❶ 凯恩帝6140数控车床如何清零我是处学者详细点比较好,谢谢!
加工件数:当程序执行到M30或M20时,加工件数+1。如想清零,同时按键【CAN】键及【DEL】键。
使用KND系统时,推荐安装机械零点。当机床安装机械零点时,对刀方法如下:
每把刀独立设置,都有刀偏值。
1.对刀过程
首先,返回参考点。选择刀具。
(1)用手动方式,沿A表面切削,在Z轴不动的情况下沿X轴释放刀具,并且停止主轴旋转,测量A表面与工件坐标系零点之间的距离"β",并且将所测得的值设到一偏置号中,该偏置号=要设偏置量的偏置号+100。
(2)用手动方式沿B表面切削,在X轴不动的情况下,沿Z释放刀具,并且停止主轴旋转,测量距离"α",并将它设定到第(3)步中解释的偏置号中。
例如:为了将偏置量设到偏置号03的偏置单元中,就须向偏置号为103的偏置单元中设定"α"和"β"。
(3)手动换刀,重复(1),(2)设置需要设置的刀具。当程序第一条移动指令为绝对编程时,并且无G50设置时,以上设置完成后,退刀到任意点都可启动程序进行加工。加工过程中,如果按〖复位〗或急停使机床停止时,一般情况下,需返回参考点后,再
次启动。
加工完毕后,再次开机后,返回参考点后无论是否移动或不移动轴,都可直接启动程序。
此种方式设置的刀偏,在更换刀具时,仅更换的刀具重新设置刀偏值。未更换的刀具不必重新设置。
2.加工尺寸调整
加工时,有误差时,调整方法如下,设置需要调整刀具相应偏置号的刀补值。
U+调整量:少进,使尺寸(直径)加大(向正方向偏移)。
-调整量:多进,使尺寸(直径)减小(向负方向偏移)。
W+调整量:使尺寸向右偏移,使尺寸加长(向正方向偏移)。
-调整量:使尺寸向左偏移,使尺寸变短(向负方向偏移)。
例:1号刀输入刀补测量值后,加工后,测量工件的实际加工尺寸比要求的尺寸在X轴(直径)上大了0.02,在1号刀的偏置号输入U-0.02。
一般来说,对X轴,凡是加工出的工件尺寸(直径)比要求尺寸大时,输入负的增量刀
补值。凡是加工出的工件尺寸(直径)比要求尺寸小时,输入正的增量刀补值。一般来说,对Z轴,凡是加工出的工件尺寸比要求尺寸长时,输入负的增量刀补值。凡是加工出的工件尺寸比要求尺寸短时,输入正的增量刀补值。
通过检索的方法调出需要的程序(也就改变了程序指针),而对其进行编辑或执行,此操作称为程序检索。
(1)检索方法
(A)选择方式(编辑或自动方式)
(B)按〖程序〗软体键,显示程序画面。
(C)按地址O;
(D)键入要检索的程序号。
(E)按光标键↓;
(F)检索结束时,在LCD画面显示检索出的程序并在画面的右上部显示已检索的程序号。
(2)扫描法
(A)选择方式(编辑或自动方式)
(B)按[程序]软体键
(C)按地址O
(D)按光标键↓键。编辑方式时,反复按O,光标键↓键,可逐个显示存入的程序。
❷ 数控机床中零点偏移是什么意思零点偏移的作用是什么为什么会有零点偏移(零点偏移是如何产生的)
零点偏置是数控系统的一种特性,即允许把数控测量系统的原点在相对机床基准的规定范围内移动,而永久原点的位置被存贮在数控系统中。因此,当不用 G92 指令设定工件坐标系时可以用 G54 一 G59 指令设定六个工件坐标系即通过设定机床所特有的六个坐标系原点(即工件坐标系 1 --6 的原点) 在机床坐标系中的坐标值.(即工件零点偏移值)。该值可用 MDI 方式输人相应项中。
对刀方法:
1、试切法对刀
试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。
工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。
例如,2#刀刀架在X为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为
180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数刀长中的X与Z中,在程序中使用T0202就可以成功建立出工件坐标系。
事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。
2、对刀仪自动对刀
现在很多车床上都装备了对刀仪,使用对刀仪对刀可免去测量时产生的误差,大大提高对刀精度。由于使用对刀仪可以自动计算各把刀的刀长与刀宽的差值,并将其存入系统中,在加工另外的零件的时候就只需要对标准刀,这样就大大节约了时间。需要注意的是使用对刀仪对刀一般都设有标准刀具,在对刀的时候先对标准刀。
下面以采用FANUC 0T系统的日本WASINO
LJ-10MC车削中心为例介绍对刀仪工作原理及使用方法。刀尖随刀架向已设定好位置的对刀仪位置检测点移动并与之接触,直到内部电路接通发出电信号(通常我们可以听到嘀嘀声并且有指示灯显示)。在2#刀尖接触到a点时将刀具所在点的X坐标存入到图2所示G02的X中,将刀尖接触到b点时刀具所在点的Z坐标存入到G02的Z中。其他刀具的对刀按照相同的方法操作。
事实上,在上一步的操作中只对好了X的零点以及该刀具相对于标准刀在X方向与Z方向的差值,在更换工件加工时再对Z零点即可。由于对刀仪在机械坐标系中的位置总是一定的,所以在更换工件后,只需要用标准刀对Z坐标原点就可以了。操作时提起Z轴功能测量按钮“Z-axis shift measure”面。
手动移动刀架的X、Z轴,使标准刀具接近工件Z向的右端面,试切工件端面,按下“POSITION
RECORDER”按钮,系统会自动记录刀具切削点在工件坐标系中Z向的位置,并将其他刀具与标准刀在Z方向的差值与这个值相加从而得到相应刀具的Z原点,其数值显示在WORK
SHIFT工作画面上。
❸ 机械加工的误差类型及消除方法有哪些
在机械加工中,误差的产生是在所难免的,但我们可以采取相应的措施,尽量降低误差以满足加工精度的要求。可以采用的措施包括原始误差减少法、转移法、均分法、均化法及补偿法等。
原始误差减少法
在生产中,如果发现有误差的产生,并且查明了产生误差的原因,就可以直接对误差进行消除或减少,这种方法称为原始误差减少法。这是生产中应用最广泛的一种减少误差的基本方法。
举例来说,在加工细长轴的时候,由于工件的刚度极差,很容易产生弯曲和振动,从而对加工精度造成影响。这时候,可以采取较大主偏角的车刀,用大进给量和反向进给的切削方式直接减小原始误差。车刀的主偏角和进给量较大时,工件在强有力的拉伸作用下,振动会受到抑制;而反向进给由卡片一侧指向尾座,同样可以产生拉伸效果,再给尾座配上可伸缩的弹性顶尖,就不会压弯工件。
原始误差转移法
将工艺中影响加工精度的原始误差,转移到不影响加工精度,或对加工精度影响比较小的方向及零部件上,这就是原始误差转移法。这种方法利用不同加工方向和零部件对误差的敏感性不同,从而提高加工精度。
例如,转塔车床的转塔刀架在工作时需要经常地旋转,因此如何保持转位精度成为了一个难题。如果转塔刀架外圆车刀切削基面也想卧式车床那样在水平面内,那么转塔的转位误差就处在了敏感方向,对加工精度影响较大。而如果我们采用立刀安装法,将刀刃的切削基面放在垂直面内,就可以把转位误差转移到不敏感的方向,弱化了其对加工精度的影响。
原始误差均分法
当定位误差较大时,可以根据原始误差大小,把工件均分为若干组,然后对各组分别进行调整加工。这种方法称为原始误差均分法。
有时候,某一道工序本身并没有太大问题,但由于其上一道工序半成品精度达不到要求,导致这道工序出现了较大的定位误差,从而引起了加工超差。这时候就应该使用原始误差均分法,将半成品按误差大小分成若干组,每组的误差就缩小为原来的组数分之一。对各组半成品分别调整刀具与工件的相对位置,或者采用合适的定位元件,这样就可以在不改变上道工序加工精度的前提下,有效缩小整批工件的尺寸分散范围。
原始误差均化法
利用零件与零件之间有密切联系的表面相互比较,从对比中找到差异,然后进行相互修正或互为基准加工,使工件被加工表面的误差不断缩小和均分,这就是原始误差均化法。这种方法适用于那些对加工精度要求很高的零件。
加工涡轮时,影响精度的一个关键因素就是机床母涡轮的累计误差。我们可以在工件每次切削之后,将其相对于机床母涡轮转动一个角度,再进行下一次切削。这样就使工件中的误差每次切削都重新分布,从而不会形成积累误差,是加工精度得到了保证。
原始误差补偿法
加工中,已经发现了原始误差,我们可以认为的制造出另一种新的、相反方向的误差,用以抵消原先的原始误差,这种方法就是原始误差补偿法。它可以视为是一种“以毒攻毒”的消除误差方法。
在认为创造新误差的时候,应尽量使其与原始误差大小相等,方向相反,这样才能够实现减小误差、提高精度的目的。这种操作一般来说是比较简便的。某些情况下,原始误差是一个变化的值,这就需要用于补偿的误差也是一个变化的值。可以通过在线检测、在线误差补偿;偶件自动配磨以及积极控制起决定作用的误差因素来实现积极控制的变量误差补偿。
来源:对钩网
❹ gsk980td机床坐标不回机械零点怎么清零
不知道你的广数980系统的机床是那个厂家生产的,有没有限位块,有的话,在参数里面把行程改到最大,回复出厂参数回零,不过国产的系统一般不需要开机回零的!
❺ 数控机床的误差分析及补偿方法
数控机床的误差分析及补偿方法
数控机床的精度是机床性能的一项重要指标,它是影响工件精度的重要因素。那误差的差源有哪些呢?补偿的方法是什么?我为你解答如下!
数控机床的精度可分为静态精度和动态精度。静态精度是在不切削的状态下进行检测,它包括机床的几何精度和定位精度两项内容,反映的是机床的原始精度。而动态精度是指机床在实际切削加工条件下加工的工件所达到的精度。
机床精度的高低是以误差的大小来衡量的。数控机床的生产者与使用者对数控机床精度要求的侧重点不同,机床生产者要保证工件的加工精度是很困难的,一般只能保证机床出厂时的原始制造精度。而机床使用者只对数控机床的加工精度感兴趣,追求的是工件加工后的成形精度。
数控机床误差源分析
根据对加工精度的影响情况,可将影响数控机床加工精度的误差源分为以下几类。
1)机床的原始制造精度产生的误差。
2)机床的控制系统性能产生的'误差。
3)热变形带来的误差。
4)切削力产生的“让刀”误差。
5)机床的振动误差。
6)检测系统的测量误差。
7)外界干扰引起的随机误差。
8)其他误差。
误差补偿方法
提高数控机床精度有两条途径:其一是误差预防;其二是误差补偿。误差预防也称为精度设计,是试图通过设计和制造途径消除可能的误差源。单纯采用误差预防的方法来提高机床的加工精度是十分困难的,而必须辅以误差补偿的策略。
误差补偿一般是采用“误差建模-检测-补偿”的方法来抵消既存的误差。误差补偿的类型按其特征可分为实时与非实时误差补偿、硬件补偿与软件补偿和静态补偿与动态补偿。
1)实时与非实时误差补偿
如数控机床的闭环位置反馈控制系统,就采用了实时误差补偿技术。非实时误差补偿其误差的检测与补偿是分离的。一般来说,非实时误差补偿只能补偿系统误差部分,实时误差补偿不仅补偿系统误差,而且还能补偿相当大的一部分随机误差。静态误差都广泛采用非实时误差补偿技术,而热变形误差总是采用实时误差补偿。非实时误差补偿成本低,实时误差补偿成本高。只有制造超高精度机床时,才采用实时误差补偿技术。此外,在动态加工过程中,误差值迅速变化,而补偿总有时间滞后,实时补偿不可能补偿全部误差。
2)硬件补偿与软件补偿
在机床加工中误差补偿的实现都是靠改变切削刀刃与工件的相对位置来达到的。硬件补偿是采用机械的方法,来改变机床的加工刀具与工件的相对位置达到加工误差补偿的目的。与利用计算机的软件补偿相比,此方法显得十分笨拙,要改变补偿量,需改制凸轮、校正尺邓补偿装置,或至少得重新调整,很不方便。再者,这种方法对局部误差(短周期误差)一般无法补偿。
软件补偿是通过执行补偿指令来实现加工误差的补偿。由于软件补偿克服了硬件补偿的困难和缺点,逐渐取代了误差的硬件补偿方法。采用软件补偿方法,可在不对机床的机械部分做任何改变的情况下,使其总体精度和加工精度显著提高。软件补偿具有很好的柔性,用于补偿的误差模型参数或者补偿曲线可随机床加工的具体情况而改变,这样在机床的长期使用中,只要实时对机床进行误差标定,修改用于软件补偿的参数,就可使数控机床的加工精度多次再生。
3)静态补偿法与动态补偿法
误差的静态补偿是指数控机床在加工时,补偿量或补偿参数不变。它只能按预置的设定值进行补偿,而不能按实际情况改变补偿量或补偿参数。采用静态补偿方法只能补偿系统误差而不能补偿随机误差。动态误差补偿是指在切削加工条件下,能根据机床工况、环境条件和空间位置的变化来跟踪、调整补偿量或补偿参数,是一种反馈补偿方法。这种方法也叫综合动态误差补偿法,它不但能补偿机床系统误差,也可以补偿部分随机误差,能对几何误差、热误差和切削载荷误差进行综合补偿。动态补偿法可以获得较佳的补偿效果,是数控机床最有前途的误差补偿方法,但需要较高的技术水平和较高的附加成本。
相关阅读:数控机床齿隙补偿的原理
齿隙补偿也称反向间隙补偿。在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电机、伺服液压马达和步进电机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在运动反向时形成反向偏差。由于齿隙的存在,在开环系统中会造成进给运动的实际位移值滞后于指令值;当运动反向时,会出现反向死区,从而影响定位精度和加工精度。在闭环系统中,由于有反馈功能,滞后量虽可得到补偿,但反向时会使伺服系统产生振荡而不稳定。
为解决这一问题,可先采取调整和预紧的方法,减少间隙。而对于剩余间隙,在半闭环系统中可将其值测出,作为参数输入数控系统,则此后每当坐标轴接收到反向指令时,数控系统便调用间隙补偿程序,自动将间隙补偿值加到由插补程序算出的位置增量命令中,以补偿间隙引起的失动量。这样控制电动机多走一段距离,这段距离等于间隙值,从而补偿了间隙误差。需要注意的是,对全闭环数控系统不能采用以上补偿方法(通常数控系统要求将间隙值设为零),因此必须从机械上减小或消除这种间隙。有些数控系统具有全闭环反转间隙附加脉冲补偿,以减小这种误差对全闭环稳定性的影响。也就是说,当工作台反向运动时,对伺服系统施加一定宽度和高度的脉冲电压(可由参数设定),以补偿间隙误差。
;