确值?
答:斜探头折射角的正确值称为K值,它等于斜探头λ射点至反射点的水平距离和相应深度的比值。
28、当局部无损探伤检查的焊缝中发现有不允许的缺陷时如何办?
答:应在缺陷的延长方向或可疑部位作补充射线探伤。补充检查后对焊缝质量仍然有怀疑对该焊缝应全部探伤。
29、超声波探伤仪中同步信号发生器的主要作用是什么?它主要控制哪二部分电路工作?
答:同步电路产生同步脉冲信号,用以触发仪器各部分电路同时协调工作,它主要控制同步发射和同步扫描二部分电路。
30、无损检测的目的?
答:1、改进制造工艺;2、降低制造成本;3、提高产品的可能性;4、保证设备的安全运行。
31.超探仪的作用及主要应用行业
超探仪是一种便携式工业无损探伤仪器,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(焊缝、裂纹、夹杂、折叠、气孔、砂眼等)的检测、定位、评估和诊断。既可以用于实验室,也可以用于工程现场。本仪器能够广泛地应用在制造业、钢铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。它是无损检测行业的必备仪器。 编号 应用行业 1 电力 2 锅炉与压力容器 3 机械 4 钢铁工业 5 钢结构 6 石油 7 化工 8 铁路 9 航天航空 10 船舶 11 管道 12 高校 13 永磁 14 科研院所 15 军工 16 陶瓷 32.有关超声波探伤的国家标准和行业标准 超声波探伤国家标准和行业标准有:
1、QB/T 无损检测术语 超声检测
2、JB/T 10061-1999 A型脉冲反射式超声探伤仪通用技术条件
3、JJG 746-91 超声探伤仪 中华人民共和国国家计量检定规程 33.斜探头K值与角度的对应关系 NO. K值 对应角度 1 K1 对应45度 2 K1.5 对应56.3度 3 K2 对应63.4度 4 K2.5 对应68.2度 5 K3 对应71.6度 34. 焊缝探伤超声波探头的选择方案参考 编号 被测工件厚度 选择探头和斜率 选择探头和斜率 1 4—5mm 6×6 K3 不锈钢:1.25MHz
铸铁:0.5—2.5 MHz
普通钢:5MHz 2 6—8mm 8×8 K3 3 9—10mm 9×9 K3 4 11—12mm 9×9 K2.5 5 13—16 mm 9×9 K2 6 17—25 mm 13×13 K2 7 26—30 mm 13×13 K2.5 8 31—46 mm 13×13 K1.5 9 47—120 mm 13×13( K2—K1) 10 121—400 mm 18×18 ( K2—K1)
20×20 ( K2—K1) 注:以上方案仅作参考,各企业可视具体情况稍作改动
35.探头型号表
注:下表所列探头型号仅供探伤时参考 产品名称 频率(MHZ) 晶片面积(mm2) 说明 直探头(硬保护膜) 0.5~10 Φ8 Φ10 Φ14 Φ20 Φ24Φ30 直探头(软保护膜) 0.5~5 Φ10 Φ14 Φ20 Φ24 双晶片直探头 2.5~5 10×12×2Φ14×2Φ20×2 F5 F10 F15 F20 F30 斜探头 1~5 9×9 8×8 10×12 Φ14
12×15 14×16 13×13Φ20 30o40o50oK1 K1.5 K2 K2.5 K3 斜探头 1~5 18×18 双晶片斜探头 2.5 5 8×8×2 10×12×2 K1 K2 K3
F10 F20 F30 表面波探头 2.5 5 9×9 10×12 13×13 HB-50 回波探头 小角管探头 2.5 5 Φ14 Φ20 小角管探头 5 6×6 5×7 K1 K2 K2.5 K3 小角管探头 5 双晶曲面片 板波探头 1~5 20×20? 30×30 入射角由用户定 爬波探头 1~5 薄波探头 5 可检测5MM以下薄板 可变角探头 2.5 5 10×10 角度可变范围0o~90o 液浸式探头 1~5 Φ10 Φ12 Φ14 Φ20 充水探头 1~5 Φ14 Φ20 双晶充水探头 1~5 Φ14 Φ20 交距由用户定 液浸聚焦探头 1~5 Φ14 Φ20 点聚焦线聚焦 接触式聚焦直探头 2.5? 5 Φ14 Φ20 焦距10~60 接触式聚焦斜探头 2.5? 5 Φ14 Φ20 焦距10~60 常规测厚探头 1~5 小径管测厚探头 1~5 Φ8 中温测厚探头 1~5 上限300℃ 高温测厚探头 1~5 上限500℃ 深水探头 1~5 用于水下超声探伤 常用试验块
⑥ 超声波探伤仪的工作原理是什么
超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。数字式超声波探伤仪现在通常是对被测物体(比如工业材料、人体)发射超声,然后利用其反射、多普勒效应、透射等来获取被测物体内部的信息并经过处理形成图像。多普勒效应法是利用超声在遇到运动的物体时发生的多普勒频移效应来得出该物体的运动方向和速度等特性;透射法是通过分析超声穿透过被测物体之后的变化而得出物体的内部特性的,其应用目前还处于研制阶段;反射法超声波探伤仪这里主要介绍的是目前应用最多的通过反射法来获取物体内部特性信息的方法。反射法是基于超声在通过不同声阻抗组织界面时会发生较强反射的原理工作的,正如我们所知道,声波在从一种介质传播到另外一种介质的时候在两者之间的界面处会发生反射,而且介质之间的差别越大反射就会越大,所以我们可以对一个物体发射出穿透力强、能够直线传播的超声波, 超声波探伤仪 然后对反射回来的超声波进行接收并根据这些反射回来的超声波的先后、幅度等情况就可以判断出这个组织中含有的各种介质的大小、分布情况以及各种介质之间的对比差别程度等信息(其中反射回来的超声波的先后可以反映出反射界面离探测表面的距离,幅度则可以反映出介质的大小、对比差别程度等特性),超声波探伤仪从而判断出该被测物体是否有异常。 在这个过程中就涉及到很多方面的内容,包括超声波的产生、接收、信号转换和处理等。其中产生超声波的方法是通过电路产生激励电信号传给具有压电效应的晶体(比如石英、硫酸锂等),使其振动从而产生超声波;而接收反射回来的超声波的时候,这个压电晶体又会受到反射回来的声波的压力而产生电信号并传送给信号处理电路进行一系列的处理,超声波探伤仪最后形成图像供人们观察判断。这里根据图像处理方法(也就是将得到的信号转换成什么形式的图像)的种类又可以分为A型显示、M型显示、B型显示、C型显示、F型显示等。A型显示是将接收到的超声信号处理成波形图像,根据波形的形状可以看出被测物体里面是否有异常和缺陷在那里、有多大等, 超声波探伤仪主要用于工业检测;M型显示是将一条经过辉度处理的探测信息按时间顺序展开形成一维的"空间多点运动时序图",适于观察内部处于运动状态的物体,超声波探伤仪如运动的脏器、动脉血管等;B型显示是将并排很多条经过辉度处理的探测信息组合成的二维的、反映出被测物体内部断层切面的"解剖图像"(医院里使用的B超就是用这种原理做出来的),超声波探伤仪适于观察内部处于静态的物体;C型显示、F型显示现在用得比较少。超声波探伤仪检测不但可以做到非常准确,而且相对其他检测方法来说更为方便、快捷,也不会对检测对象和操作者产生危害,所以受到了人们越来越普遍的欢迎,有着非常广阔的发展前景。
⑦ 超声波探伤仪的基本原理是什么
第二章 超声波探伤的物理基础
第一节 基本知识
超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。振动的传播过程,称为波动。波动分为机械波和电磁波两大类。机械波是机械振动在弹性介质中的传播过程。超声波就是一种机械波。
机械波主要参数有波长、频率和波速。波长:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率 ,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。
由上述定义可得:C= f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。它们的区别在主要在于频率不同。频率在20~20000Hz之间的能引起人们听觉的机械波称为声波,频率低于20Hz的机械波称为次声波,频率高于20000Hz的机械波称为超声波。次声波、超声波不可闻。
超声探伤所用的频率一般在0.5~10MHz之间,对钢等金属材料的检验,常用的频率为1~5MHz。超声波波长很短,由此决定了超声波具有一些重要特性,使其能广泛用于无损探伤。
1. 方向性好:超声波是频率很高、波长很短的机械波,在无损探伤中使用的波长为毫米级;超声波象光波一样具有良好的方向性,可以定向发射,易于在被检材料中发现缺陷。
2. 能量高:由于能量(声强)与频率平方成正比,因此超声波的能量远大于一般声波的能量。
3. 能在界面上产生反射、折射和波型转换:超声波具有几何声学的上一些特点,如在介质中直线传播,遇界面产生反射、折射和波型转换等。
4. 穿透能力强:超声波在大多数介质中传播时,传播能量损失小,传播距离大,穿透能力强,在一些金属材料中其穿透能力可达数米。
http://ke..com/view/3576877.htm
⑧ 超声波探伤的基本原理
超声波在介质中传播时有多种波型,检验中最常用的为纵波、横波、表面波和板波。用纵波可探测金属铸锭、坯料、中厚板、大型锻件和形状比较简单的制件中所存在的夹杂物、裂缝、缩管、白点、分层等缺陷;用横波可探测管材中的周向和轴向裂缝、划伤、焊缝中的气孔、夹渣、裂缝、未焊透等缺陷;用表面波可探测形状简单的铸件上的表面缺陷;用板波可探测薄板中的缺陷。
⑨ 可视化激光超声波检测仪原理是什么
激光超声波可视化检测仪”由检测单元和激光单元组成,可简单地将超声波的传播过程可视化,并根据波形变化检查出被测物体内部或表面的损伤,通过计算机屏幕清晰、实时地观察。由于“激光超声波可视化检测仪”技术实现了无损检测的可视化,对物体内部存在的缺陷及损伤的识别变得非常容易,且可防止无损检测中经常发生的漏检和误判。
该技术适用于任何材料、任何形状物体的无损检测,小到电子元器件,大到飞机机身均可轻松应对,并可在恶劣环境下工作。使用“激光超声波可视化检测仪”对飞机机翼、火车车轴等高速运载工具部件以及发电设备、压力容器等产品进行定期检查,可以最大限度地延长其安全使用寿命,避免重大事故的发生。