1. 蝙蝠怎样发出超声波
蝙蝠头部的口鼻部上长着被称作“鼻状叶”的结构,在周围还有很复杂的特殊皮肤皱褶,这是一种具有发射超声波功能的装置,能连续不断地发出高频率超声波。
因为蝙蝠是靠气流运动引起声带的振动而发声的。蝙蝠能发出频率高于2万赫兹的超声波,人耳对这种频率的声音只能望尘莫及。人类听到的声波频率约在16~2万赫兹的范围内。常看见倒挂在树枝上的蝙蝠,不停地转动着嘴和鼻子。
其实,它每秒钟在向周围发出10~20个信号,每个信号约包含50个声波振荡,这样信号中不会出现两种完全相同的频率。
(1)蝙蝠是怎么吐超声波的扩展阅读
蝙蝠濒危原因
1、栖息地破坏和破碎
栖息地面积的减少、栖息地空间结构的改变都可能导致种群数量下降
2、人为直接干扰因素
蝙蝠常栖息在洞穴、废矿井和树洞中,也可在房檐下、旧式教堂的尖阁和钟楼里。开矿、封闭旧矿井或往里倒垃圾、城市建设以及不适当的林地清理工作(砍伐蝙蝠用作栖处的死树),都会导致蝙蝠无栖身之处,引起大量死亡。
3、不正当捕杀
在热带地区,如关岛,大蝙蝠不仅供当地人食用,还出口到太平洋其他的岛屿。岛上的蝙蝠,尤其是那些独特的地域种和分布狭窄的种类受到很大威胁。蓄意地杀害也是一个问题,迷信使人们杀死蝙蝠,从而使蝙蝠的数量减少。
4、栖息地微气候变化
栖息地温度的变化对蝙蝠是至关重要的,特别是对哺乳后期的雌性蝙蝠和幼体蝙蝠,因为它们的体温调节能力很弱。
2. 蝙蝠怎样发出超声波
蝙蝠的喉咙在飞行中不断地发出高频率的尖叫声,然后通过嘴和鼻子发出去,这种超声波信号碰到任何物体时,都会被反射回来,再传到它的超常大耳廓的耳朵里。蝙蝠正是凭借着自己特有的声纳系统来发现目标和探测距离的,因此蝙蝠有“活雷达”之称。
蝙蝠什么都吃,包括果实、鱼类、花粉、甚至血。大部分蝙蝠在夜间飞行时捕食昆虫,每只蝙蝠都能辨别出自己发出的声波,这说明即使与其他蝙蝠一起捕食,它也不会被别的声波所干扰。
(2)蝙蝠是怎么吐超声波的扩展阅读:
同许多动物一样,一些蝙蝠的种类在自然界越来越少,濒于灭绝。用于消灭昆虫的毒剂和保护树木的药剂,能把蝙蝠在冬眠时杀死,许多错误的观念也使人类大批地捕杀它们,蝙蝠的生存环境越来越糟糕。
蝙蝠在维护自然界的生态平衡中起着很重要作用。食虫类蝙蝠能消灭蚊子、夜蛾、金龟子等害虫,有人统计过,一只蝙蝠一夜可捕食3000只以上的害虫。蝙蝠的粪便还是很好的肥料。经过加工的蝙蝠粪被称为“夜明砂”,是中药的一种。蝙蝠还是研究动物定向、定位及休眠的重要对象。
3. 蝙蝠靠什么发出超声波
蝙蝠一边飞,一边从嘴里发出超声波。
蝙蝠具有很强的飞行能力,同时也是多种人畜共患病毒的天然宿主,能够携带数十种病毒。蝙蝠与其能够飞行并进行夜间生活相适应,它们在生理机能上也发生了一系列重要变化。通常蝙蝠的视觉较差,而听觉则异常发达,在夜间或十分昏暗的环境中它们能够自由地飞翔和准确无误地捕捉食物。
蝙蝠可分为两个亚目,全世界共有16科185属962种,中国约7科30属120种。1996年世界自然保护联盟物种生存委员会(IUCN/SSC)出版的《1996年受胁动物红色名录》中公布了蝙蝠(翼手目)动物受胁状况。
指出处于极危险(CR)种类有26种,濒危(EN)有32种,易危(VN)有173种。许多蝙蝠在自然界越来越少,趋于灭绝,严重的物种濒危局面令人深思。
4. 蝙蝠是怎样发出超声波的又是怎样接收超声波
蝙蝠用嘴巴发出超声波,用耳朵接收超声波。
一百多年前,科学家做了一次试验。在一间屋子里横七竖八地拉了许多绳子,绳子上系着许多铃铛。他们把蝙蝠的眼睛蒙上,让它在屋子里飞。蝙蝠飞了几个钟头,铃铛一个也没响,那么多的绳子,它一根也没碰着。
科学家又做了两次试验:一次把蝙蝠的耳朵塞上,一次把蝙蝠的嘴封住,让它在屋子里飞。蝙蝠就像没头苍蝇似的到处乱撞,挂在绳子上的铃铛响个不停。三次不同的试验证明,蝙蝠夜里飞行,靠的不是眼睛,它是用嘴和耳朵配合起来探路的。
科学家经过反复研究,终于揭开了蝙蝠能在夜里飞行的秘密。它一边飞,一边从嘴里发出一种声音。这种声音叫做超声波,人的耳朵是听不见的,蝙蝠的耳朵却能听见。
超声波像波浪一样向前推进,遇到障碍物就反射回来,传到蝙蝠的耳朵里,蝙蝠就立刻改变飞行的方向。
(4)蝙蝠是怎么吐超声波的扩展阅读
在诸多的现代武器及军械中,相当一部分是源自对动物的仿生。
1、蜜蜂与偏振定向器
蜜蜂采集花粉而不迷路,是因为头上有一对复眼,每只复眼由6300个单元组成,光线进入眼晶体后,通过晶锥到达含有感光色素的感光束。
感光色素分子对偏振光特别敏感,因而具有良好的定向功能。特别是在乌云蔽日的情况下,也能根据太阳方位的变化进行时间、方向的校正。科学家受益于蜜蜂偏振光定向本领,研制出偏振定向器用于飞机、舰船。
2、响尾蛇与热定位器
响尾蛇的视力几乎为零,但其鼻子上的颊窝器官具有热定位功能,对0.001摄氏度的温差都能感觉出来,且反应时间不超过0.1秒。
即使爬虫、小兽等在夜间入睡后,凭借它们身体所发出的热能,响尾蛇就能感知并敏捷地前往捕食。科学家根据响尾蛇这一奇特功能,研制出现代夜视仪、空对空响尾蛇导弹以及仿生红外探测器。
3、鸽子与预警雷达
鸽子的视网膜主要由外层的视锥体、中层的双极细胞、后层的神经细胞以及视顶盖构成,能对亮度、边缘、方向以及运动等发生特殊反应。
所以人们称鸽眼为“神目”。科学家通过模仿研制出鸽眼电子模型,用于预警雷达系统,提升了探测能力。
4、夜蛾与超声波报警器
夜蛾胸腹之间有一对叫作鼓膜器的特殊听觉器官,可以从很强的背景噪声中分辨出蝙蝠发出的超声波,其身上厚密的绒毛还能吸收蝙蝠发射的探测超声波,从而在天敌面前处于“隐身”状态。
科学家通过把夜蛾身上绒毛状的材料用于飞机、舰船等装备,大大减少了目标被雷达、红外线和超声波发现的概率。
5. 蝙蝠一边飞,一边从嘴里发出一种声音.这种声音叫做超声波是什么方法
回声是当声波碰到一个障碍物(如悬崖)时,它会弹回来,我们会再听到这个声音。这种反射回来的声音称为回声。在户外空旷的地方,回声比较模糊,因为声音的震动会向四处散开,能量会散失。而在一个密闭的空间里(如隧道),反射的声音不会跑掉,所以回声很大。
回声定位
蝙蝠会发出尖锐的叫声,再用灵敏的耳朵收集周围传来的回声。回声会告诉蝙蝠附近物体的位置和大小,以及物体是否在移动。这种技术称为回声定位法。它可以帮蝙蝠在黑暗中找到方向以及捕捉猎物(如飞行中的昆虫)。
蝙蝠尖锐的回声我们是听不到的,但蝙蝠发出的其他声音有些是我们能听得到的。
研究回声最好的地方是一片石墙(如悬崖)的附近。如果你面对悬崖大声叫,你的声音会传到悬崖再反射回来。如果声音是从悬崖的不同部分反射回来的,你就可以听到好几个回音,就好像有好几个人在回答你。
生物学研究
某些动物能通过口腔或鼻腔把从喉部产生的超声波发射出去,利用折回的声音来定向,这种空间定向的方法,称为回声定位。根据研究已知动物界小蝙蝠亚目的几乎所有种类、大蝙蝠亚目的果蝠属、鲸目的齿鲸类(即豚类)、鳍脚目的海豹和海狮、食虫目的马岛猬科、鼩鼱科的短尾鼩、南美的油鸟、东南亚的金丝燕及有些鱼类都具有回声定位的本领。它们的体内皆有完成回声定位的天然声呐系统。声纳主要由“声波发射器”、“回声接收机”和“距离指示器”构成。
蝙蝠回声定位
如“雷达飞兽”蝙蝠能在完全黑暗中,以极快的速度精确地飞翔,从不会同前方的物体相撞。如将它的耳蒙上,并把嘴堵上,则失去避免与物体相撞的本领。经高频脉冲检测装置测量后,证实蝙蝠在飞行时,喉内产生并能从通过口腔发出人耳听不到的超声波脉冲。
人类至多能听到频率为20千赫的声音,而有的蝙蝠能发出和听到100千赫的声音。当遇到食物或障碍物时,脉冲波会反射回来,蝙蝠用两耳接受物体的反射波,并据此确定该物体的位置,并可从两耳分别接受到回波间的差别,来辨别物体的远近、形状及性质;物体的大小则由回波中的波长区别出来。大部分蝙蝠能用舌头颤动发音,有些则发出尖的鸣叫声,还有一些能由鼻孔透出声音。它们都有助于蝙蝠确定回波的方向,来决定自己要前进,还是转弯。
蝙蝠在空中能利用超声波来“导航”,就能迅速准确捕捉飞虫。此外,某些海洋哺乳类能在水下发出频带很宽的声波,甚至高达30万赫。如齿鲸、海豚,能借助于附近陆地对声音的反射,用回声定位来测定方向,得知物体或海岸的位置。某些海豹、海狮也能发出水下超声波。
利用波在传播过程中有反射现象的原理探测物体方位和距离的方式叫“回声定位”。动物的“回声定位”是指动物通过发射声波,利用从物体反射回来的回波进行空间定向的方式,它有捕捉猎物和回避物体两种作用。
海豚和蝙蝠回声定位及进化研究
海豚和蝙蝠并没有多少相似之处,然而它们却有同一个超能力:都可以通过发出尖锐声音和监听回声来捕捉猎物。一项研究显示,该能力是它们各自通过相同的基因突变而形成的。这表明,即使差异很大的动物,也会通过相同的进化步骤,形成新特征。2010年,英国伦敦大学玛丽皇后学院的进化生物学家Stephen Rossiter和同事判定,蝙蝠和海豚中被称为压力素的特殊蛋白质有着相同的突变,会影响听力的敏感度。Rossiter的团队已经将研究扩展到整个基因组。他们对蝙蝠家族多个种类中的4种蝙蝠的基因组进行测序,其中两种蝙蝠使用回声定位,另两种不使用。
玛丽皇后学院的进化生物学家Joe Parker将蝙蝠的基因组测序结果与包括宽吻海豚在内的许多其他哺乳动物进行比较。他主要关注了所有蝙蝠、海豚和至少其他5种哺乳动物的2300种单拷贝基因。他评估了在蝙蝠和海豚中,每个基因和其对应基因有多相似。该分析表明,200种基因以同样的方式进行了独立改变。
人回声定位术
盲人的听力通常更加敏锐,有证据显示,经过培训,他们能利用听力解读回声、进而在脑中形成一系列详细形象,包括物体距离、甚至大小和密度等。
其原理是当盲人的舌头发出响亮的声音,声波撞到前方物体上后,回声会反馈到盲人的耳朵中,从而使他们能够分辨前方物体的大小、形状和距离,对于回声信息的处理可以让盲人“看见”前方的物体。大脑对这一回声信息的处理方式和正常人通过眼睛视物的处理方式有点类似,只不过学会回声定位法的盲人是通过回声在大脑中形成物体,而普通人是通过射入视网膜的光线在脑海中形成物体。
应用
回声可以用来测鱼群、潜水艇和沉到海底的船。有些船上装有回声测深器,这种仪器会把声波送到海里。而回声传回船上所花的时间,可以用来算出船下任何物体的形状和位置。它也可以用来画出海床的深度和轮廓。这种技术称为声纳,意思是声音的航行和测距。声纳是很灵敏的,它可以分辨一条大鱼和一群小鱼。
未来应用
研究表明手机可成为一种回声定位装置
2013年6月,瑞士洛桑联邦理工学院信号处理专家发现回声定位能使普通手机“看到”房