导航:首页 > 制冷设备 > 为什么有人会做超声波

为什么有人会做超声波

发布时间:2024-02-06 03:03:22

A. 超声波和次声波对人的好处和害处

一、超声波

1、好处:超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能。可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。

2、坏处:脉冲超声波在含有微米级小气泡的液体中传播时,可导致气泡收缩、膨胀以至猛烈爆炸,这种现象称为“空化现象”,靠近爆炸气泡附近的细胞会受到损伤。

二、次声波

1、好处:次声波有助于消除硬膜外麻醉患者的紧张情绪;次声波振动使神经元膜的电学特性发生改变,接着引起神经循环回路神经冲动传递次数发生改变,进而改变了从丘脑到大脑皮层循环回路神经活动的频率,可产生催眠作用。

2、坏处:当次声波与人的某个器官的固有频率相同时,会引起共振。如1-3Hz次声波可以使人产生恐惧心理。次声波的频率与人脑的固有频率(8-12Hz)接近时,会引起共振,刺激人的大脑,对人的心理及意识产生一定的影响,轻者感觉不适,注意力不集中,记忆力下降,思路不畅。

(1)为什么有人会做超声波扩展阅读:

超声波的用途:

1、超声波全息图像:在医疗领域,超声波常常用来透视人体,并形成二维图像。如今这项技术正在得到进一步改善,二维图像将变成三维全息图像。

2、“复明”眼镜:超声波另一个巨大用途,就是能让盲人“复明”。这借鉴了蝙蝠回声定位的原理。蝙蝠飞行时,不是靠视觉探路来捕捉猎物,相反它靠的是耳朵。

3、牵引光束

能量强大的超声波,照射物体能使之离地悬浮。实验证明,只要有足够的能量,靠超声波托举物体腾空并向不同方向移动,是完全可能的。这与许多科幻电影里出现的牵引光束非常类似。

4、高效钻头:超声波还可以用在地质勘探上。高功率的超声波振动具有强大能量,可以有效地压缩、挤压物质。在地质勘探上,它可以当“钻头”用,就像真实钻头一样,在地下挤压出一条通道。

B. 有关超声波的问题

具有回声定位能力的蝙蝠,能产生短促而频率高的声脉冲,这些声波遇到附近物体便反射回来。

人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自己身体的温度升高。

产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。

(2)为什么有人会做超声波扩展阅读:

超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞振荡、旋转、摩擦、从而产生细胞按摩的作用。

也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。

C. 超声波的作用及原理

超声波频率高、波长短,他可以像光那样沿直线传播,使得我们有可能向某已确定方向上发射超声波,声波是纵波,可以顺利地在人体组织里传播。 超声波遇到不同的介质交接面时会产生反射波.
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。

在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等

超声波的作用
玻璃零件.玻璃和陶瓷制品的除垢是件麻烦事,如果把这些物品放入清洗液中,再通入超声波,清洗液的剧烈振动冲击物品上的污垢,能够很快清洗干净.
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“声呐”判断飞行前方是昆虫,或是障碍物的。而雷达的质量有几十,几百,几千千克,,而在一些重要性能上的精确度.抗干扰能力等,蝙蝠远优与现代无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备,这是近几十年来发展起来的一门新学科,叫做仿生学.
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声呐”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
声呐与雷达的区别
声呐通过超声波
雷达通过无线电波
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热学的、电磁学的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。
超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。
超声波治疗的概念:
超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的

D. 超声波是谁发明的

自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。
1922年,德国出现了首例超声波治疗的发明专利;
1939年发表了有关超声波治疗取得临床效果的文献报道。
20世纪40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。念配橡
声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的一般上限(20000Hz),人们将这种听不见的声波叫做超声波。由于其频率高,因而具有许多特点:首先是能量集中,其波长比一般声波短得多,因而可以用来切削、焊接、钻孔等。再者由于它频率高,波长短,衍射不严重,具有良好的定向性,工业与医学上常用超声波进行超声探测。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,1MHz=10^6Hz,即每秒振卖清动100万次,可闻仔旁声的频率在20~20000Hz之间)。

E. 孕妇为什么要做超声波检测

超声波能够对一般胎儿发育情况、多胎妊娠、胎盘、胎儿和脐带定位,还可用超声波扫描出胎儿头颅的形状和大小,诊断无脑儿;也可从扫描图形诊断胎儿腹水、多囊肾、畸胎瘤等,还可诊断各类侏儒。诊断胎儿心脏异常与节律异常的准确率也很高,并可经胎盘给予治疗。

F. 医学超声成像原理

我总结一下医学超声成像的原理

超声波成像需要三个步骤:发射声波,接受反射声波,以及信号分析处理得到图像。

超声波探头是通过压电陶瓷换能器发射超声波,不同的探头能够发射的声波频率不同。医学超声波频率一般是2-13MHz,声波频率越高,衍射越弱,成像分别率越高;但与此同时,频率越高,声波衰减也越快,穿透深度就小。因此,我们在探测心脏的时候,只能用频率较低的声波,否则探测的深度不够,虽然成像效果差一些;而在探测颈动脉、股动脉等表皮下方的血管时,就用频率高的声波,成像好清晰许多。实验中,我们采用的心脏探头为2-4MHz,血管探头为10MHz。

接收反射波的依旧是同一个超声波探头,压电陶瓷换能器将声波信号转换成电信号,之后电脑上的系统进行信号处理成像。

B型超声波显示的是探头面向的组织切面的二维灰度图。我们知道确定二维灰度图上的每个点需要3个信息,横坐标、纵坐标和灰度。这些是怎么得到的呢?由于超声波在人体内接触到组织会反射,不同的组织声阻抗不同,根据接收到的回波反射率计算得到声阻抗,对应于图上的灰度(如血管壁的组织声阻抗差不多,在图像上的灰度就差不多,就能看出来是血管的形状)。假设探头是一维的,那么探头上每一个探针的位置就对应一个横坐标。纵坐标是由发射和接收声波的时间差决定的,假设声波在人体中传播速度相同,那么时间越长表示反射组织的位置越深。最后由得到的灰度图,可以看到组织轮廓,并可以进行测量,如血管直径,面积等等。

当然,具体的成像过程远远比这个复杂,因为B超是实时的,如何区分发射波、反射波、如何去除噪音,放大信号,信号处理非常复杂,我也不清楚。但以上简单的描述,已经足够我们大致了解成像的过程。

多普勒效应我们中学物理都学过,无论是发射者还是接收者相对声波传播介质运动,都会引起观察到的声波频率的变化。

利用多普勒效应测量血流速度如下图,探头发射声波的方向和血流方向的夹角为 \theta,发射声波频率为 f_0,反射声波频率为 f',多普勒频率也就是频移为f_D,声波在人体组织中传播速度为c,血流速度为v

则由多普勒频率可以计算得到血流速度,公式如下

它的推导过程主要就是套两次多普勒效应公式,发射时认为接收者(血液)相对声波介质(人体组织)运动,而回收时认为发射者(血液反射声波)相对介质运动。然后相加项近似两个频率不变得到分母的2f_0。

之前做彩超检查子宫,我就问给我检查的护士姐姐啥是彩色超声波,因为我发现无论是检查结果还是他们的显示屏都是黑乎乎的,完全不知道彩色在哪里。

彩超相比于B超,通过多普勒效应测量血流的速度,并在图像中通过着色来表出来。所以这个彩色并不是直接反应人体组织颜色的,颇令人失望。一般来讲,图像中红色表示血流方向是迎面而来,而蓝色表示血流方向是离你而去。同时,颜色越深表示血流速度越快。

脉冲多普勒的原理不太懂,网上查了一下彩色多普勒和脉冲多普勒的区别,大概是方法不太一样,也有各自的优缺点。实验时,我们通过脉冲多普勒得到血流速度的频谱,也就是血路速度随时间的变化图(波形图),不是人体组织的成像图。通过测量两个血流速度脉冲之间的水平距离(时间差),就可以计算得到心率,如果在彩色多普勒图像(B型超声图像也行)测量血管的直径,进而计算出血管的面积,再乘以血流速度的波形图一个周期内曲线下方的面积(积分),就可以得到血流量(一分钟内流过的血流体积)

下图就是我的颈动脉彩色多普勒成像(上部分),和脉冲多普勒成像(下部分),并且测量了血流速度的峰值、心率(2倍心率)、血管直径和血流量(VolFlow)等信息

总结起来,医学超声仪器的物理原理:用压电换能器发射和接收超声波,通过反射率、接收时间、探针位置得到组织轮廓成像,通过多普勒效应测量血流速度。B超成像是二维的灰度图,反应组织轮廓,彩超是二维灰度图上加了血流速度的信息,脉冲多普勒得到的是血流速度随时间的变化波形。

想起来一个有趣的地方,用脉冲多普勒的时候,仪器会发出跳动的声音,无论是测量血管还是心脏。我不知道这个声音,是我心跳或者血流脉冲声音的放大,还是仪器自带的声音,配合我心跳的跳动而播放。

一些自问自答 :

1.血流速度怎么测量:多普勒效应

2.血流量怎么得到:血管面积乘以血流速度的积分

3.心率怎么得到:脉冲多普勒中,两次血流量最大值的之间间隔为周期

4.心脏容积怎么得到:描迹自动求面积

5.血管面积怎么得到:描迹或者测量血管半径

6.心功能怎么得到:心收缩和心舒张的左心室心脏容量的比值

7.彩色多普勒和脉冲多普勒的区别:一个是二维成像图、一个是频谱

参考资料:

1. 维基网络:医学超声检查

相关文章

我写了几篇博客来介绍和记录我们的四级物理实验: 用医学超声仪器研究运动对人体血流分布的影响

① 为什么在校医院做大物四级实验

② 医学超声成像原理

③ 运动对血流分布的影响 实验设计

④ 运动对人体血流分布的影响 实验结果

G. 超声波对人体有什么作用

超声波的频率高至20000Hz以上猛含(每秒振动20000次以上),由于它的频率高,因此具有以下特点:(a)方向性好,几乎沿直线传播;(b)穿透能力强,能穿透许多电磁波不能穿透的物质;纤知唯(c)在媒质中传播时能产生巨大的作用力,可以用来为硬质材料做切割、凿孔等,也可以用来清洗和消毒等对于超声波的应用,我们比较熟悉的就是医院中常用的B超,它是把超声波射入人体,根据人体组织对超声波的传导和反射能力的变化来判断有无异常,如对人体脏器做病变检查、结石检查等,它具有对人体无损伤、简便迅速的优点.
次声又称亚声,是频率在20Hz以下的低频率波.许多自然灾害如地震、火山爆发、龙卷风等在发生前都会发出次声波.次声波对人体能够造成危害,引起头痛、呕吐、呼吸困难等症状.在20世纪30年代,美国一位物理学家做过实验:他把一台次声发生器带进剧场,开演后悄悄地打开,然后坐在自己的包厢内观察动静,只见坐在次声器四周的观众产生一种惶恐不安和迷惑不解的神情,并很快蔓延到整个剧场.次声波的特点是来源广、传播远、穿透力强科学家们利用它来预测台风、研究大气结构等.在军事上可以利用次声来侦察大气中的核爆炸、跟踪导弹等等.
1890年, 一艘名叫“马尔波罗号”帆船在从新西兰驶往英国的途中,突然神秘地失踪了. 20年后,人们在火地岛海岸边发现了它.奇怪的是:船上的开都原封未动.完好如初.船长航海日记的字迹仍然依稀可辨;就连那些死已多年的船员,也都“各在其位”,保持着当年在岗时的“姿势”;
1948年初,一艘荷兰货船在通过马六甲海峡时,一场风暴过后,全船海员莫明其妙地死光;在匈牙利鲍拉得利山洞入口, 3名旅游者齐刷刷地突然倒地,停止了呼吸......
上述惨案,引起了科学家们的普遍关注,其中不少人还对船员的遇难原因进行了长期的研究.就以本文开头的那桩惨案来说,船员们是怎么死的?是死于天火或是雷击的吗?不是,因为船上没有丝毫燃烧的痕迹;是死于海盗的刀下的吗?不!遇难者遗骸上看到死前打斗的迹象;是死于饥饿干渴的吗?也不是!船上当时贮存着足够的食物和淡水.至于前面提到的第二桩和第三桩惨案,是自杀还是他杀?死因何在?凶手是谁?检验的结果是:在所有遇难者身上,都没有找到任何伤痕,也不存在中毒迹象.显然,谋杀或者自杀之说已不成立.那么,是以及病一类心脑血管疾病的突然发作致死的吗?法医的解剖报告表明,死者生前个个都很健壮!
经过反复调查,终于弄清了制造上述惨案的“凶手”,是一种为人们所不很了解的次声的声波.次声波是一种每秒钟振动数很少,人耳听不到的声波.次声的声波频率很低,一般均在20兆赫以下,波长却很长,传播距离也很远.它比一般的声波、光波和无线电波都要传得远.例如,频率低于1赫的次声波,可以传到几千以至上万公里以外的地方.1960年,南美洲的智利发生大地震,地震时产生的次声波传遍了全世界的每一个角落!1961年,苏联在北极圈内进行了一次核爆炸,产生的次声波竟绕地球转了5圈之后才消失!
次声波具有极强的穿透力,不仅可以穿透大气、海水、土壤,而且还能穿透坚固的钢筋水泥构成的建筑物,甚至连坦克、军舰、潜艇和飞机都不在话下.次声穿透人体时,不仅能使人产生头晕、烦燥、耳鸣、恶心、心悸、视物模糊,吞咽困难、胃痛、肝功能失调、四肢麻木,而且还可能破坏大脑神经系统,造成大脑组织的重大损伤.次声波对心脏影响最为严重,最终可导致死亡.
为什么次声波能致人于死呢?
原来,人体内脏固有的振动频率和次声频率相近似(0.01~20赫),倘若外来的次声频率与体内脏的振动频率相似或相同,就会引起人体内脏的“共振”,从而使人产生上面提到的头晕、烦躁、耳鸣、恶心等等一系列症状.特别是当人的腹腔、胸腔等固有的振动频率与外来次声频率一致时,更易引起人体内脏的共振,使人体内脏受损而丧命.前面开头提到的发生在马六毁培甲海峡的那桩惨案,就是因为这艘货船在驶近该海峡时,恰遇上海上起了风暴.风暴与海浪摩擦,产生了次声波.次声波使人的心脏及其它内脏剧烈抖动、狂跳,以致血管破裂,最后促使死亡.
次声虽然无形,但它却时刻在产生并威胁着人类的安全.在自然界,例如太阳磁暴、海峡咆哮、雷鸣电闪、气压突变;在工厂,机械的撞击、摩擦;军事上的原子弹、氢弹爆炸试验等等,都可以产生次声波.
由于次声波具有极强的穿透力,因此,国际海难救助组织就在一些远离大陆的岛上建立起“次声定位站”,监测着海潮的洋面.一旦船只或飞机失事附海,可以迅速测定方位,进行救助.
近年来,一些国家利用次声能够“杀人”这一特性,致力次声武器——次声炸弹的研制尽管眼下尚处于研制阶段,但科学家们预言;只要次声炸弹一声爆炸,瞬息之间,在方圆十几公里的地面上,所有的人都将被杀死,且无一能幸免.次声武器能够穿透15厘米的混凝土和坦克钢板.人即使躲到防空洞或钻进坦克的“肚子”里,也还是一样地难逃残废的厄运.次声炸弹和中子弹一样,只杀伤生物而无损于建筑物.但两者相比,次声弹的杀伤力远比中子弹强得多.

希望对你有帮助!!!!O(∩_∩)O~

阅读全文

与为什么有人会做超声波相关的资料

热点内容
尼尔机械纪元怎么调视角 浏览:880
压力排水污水泵选用什么阀门 浏览:404
什么设备有谐波电流 浏览:900
汉科电动工具怎么样 浏览:549
仪表油耗后面的数字是什么意思 浏览:335
防雷器材怎么做 浏览:126
塑料排气设备多少钱 浏览:522
如何学好机械设计 浏览:220
机械警棍如何分解 浏览:658
内检测器自发电装置 浏览:220
轴承油一般加多少 浏览:10
如何做好机械设备项目管理 浏览:967
3g无线上网设备如何用4g卡 浏览:846
暖气小背篓哪个阀门是进水 浏览:861
速腾汽车亏电之后仪表显示盘显示什么东西 浏览:999
欧蓝德用什么制冷剂 浏览:330
燃气热水器机械防冻装置有用吗 浏览:383
嘉祥永顺五金机电怎么样 浏览:873
动车组机械装置检修实训 浏览:196
双活接阀门上的20是什么意思 浏览:984