❶ 加工中心有没有必要用对刀仪
成本高。手动对刀熟练的也比较快的,一般用刀柄,也可买单独的手动对刀仪。对深度要求不高的基本不需要对刀仪
❷ 对刀仪的使用方法
1)水平角测量
(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。
(2)设置A方向的水平度盘读数为0°00′00〃。
(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。
2)距离测量
(1)设置棱镜常数
测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。
❸ 数控车铣复合机床是怎么对刀的啊是不又用对刀仪 对刀仪怎么用的啊
就和加工中心刀库里的刀具对刀一样,一般是在设备使用之前,用对刀仪对好刀,然后输入机床。有些高级的车铣复合自配对刀仪,这就可以在机床上自动对刀了。
❹ 数控车床 电子对刀仪 谁会用啊! 有知道吗
据我了解,车床卡盘面前那个对刀仪在控制面板上有一个按钮,按一下,对刀仪就伸出来了,然后转换到手轮模式,把刀具移动到对刀仪面前,微动模式,让刀具在X和Z方向接触那个对刀块,刀具补偿值就自动输入机床了,然后下一把刀继续。
❺ 自动对刀仪怎么用
1、把对刀仪底座固定在工作台面上(工作台要清理干净,固定上后要把底座表面用千分表打平)。
2、把对刀仪固定到底座上(同样要用千分表把接触面打平)。
3、把线路走好,及用扎带扎好,不要有影响。
4、对刀仪接线。
5、安装一把平刀校正用,并测量出刀的长度(刀用端面比较平整的定位销或平时用的铣刀刀柄)。
6、把安装好的标准刀,装到主轴上。手动移动主轴到对刀仪上方,并慢慢调整X,Y轴使刀把大概在对刀仪中间,然后慢慢的下调Z轴,使其触发对刀仪信号。(快要触发信号时,使用最小倍率向下走,来回触发几次,最后定在触发位置,即刚刚触发为红色的位置,触发状态是对刀仪灯由绿色变为红色)。
7、记录下当前的机械坐标值。(即机械坐标X,Y在对刀仪中间,Z轴坐标在刚刚触发信号时的机械坐标)。
(5)机床对刀仪有什么用扩展阅读
对刀仪的工作原理如下:
1、机床各直线运动轴返回各自的机械参考点之后,机床坐标系和对刀仪固定坐标之间的相对位置关系就建立起了具体的数值。
2、不论是使用自动编程控制,还是手动控制方式操作对刀仪,当移动刀具沿所选定的某个轴,使刀尖(或动力回转刀具的外径)靠向且触动对刀仪上四面探针的对应平面,并通过挠性支撑杆摆动触发了高精度开关传感器后,开关会立即通知系统锁定该进给轴的运动。
因为数控系统是把这一信号作为高级信号来处理,所以动作的控制会极为迅速、准确。
3、由于数控机床直线进给轴上均装有进行位置环反馈的脉冲编码器,数控系统中也有记忆该进给轴实际位置的计数器。此时,系统只要读出该轴停止的准确位置,通过机床、对刀仪两者之间相对关系的自动换算,即可确定该轴刀具的刀尖(或直径)的初始刀具偏置值了。
换一个角度说,如把它放到机床坐标系中来衡量,即相当于确定了机床参考点距机床坐标系零点的距离,与该刀具测量点距机床坐标系零点的距离及两者之间的实际偏差值。
❻ 对刀仪是什么
对刀仪的核心部件是由一个高精度的开关(测头),一个高硬度、高耐磨的硬质合金四面体(对刀探针)和一个信号传输接口器组成(其他件略)。四面体探针是用于与刀具进行接触,并通过安装在其下的挠性支撑杆,把力传至高精度开关;开关所发出的通、断信号,通过信号传输接口器,传输到数控系统中进行刀具方向识别、运算、补偿、存取等。
数控机床的工作原理决定,当机床返回各自运动轴的机械参考点后,建立起来的是机床坐标系。该参考点一旦建立,相对机床零点而言,在机床坐标系各轴上的各个运动方向就有了数值上的实际意义。
对于安装了对刀仪的机床,对刀仪传感器距机床坐标系零点的各方向实际坐标值是一个固定值,需要通过参数设定的方法来精确确定,才能满足使用,否则数控系统将无法在机床坐标系和对刀仪固定坐标之间进行相互位置的数据换算。 当机床建立了“机床坐标系”和“对刀仪固定坐标”后(不同规格的对刀仪应设置不同的固定坐标值),对刀仪的工作原理如下:
1.机床各直线运动轴返回各自的机械参考点之后,机床坐标系和对刀仪固定坐标之间的相对位置关系就建立起了具体的数值。
2.不论是使用自动编程控制,还是手动控制方式操作对刀仪,当移动刀具沿所选定的某个轴,使刀尖(或动力回转刀具的外径)靠向且触动对刀仪上四面探针的对应平面,并通过挠性支撑杆摆动触发了高精度开关传感器后,开关会立即通知系统锁定该进给轴的运动。因为数控系统是把这一信号作为高级信号来处理,所以动作的控制会极为迅速、准确。
3.由于数控机床直线进给轴上均装有进行位置环反馈的脉冲编码器,数控系统中也有记忆该进给轴实际位置的计数器。此时,系统只要读出该轴停止的准确位置,通过机床、对刀仪两者之间相对关系的自动换算,即可确定该轴刀具的刀尖(或直径)的初始刀具偏置值了。换一个角度说,如把它放到机床坐标系中来衡量,即相当于确定了机床参考点距机床坐标系零点的距离,与该刀具测量点距机床坐标系零点的距离及两者之间的实际偏差值。
4.不论是工件切削后产生的刀具磨损、还是丝杠热伸长后出现的刀尖变动量,只要再进行一次对刀操作,数控系统就会自动把测得的新的刀具偏置值与其初始刀具偏置值进行比较计算,并将需要进行补偿的误差值自动补入刀补存储区中。当然,如果换了新的刀具,再对其重新进行对刀,所获得的偏置值就应该是该刀具新的初始刀具偏置值了。
❼ 数控测头和对刀仪有什么区别
前者一般是安装在机床上使用,测量数据由机床来计算,一般机床少,用这个比较方便。而对刀仪是一台测量机器,有高档与低档之分,机床多的时候,用这个比较统一
❽ 自动对刀仪怎么对刀
进行刀偏值的测量和补偿,可以有效地消除人工对刀产生的误差和效率低下的问题。不管是采用何种切削刀具(外圆、端面、螺纹、切槽、镬孔还是车削中心上的铣、钻削动力刀具),进行工件轮廓车削或铣削时,所有参与切削的刀尖点或刀具轴心线,都必须通过调整或补偿,使其精确地位于工件坐标系的同一理论点或轴心线上。对动力型回转刀具,除要测量并补偿刀具长度方向上的偏置值外,同时还要测量和补偿刀具直径方向上的偏置值(刀具以轴心线分界的两个半径的偏置值)。否则机床无法加工出尺寸正确的工件。 在没有安装对刀仪的机床上,每把刀具的偏置值,是对每把刀具进行仔细的试切后,对工件尺寸进行测量、计算、补偿(手工对刀)才可得出,费时费力,稍不小心还会报废工件。当更换刀具后,这项工作还要重新进行。因而,对刀是占用机床辅助时间最长的工作内容之一。
使用了对刀仪的机床,因对刀后能够自动设置好刀具对工件坐标系的偏置值,从而自动建立起工件坐标系。在这种情况下,加工程序中就无需再用“G50指令”来建立工件坐标系了。加工过程中刀具磨损或破损的自动监测、报警和补偿在没有安装对刀仪的机床上完成磨损值的补偿是很麻烦的,需要多次停下机床对工件的尺寸进行手工测量,还要将得到的磨损值手动修改刀补参数。安装对刀仪后,这个问题就简单多了,特别是安装HPPA型或HPMA型后更为方便。前者,只要根据刀具的磨损规律,干完一定数量的工件后停下机床,用对刀仪再进行一遍对刀的过程即可;后者,只要在程序中设定完成多少个加工循环后执行一次自动对刀,即可完成刀补工作。对于刀具破损报警或刀具磨损到一定程度后更换,是根据刀具允许的磨损量,设定一个“门槛值”,一旦对刀仪监测到的误差超过门槛值,即认为刀具已破损或超过了允许的磨损值,则机床自动报警停机,然后强制进行刀具的更换。
❾ 对刀仪都有什么作用
1、在±X、±Z及Y轴五个方向上测量和补偿刀偏值
在五个方向上进行刀偏值的测量和补偿,可以有效地消除人工对刀产生的误差和效率低下的问题。不管是采用何种切削刀具(外圆、端面、螺纹、切槽、镬孔还是车削中心上的铣、钻削动力刀具),进行工件轮廓车削或铣削时,所有参与切削的刀尖点或刀具轴心线,都必须通过调整或补偿,使其精确地位于工件坐标系的同一理论点或轴心线上。对动力型回转刀具,除要测量并补偿刀具长度方向上的偏置值外,同时还要测量和补偿刀具直径方向上的偏置值(刀具以轴心线分界的两个半径的偏置值)。否则机床无法加工出尺寸正确的工件。在没有安装对刀仪的机床上,每把刀具的偏置值,是对每把刀具进行仔细的试切后,对工件尺寸进行测量、计算、补偿(手工对刀)才可得出,费时费力,稍不小心还会报废工件。当更换刀具后,这项工作还要重新进行。因而,对刀是占用机床辅助时间最长的工作内容之一。
使用了对刀仪的机床,因对刀后能够自动设置好刀具对工件坐标系的偏置值,从而自动建立起工件坐标系。在这种情况下,加工程序中就无需再用“G50指令”来建立工件坐标系了。
2、加工过程中刀具磨损或破损的自动监测、报警和补偿
在没有安装对刀仪的机床上完成磨损值的补偿是很麻烦的,需要多次停下机床对工件的尺寸进行手工测量,还要将得到的磨损值手动修改刀补参数。安装对刀仪后,这个问题就简单多了,特别是安装HPPA型或HPMA型后更为方便。前者,只要根据刀具的磨损规律,干完一定数量的工件后停下机床,用对刀仪再进行一遍对刀的过程即可;后者,只要在程序中设定完成多少个加工循环后执行一次自动对刀,即可完成刀补工作。
对于刀具破损报警或刀具磨损到一定程度后更换,是根据刀具允许的磨损量,设定一个“门槛值”,一旦对刀仪监测到的误差超过门槛值,即认为刀具已破损或超过了允许的磨损值,则机床自动报警停机,然后强制进行刀具的更换。
3、机床热变形引起的刀偏值变动量的补偿
机床在工作循环过程中,产生的各种热量,导致机床的变形特别是丝杠的热伸长,使刀尖位置发生的变化,其结果是加工工件的尺寸精度会受到影响。在机床上安装对刀仪,上述问题可迎刃而解。无非是把这种由热变形产生的刀尖位置变化,视为刀具的磨损值,通过对刀仪来测量这种刀具偏置值,即可解决。
❿ 机内对刀仪都有哪些分类和应用范围
机内对刀方式是利用设置在机床工作台面上的测量装置(对刀仪),对刀库中的刀具按设定程序进行测量,然后与参考位置或标准刀进行比较得到刀具的长度或直径并自动更新到相应NC刀具参数表中。利用对刀仪进行机内对刀主要优点是精确、自动、实时,对操作者没有技术要求;缺点是需要单独配置对刀测头。
机内对刀仪的分类和应用范围:
机内对刀仪一般由传感器、信号接口以及对刀宏程序软件组成。按照传感器工作方式,机内对刀仪可以分为接触式对刀仪和激光对刀仪两类。其中接触式对刀仪自身的重复测量精度为1μm,又可以根据对刀仪信号传输方式的不同进一步细分为以下几类。
(1)电缆式对刀仪
电缆式对刀仪由于不需要对刀信号的转换部件而有最佳的单件性价比,因此在工作中最为常见,但是其缺点是有电缆线的拖曳,限制了该对其应用场合,大多适用于中小规格的三轴铣床/加工中心。
(2)红外线式对刀仪
红外线式对刀仪的信号传输范围一般在6m以内。其优点是采用编码的HDR( 高速数据传输) 红外技术,从而避免了电缆拖曳带来的不便和潜在的不安全因素,对刀后可以随时从工作台面取下不占用加工空间,并且可以多台机床共用1台对刀仪,从而可以降低综合成本。其缺点是在小型加工中心上使用时性价比不高。由其特点决定,该类对刀仪多用于中型机床以及大型的数控立车等。
(3)无线电式对刀仪
无线电式对刀仪的无线电信号传输范围一般在10m以上。其优点是无线电信号传输范围大并且不易受到环境影响,对刀后可以随时从工作台面取下不占用加工空间,并且可以多台机床共用1台对刀仪,从而可以降低综合成本。该类对刀仪多用于大型/重型/机床。
(4)激光对刀仪
该产品的基本原理为采用聚焦激光光束为触发媒介,当激光光束被旋转的刀具遮蔽时产生触发信号。激光对刀仪采用非接触测量,在对刀时没有接触力,可对极细小的刀具进行测量而不用担心由于接触力导致细小刀具折损,如LTS35.60可以测量的刀具直径可小至0.008mm,自身重复测量精度达到0.2μm。同时,由于测量时,刀具以加工速度高速旋转,所以测量状态几乎完全等同于实际加工状态,提高了对刀的实用精度。由于采用激光技术,该对刀仪可以对刀具外形进行扫描而测量刀具的轮廓,并可以对多刃刀具的单个刀刃进行破损监测。其主要缺点是结构复杂,需要额外高质量气源对内部结构进行保护,造价较高,主要适用于高速加工中心。