① 数控机床电源故障都有哪些情况分析
多年的数控机床维修经验证实,在故障总数中,由电源引发的故障占了相当大的比例。数控机床电源故障中很多属于机床用户有能力自行排除的器件损坏故障,其领域已属于片级修理。
1、数控机床电源
把数控机床所使用的电源分成了三级,从一次电源到三次电源,依次为派生关系,其造成的故障频次和难度也依次增加。具体分级如下:
(1)一次电源。一次电源即由车间电网供给的三相380V电源,它是数控机床工作的总能源供给。要求该电源要稳定,一般电压波动范围要控制在5%~10%,并且要无高频干扰。
(2)二次电源。由三相电源经变压器从一次电源派生。其用途主要有:
1)派生的单相交流220V、交流1l0V,供电给CNC单元及显示器单元,做为热交换器、机床控制回路和开关电源的电源。
2)有的数控机床派生的三相低电压做直流24V整流桥块的电源。有的数控机床由三相变压器产生三相交流220V,供给伺服放大器电源组件作为其工作电源。
(3)三次电源。三次电源是数控机床使用的各种直流电源,它是由二次电源转化来的。主要有这样几种:
1)由伺服放大器电源组件提供的直流电压、由伺服放大器组件逆变成频率和电压幅值可变的三相交流电以控制交流伺服电动机的转速。
2)整流桥块提供的交流24V,作为液压系统电磁阀,电动机闸电磁铁电源和伺服放大器单元的“ready”和“controllerenable”信号源。
3)由开关电源或DC/DC电源模块提供的低压直流电压,这些电压有:+5V、±12V、±15V,分别做为测量光栅、数控单元和伺服单元电气板的电源。
2、数控机床电源回路使用的器件
数控机床从一次电源到三次电源使用的器件分别有:
(1)车间配电装置,一般包括:与车间电网连接的三相交流稳压器和断路器(又称空气开关,或闸刀开关)。
(2)机床元器件,包括:滤波器、电抗器、三相交流变压器、断路器、整流器、熔断器、伺服电源组件、DC/DC模块和开关电源。
3、电源故障实例分析
(1)电网波动过大PLC不工作。表现为PLC无输出。先查输入信号(电源信号、干扰信号、指令信号与反馈信号)。例如,采用SINUMERIK3G-4B系统的数控车床,其内置式PLC无法工作。采用观察法,先用示波器检查电网电压波形,发现电网波动过大,欠压噪声跳变持续时间>1s(外因)。由于该机床处于调试阶段,电源系统内组件故障应当排除在外,由内部抗电网干扰措施(滤波、隔离与稳压)可知,常规的电源系统已无法隔断或滤去持续时间过长的电网欠压噪声,这是抗电网措施不足所致(内因),导致PLC不能获得正常电源输入而无法工作。在系统电源输入端加入一个交流稳压器,PLC工作正常。
(2)电源故障。某双工位数控车床,每个工位都由单独的NC系统控制,NC系统采用西门子公司的SINUMERIK810/T系统。右工位的NC系统经常在零件自动加工中断电停机,重新启动系统后,NC系统仍可自动工作。检查24V供电电源负载,并无短路问题。对图样进行分析,两台NC系统,共用一个24V整流电源。引起这个故障可能有两个原因:
1)供电质量不高,电源波动,而出故障的NC系统对电源的要求较灵敏。
2)NC系统本身的问题,系统不稳定。
根据这个判断,首先对24V电源电压进行监视,发现其电压幅值较低,只有21V左右。经观察发现,在出故障的瞬间,这个电压向下浮动,而NC系统断电后,电压马上回升到22V左右。故障一般都发生在主轴启动时,其原因可能是24V整流变压器有问题,容量不够,或匝间短路,使整流电压偏低,电网电压波动,影响NC系统的正常工作。为确定这个故障的原因,用交流稳压电源将交流380V供电电压提高到400V,这个故障就没有再出现。为此更换24V整流变压器,问题彻底解决。
(3)一台VDF.BOEHRINGER公司(德国)生产的PNE480L数控车床,合上主开关启动数控系统时,在显示面板上除READY(准备好)灯不亮外,其余指示灯全亮。该机数控系统为西门子SYSTEM5T系统。因为故障发生于开机的瞬间,因此应检查开机清零信号RESET是否异常。又因为主板上的DP6灯亮,而且DP6是监视有关直流电源的,因此需要对驱动DP6的相关电路及有关直流电源进行检查。其步骤如下:
因为DP6灯亮属报警显示,故首先对DP6的相关电路进行检查。经检查,确认驱动DP6的双稳态触发器LA10逻辑状态不对,已损坏。用新件更换后,虽然DP6指示灯不亮了,但故障现象仍然存在,数控箱还是不能启动。检查*RESET信号及数控箱内各连接器的连接情况良好,但*RESET信号不正常,并发现与其相关的A38位置上的LA01与非门电路逻辑关系不正确。于是对各直流电流进行检查。
检查±15V、±5V、±12V、+24V,发现电压为-5V~4.0V,误差超过±5%。进一步检查,发现该电路整流桥后有一滤波大电容C19的焊脚处印制电路板铜箔断裂。将其焊好后,电压正常,LA01电路逻辑关系及*RESET信号正确,故障排除,数控箱能正常启动。
(4)返回参考点异常。这是由于返回参考点时没有满足“必须沿返回参考点方向,并距参考点不能过近(128个脉冲以上)及返回参考点进度不能过低”的条件。对这类故障的处理步骤是[2,3]:
1)距参考点位置>128个脉冲,返回参考点过程中。①电动机转了不到1转(即没有接收到1转信号),此时首先变更返回时的开始位置,在位置偏差量>128个脉冲的状态下,在返回参考点方向上进行1转以上的快速进给,检测是否输入过1转信号。②电动机转了1转以上,这是使用了分离型的脉冲编码器。此时,检查位置返回时脉冲编码器的1转信号是否输入到了轴卡中,如果是,则是轴卡不良;如果未输入,则先检查编码器用的电源电压是否偏低(允许电压波动在0.2V以内),否则是脉冲编码器不良。
2)距参考点位置<128个脉冲。①检查进给速度指令值,快速进给倍率信号,返回参考点减速信号及外部减速信号是否正常。②变更返回时的开始位置,使其位置偏差量超过128个脉冲。③返回参考点速度过低。速度必须为位置偏差量超过128个脉冲的速度,如果速度过低,电动机1转信号散乱,不可能进行正确的位置检测。
(5)某加工中心,配置F-0M系统,在自动运转时突然出现刀库、工作台同时旋转。经复位、调整刀库、工作台后工作正常。但在断电重新启动机床时,CRT上出现410号伺服报警。查L/M轴伺服PRDY、VRDY两指示灯均亮;进给轴伺服电源AC100V、AC18V正常;x、y、z伺服单元上的PRDY指示灯均不亮,三个MCC也未吸合;测量其上电压发现24V、±15V异常;轴伺服单元上电源熔断器电阻太大,经更换后,直流电压恢复正常,重新运行机床,401号报警消失。
(6)故障现象:某公司产VF2型立式铣加工中心。机床运行一年零七个月以后,加工中出现161号报警(x-axisovercurrentordrivefault),机床停止运行。使用“RESET”键报警可以清除,机床可恢复运行。此故障现象偶尔发生,机床带病运行两年后,故障发生频次增加,而且出现故障转移现象:即使用复位键清除161号报警时,报警信息转报162号(Y-axisovercurrentordrivefault),如果再次清除,则再次转报z轴,以此类推。机床已无法维持运行。
故障分析及检查:根据故障报警信息在几伺服轴之间转移现象,不难看出故障发生在与各伺服轴都相关的公共环节,也就是说,是数控单元的“位置控制板”或伺服单元的电源组件出现了故障。位控板是数控单元组件之一,根据经验分析,数控单元电气板出现故障的概率很低,所以分析检查伺服电源组件是比较可行的排故切入点。检查发现此机床伺服电源分成两部分,其中输出低压直流±12V两路的是开关电源。测量结果分别是:+11.73V,-11.98V。分析此结果,正电压输出低了0.27V,电压降低幅度2.3%。由于缺乏量化概念,在暂时找不到其它故障源的情况下,假定此开关电源有故障。
故障排除:为验证输出电压偏差是造成机床故障的根源,用一台WYJ型双路晶体管直流稳压器替代原电源,将两路输出电压调节对称,幅值调到12V,开机后,机床报警消失。在接下来的20个工作日的考验运行中,故障不再复现。完全证实了故障是由于此伺服电源组件损坏引起的。
理论分析[4]:运算放大器和比较器,有些用单电源供电,有些用双电源供电,用双电源的运放要求正负供电对称,其差值一般不能大于0.2V(具有调节功能的运放除外),否则将无法正常工作。而此故障电源,两路输出电压相差了0.25V,超出了误差允许范围,这是故障发生的根本原因。
② 数控机床开关电源常见故障有哪些怎么维修处理
开关电源坏,结果就是产生报警、系统启动不了,不能执行指令等现象,或者开关电源输出短路等,都是这种现象,设计电路不同,产生的现象就不同。处理就是更换开关电源,查找短路点等。
③ 数控机床长时间没有通电会有什么后果怎样解决
可能发生的问题
1,不能正常启动,报警频发,主要原因是伺服系统或者主板(电池没电)积累灰尘,微电路短路。
2,触头可能锈蚀接触不良。
3,导轨等润滑部分,磨动摩擦的部分油脂缺乏或粘连,造成伺服电机过负荷。
4,散热风扇多数为浮动轴承,浮动油粘连,系统侦测不出转速,报警。还要与你放置的环境有关,数控设备为精密设备,长期不用要定期检查开机试车。
数控机床种类多,各类数控机床因其功能,结构及系统的不同,各具不同的特性。其维护保养的内容和规则也各有特色,具体应根据机床种类、型号及实际使用情况,并参照机床使用说明书要求,制订和建立必要的保养制度。
1、机床清洁:将机床内工件、治具、铁屑等清理干净,外部排屑机内铁屑清理干净;外部钣金擦拭干净,电控箱空调、油冷机过滤网清洗干净。
2、防锈处理:将工作台清理擦拭干净,抹上防锈油;机床全程慢速运行一小时润滑线轨;切削液是否需要更换,优先处理做好防锈,机床开始需要工作时再添加切削液。
3、做好车间的总断电、断气、断供液: 将数控机床Y轴运行到中间,Z轴回零,关去机床 总电开关和变压器进线开关、气源等。
4、防水防潮:关好电器箱做好防护。
5、机床防鼠处理:机床同样做好防鼠处理,以防老鼠咬断电线。
数控机床的开机调试
数控机床是一种技术含量很高的机电一体化设备,采取正确方式开机调试是十分关键的,这在很大程度上决定了数控机床能否发挥正常的经济效益以及它本身的使用寿命。
开机前检查:检查机床外围环境,电器箱有无进水等异常现象,油品是否变质。
逐步开机:在开机前必须检测好机床的电源电压,一定要在电源总开关开启约10min电压 稳定后,才能开启机床的电源开关,再开启电箱内的其他电源开关,检查电压是否缺相和过低,在无异常情况下开启机床电源,并观察有无异常现象, 有无漏气。开机无报警情况下,不要执行任何动作, 让电器元件通电30min。
慢速移动:检查有无干涉,用手轮全程移动机床,并注意有无异常现象,再执行原点回归 步骤。
机床磨合:长时间自动慢速运行机床, 并低速旋转主轴。
④ 数控机床没电显示服务器电池没电怎么办
首先要更换电池,其次要重新还原机床参数。因为机床长时间断电,电池电量耗尽机床参数会丢失,最好联系一下机床生产厂家,根据机床厂家的指引还原参数。自己也可以按机床说明书将同型号机床的参数先备份出来再还原到这台机床上。
⑤ 数控机床的常见电气故障及诊断维修方法有哪些
1.1 数控基床电气装置常见故障
数控机床的电气装置部分的故障主要是硬件故障,其中的硬件故障为:控制系统某元器件接触不良或损坏、无供电电源等,这种故障必须更换损坏的器件或者维修后才能排除故障。
1.2 数控机床可编程控制器的故障分析
数控机床可编程控制器,也就是plc控制器部分的故障分为:(1)软件故障:包括数控机床用户程序,如果用户程序出现故障,在数控机床运行时会发生一些无报警的机床故障,因此PLC用户程序要编制好。(2)硬件故障:也即是在PLC输入输出模块出现问题而引起的故障。对于个别输入输出口出现故障,可以通过修改PLC程序,可使用备用接口替代出现故障的接口。
1.3 数控机床伺服系统的故障分析
数控机床伺服控制系统是数控机床故障率最高的部分。伺服控制系统可分为直流伺服控制单元、直流永磁电动机和交流伺服控制单元、交流伺服电动机有两个部分,两者各有其优、缺点。伺服系统的故障一般都是由于伺服控制单元、伺服电动机、测速装置、编码器等出现问题引起的,要分别对各单元进行分析。
1.4显示器的故障分析
通常情况下,数控机床显示器出现错误的表现为:系统的软件出错,从而会导致系统显示的混乱或者不正常或根本无法显示,如果机床的电源出现故障或者系统主板出现故障的话都会导致系统的不正常显示。其中,显示系统本身出现故障是引起系统显示器不正常的最主要原因,因此,如果系统不能正常显示,就必须首先要分清造成此现象的主要原因。
数控机床的显示不正常可以分为完全无显示和显示不正常两种情况。当电源和系统的其他部分工作正常时,系统无显示的原因,一般情况下是由于硬件原因引起,而显示混乱或显示不正常,一般来说是由于系统软件引起的。另外,系统不同,所引起的原因也不同,这要根据实际情况进行分析。
1.5 控制元件、检测开关的故障分析
数控机床常用的控制元件有液压元件、气动元件、电气执行元件、机械装置、检测开关,检测元件有:检测开关,这些常见的机床控制元件、检测开关由于接触不良引起各种故障比较多,这类故障很容易解决,但是必须用仪器仪表配合检查。
2 数控机床常见电气故障诊断与排除方法
数控机床故障排查的方法很多,大致可以分为以下几种:
2.1直观检查法
这是故障分析之初必用的方法,就是利用感官的检查。
(1)问。即向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析判断过程中可能要多次询问。
(2)看。总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、润滑装置等)有无报警指示,局部查看有无保险烧煅,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等 。
(3)摸。在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。
(4)试。这是指为了检查有无冒烟、打火、有无异常声音、气味以及触摸有无过热电动机和元件存在而通电,一旦发现立即断电分析。
2.2仪器检查法
仪器检查法就是使用常规电工仪表对各组交、直流电源电压及相关直流和脉冲信号等进行测量,从中找寻可能的故障。例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC 编程器查找PLC程序中的故障部位及原因等。
2.3 信号与报警指示分析法
(1)硬件报警指。这是指包括数控系统、伺服系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。
(2)软件报警指示。如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。
2.4 接口状态检查法
现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。检修时,要求维修人员既要熟悉本机床的接口信号,又要熟悉PLC编程器的应用。
2.5 参数调整法
数控系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而机床运行所引起的机械或电气性能的变化会改变其最佳化状态。此类故障需要重新调整相关的一个或多个参数方可排除。这种方法对维修人员的要求是很高的,不仅要对具体系统主要参数十分了解,既熟悉其作用,而且要有较丰富的电气调试经验。
2.6 备件置换法
当故障集中于某一印制电路板上时,由于电路集成度的不断扩大而要把故障落实于某一区域乃至某一元件比较困难,为了缩短停机时间,在有相同备件的条件下可以先将备件换上,然后再检查修复故障板。备件板的更换要注意以下问题:
(1)更换任何备件都必须在断电情况下进行。
(2)在更换备件板上要记录下原有的开关位置和设定状态,并将新板作好同样的设定,否则会产生报警而不能工作。
(3)某些印制电路板的更换还需在更换后进行某些特定操作以完成其中软件与参数的建立。这一点需要仔细阅读相应电路板的使用说明。
(4)有些印制电路板是不能轻易拔出的,例如含有工作存储器的板,或者备用电池板,它会丢失有用的参数或者程序。必须更换时也必须遵照有关说明操作。
鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤之后再动手,以免造成更大的故障。
2.7交叉换位法
当发现故障板或者不能确定是否故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查分散机 涂料分散机 高速分散机 实验室分散机 真空分散机 升降分散机 高粘度分散机 实验室分散机 双行星混合机 双行星搅拌机 多功能混合机 电池浆料搅拌机 环氧树脂搅拌机 电池浆料混合机,不仅硬件接线的正确交换,还要将一系列相应的参数交换,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。
2.8 特殊处理法
当今的数控系统其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用者自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律或者其他有效的方法。
⑥ 发那科数控车床运行中自动断电原因,断电后需大概十分钟才能上电
你把fanuc数控车型号,那个系统都说明白。是6M系统,0系统,0M系统,0T系统,0I系统还是最新的其他系统。
数控系统上电,分为强电上电和弱电启动(即电脑启动),你的是强电断电还是弱电断电。
⑦ 数控机床电源的常见故障及抗干扰措施
数控机床电源的常见故障及抗干扰措施
由于我国工业用电电网电压波动较大,由此造成数控系统电源部分故障频率较高。那具体的故障都有哪些呢?有什么抗干扰措施没有?我为此特意整理了相关知识分享给大家!
电源是电路板的能源供应部分,电源不正常,电路板的工作必然异常。
一、开关电源常见的故障
1、熔丝熔断
如果烧断时保险管发黑有斑点,说明线路有严重短路,它是由于高压滤波电容击穿,整流管击穿等明显故障原因引起。如果保险管不黑,属慢慢熔断,可进行静态测量。一般是半桥中的一个开关管击穿或不良。
2、熔丝不断,输出无电压
这种情况先检查有无300V直流电压。如果没有,故障发生在逆变之前;如果有300V高压而无输出,这时可用示波器检查开关管集电极有无20kHz波形。如果开关管被击穿或没有振起。高频变压器开路均可造成逆变停止。另外,逆变电器正常但被后级的过流或过压电路动作而保护,使输出无电压。如果12V档主输出电源输出空载,就会引起过保护而使输出无电压。
3、电源输出电压不准
一般情况下,数控系统各档稳压直流电压的允许电压范围为额定值的±5%之内,如果超此范围,可调整电压调节电位器。将主输出电压档调至标准值。如果不能调至标准值,可能是电位器坏了或稳压管坏了。如果只有某一档电压偏离较大,则很可能是该档整流二极管损坏,要尽可能调换同型号的二极管。有时开关电源的负载能力差,也会使输出电压降低过大,这可能因参数变化使电路工作点偏离线性区域,如放大环节增益降低,检测电路处于非线性状态等。
4、开关电源发出重复地特殊响声
这通常是工作频率过低所造成,可用示波器检测脉冲宽度调制器,正常工作时将近20kHz左右。如定时回路电容器容量变大,也会引起振荡频率过低,使电源产生特殊的重复的响声。使开关电源不能正常工作。更换合适的电容即可恢复其正常工作。
二、数控机床抗干扰途径
1、采用抗干扰的优质电源
经验表明由电源引入的干扰是系统干扰的主要来源,抗干扰性能好的优质电源是提高系统可靠性的关键。
2、阻断噪声干扰传递路径
数控系统使用现场的电磁环境一般较为恶劣,特别是附近大型电气设备起动及停止时会在公用交流电网和控制回路上产生高频瞬变噪声。这些噪声会通过数控系统的输入电源窜入系统内部,因此必须采取滤波、隔离、屏蔽和保护等措施将噪声阻断在系统外部。
1)使用电源滤波器抑制输入电源噪声
电源滤波器是抑制电源干扰的有力措施,目前市场上有各种型号规格的滤波器可供选择。从抗干扰的角度出发,应验证其插入衰减量是否达到要求。另外,滤波器对噪声的实际抑制效果还取决于使用方法,应注意以下三点:
a、滤波器要尽量靠近电源输入插座安装,进线和出线使用双绞线并靠近地电位布线,二者一定要分开走线,不能平行走线,更不能捆扎在一起。
b、滤波器的接地电阻应越小越好,最好直接安装在系统机壳上离系统接地端子最近的位置,这样能更好的抑制高频共模噪声。
c、数控系统内部的伺服电动机驱动器、外围接口电路和计算机电路的电源可分别用3个滤波器供电,这样不仅能抑制外部电源干扰,还能抑制各部分之间的相互干扰。
2)采用变比为1∶1的隔离变压器进行隔离
隔离变压器是在它的初级绕组和次级绕组之间加了一层屏蔽层,并将它和铁芯一起接地,防止干扰信号通过初次级之间的电路进人直流供电系统。它能有效地抑制由电网侵入的瞬态强脉冲干扰,使得直流或低频干扰信号不容易通过传导的方式形成感应噪声。
3)将电源装在金属屏蔽盒内,并与系统内其它部分尽量隔开安装,可减少噪声在系统内部的辐射干扰。
4)建立掉电保护功能
工业电网的供电不稳定或者系统电源的偶然故障,突然掉电的事故是难免的。这就要求系统在发生掉电时保护好现场的数据,待电压恢复正常时,便可从掉电处继续执行程序。系统的掉电保护方案可用带掉电保护的RAM(如FLASH)或可读写EEPROM等来保存系统掉电时的现场数据及标志字。
3、抑制电源工作产生的噪音
1)抑制直流稳压电源噪声
一部分数控系统的电源(+5V)是由三端集成稳压器构成的。电路中有TTL器件时,其开关动作时间为5~10ns,在瞬变电流和公共阻抗的作用下,直流电源线上产生开关噪声。使电路的噪声容限降低,导致逻辑电路和微处理器误动作。减小开关噪声的有效方法是在每个集成电路的电源端与接地端之间接入一个0.01~0.1μF的限噪 钽 电容或高频无感滤波电容,在设计电路板时应将此电容安装在该集成电路的.电源输入侧并尽量缩短电容的配线。
2)抑制开关电源的噪声
目前,开关电源在数控系统中得到广泛使用。但是开关电源的噪声大、噪声频谱宽及高频辐射干扰严重。这些固有的缺点不能从根本上予以消除,只能使用隔离、滤波和屏蔽等措施来阻断噪声的传输。具体方法如下:
a.减小开关级晶体管与电源屏蔽壳之间的耦合电容,以减少噪声的产生;
b.用电感线圈将开关电源机壳与数控系统外壳相连,以减小共模噪声;
c.在交流电源输入端接入线路滤波器,不但能抑制共模噪声和串模噪声的产生,并且对外部电源噪声也同样有效。
d.开关电源有多个负载时,应采取将各负载电路在电源处就分开的布线方法,而不采用在离开开关电源一段距离后再接负载的方法。按后者布线时,分布电容使各负载的线路不平衡,导致形成较大的串模噪声。另外,电源外壳与负载电路一点接地并且接地阻抗要尽可能小。开关电源到各个负载电路采用双绞线相连;
e.开关电源需要同时给大功率负载与小信号负载供电,尽管它们的电压一致,也要分别用两组独立的开关电源来供电,这两组电源的地线要有公共连接点,这样不会形成公共阻抗,防止两路负载之间相互影响。
4、合理接地与布线
系统中直流电源的工作地应与系统中继电器、电磁阀及其驱动电源所构成的功率地分开,两者不可混接。另外、接地电缆应足够粗,并且电阻要小。布电源线时,应使强电和弱电分开,输入线与输出线分开。要根据电流的大小,尽量加粗导线的宽度,使电源线、地线的走向与数据传输的方向一致。采取以上方法对数控系统电源部分进行改进设计,有效地消除了干扰的影响,增加了整个数控系统的可靠性。
;