⑴ 超声波发射接收 怎么接
您好!!
40kHZ超声波发射电路(1)
40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。 F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。电容C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用9V叠层电池。测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。发射超声波信号大于8m。
40kHZ超声波发射电路(2)
40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。T40-16是反馈耦合元件,对于电路来说又是输出换能器。T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。电路工作电压9V,工作电流约25mA。发射超声波信号大于8m。电路不需调试即可工作。
40kHZ超声波发射电路(3)
40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40kHZ±2kHZ。频率稳定性好,不需作任何调整,并由T40-16作为换能器发出40kHZ的超声波信号。电感L1与电容C2调谐在40kHZ起作谐振作用。本电路适应电压较宽(3~12V),且频率不变。电感采用固定式,电感量5.1mH。整机工作电流约25mA。发射超声波信号大于8m。
40kHZ超声波发射电路(4)
40kHZ超声波发射电路之四,它主要由四与非门电路CC4011完成振荡及驱动功能,通过超声换能器T40-16辐射出超声波去控制接收机。其中门YF1与门YF2组成可控振荡器,当 S按下时,振荡器起振,调整RP改变振荡频率,应为40kHZ。振荡信号分别控制由YF4、YF3组成的差相驱动器工作,当YF3输出高电平时,YF4一定输出低电平;YF3输出低电平时,YF4输出高电平。此电平控制T40-16换能器发出40kHZ超声波。电路中YF1~YF4采用高速CMOS电路 74HC00四与非门电路,该电路特点是输出驱动电流大(大于15mA),效率高等。电路工作电压9V,工作电流大于35mA,发射超声波信号大于 10m。
40kHZ超声波发射电路(5)
40kHZ超声波发射电路之五,由LM555时基电路及外围元件构成40kHZ多谐振荡器电路,调节电阻器RP阻值,可以改变振荡频率。由LM555第3脚输出端驱动超声波换能器T40 -16,使之发射出超声波信号。电路简单易制。电路工作电压9V,工作电流40~50mA。发射超声波信号大于8m。LM555可用NE555直接替代,效果一样。
双稳态超声波接收机电路
由于单稳态接收机无记忆功能,所以不能用在家用电器的开与关中,适用面不宽。是一种双稳态超声波接收机电路,它的前级电路同图2-186电路完全一样,只是执行电路不同。
电路中,由VT5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号经C7、C8向双稳电路送进一个触发脉冲, VT5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VD5截止,VT7截止,继电器K释放;当再来一个触发信号时,VT6由导通转变为截止状态,VD5导通,VT7导通,继电器K吸合......由于增加了双稳电路,使之用于电灯、电扇、电视等电器遥控成为现实。调试时,在a点与+6V(电源)之间用导线快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件参数。一般情况下一次即可成功。
单稳式超声波接收器电路
单稳式超声波接收器电路原理图,超声波换能器R40-16谐振频率为40kHZ,经R40-16选频后,将40kHZ以外的干扰信号衰减,只有谐振于40kHZ的有用信号(发射机信号)送入VT1~VT3组成的高通放大器放大,经C5、VD1检出直流分量,控制VT4、VT5组成的电子开关带动继电器K工作。由于该电路仅作单路信号放大,当发射机每发射一次超声波信号时,接收机的继电器吸合一次(吸合时间同发射机发射信号时间相同),无记忆保持功能。可用作无线遥控摄象机快门控制、儿童玩具控制、窗帘控制等。电路中VT1β≥200,VT2β≥150,其他元件自定。电路不需调试即可工作。如灵敏度和抗干扰不够,可检查三极管的β值与电容C4的容量是否偏差太大。经实测,配合相应的发射机,遥控距离可达8m以上。在室内因墙壁反射,故没有方向性。电路工作电压3V,静态电流小于 10mA。
⑵ 超声波振动原理是什么
一般人听到的声音频率是20~20000Hz的声波信号,高于20000Hz的声波为超音波,声波的传递依照正弦曲线纵向传播,即一层强一层弱,依次传递,当弱的声波信号作用于液体时,会对液体产生一定的负压,使液体内形成许许多多微小的气泡;而当强的声波信号作用于液体时,则会对液体产生一定的正压,因而,液体中形成的微小气泡被压碎。经研究证明:超音波作用于液体时,液体中每个气泡的破裂会产生能力极大的冲击波,相当于瞬间高达上1000个的大气压,这种现象被称为“空化效应”。超音波清洗正是应用液体中气泡破裂所产生的冲击波来达到清洗和冲刷工件内外表面的作用。
当超音波发生器将50Hz的日常供电频率改变为28KHz(或者更高)后,通过输送电缆线将其输送给粘结在盛放清洗液的清洗槽底部(或侧面)的超音波换能器,由换能器将高频的电能转换成机械振动并发射至清洗液中,当高频的机械振动传播到液体里后,液体内即产生上述的“空化效应”,对物体所有表面的附着物产生物理性剥脱力,达到清洗的目的。
由于超音波频率很高,在液体中产生的空化作用可以达到28000次/秒,几乎可以说是在不断的进行,在液体中所产生的空化作用所产生的气泡数量众多且无所不在,因此对于工件清洗可以非常彻底,即使是形状复杂的工件内部,只要能够接触到溶液,就可以得到彻底的清洗,又因为每个气泡的体积非常的微小,因此虽然它们破裂的能量很高,但对于工件和液体来说,不会产生机械性破坏和质地上的改变。
由于超音波的频率高决定了效应很高,一般被清洗工件的清洗时间为数十秒至几分钟,既可达到理想的效果。超音波清洗是在传统清洗原理的基础上,采用清洗的高新技术手段,去除物件表面的附着物。对于那些不规则表面、多孔、狭缝、细孔、盲孔、多沟槽的物件,要求表面高质洁净时,采用超音波清洗特别有效。
⑶ 超声波发生器的分类
可分为频率可调超声波发生器、100W/300W超声波发生器、小功率超声波发生器、高频超声波发生器、大
功能超声波发生器、数字显示超声波发生器。 新式,功率从0~3000瓦功率可调,频率从20KHZ~40KHZ可调的超声波发生器。
使用换能器不同,超声波发生器都可共用。
结构合理,做到防潮、防冲击、防烧管、操作简单。从没有使用过超声波清洗机,对频率功率不了解的人
,只要有点电工常识的人都一看就会。 随着现代电子技术,特别是微处理器(uP)及信号处理器(DSP)的发展,超声波发生器的功能越来越强大,但
不管如何变化,其核心功能应该是如下所述的内容,只是每部分在实现时技术不同而已。
超声波发生器来产生一个特定频率的信号,这个信号可以是正弦信号,也可以是脉冲信号,这个特定频率就是超声波换能器的频率,一般在超声波设备中使用到的超声波频率为25KHz、28KHz、35KHz、40KHz;100KHz
相信使用面会逐步扩大.比较完善的超声波发生器还应有反馈环节,主要提供二个方面的反馈信号:
第一个是提供输出功率信号,我们知道当超声波发生器的供电电源(电压)发生变化时.超声波发生器的输
出功率也会发生变化,这时反映在超声波换能器上就是机械振动忽大忽小,导致清洗效果不稳定.因此需要稳定
输出功率,通过功率反馈信号相应调整功率放大器,使得功率放大稳定。
第二个是提供频率跟踪信号.当超声波换能器工作在谐振频率点时其效率最高,工作最稳定,而超声波换能
器的谐振频率点会由于装配原因和工作老化后改变,当然这种改变的频率只是漂移,变化不是很大,频率跟踪信
号可以控制信号超声波发生器,使信号超声波发生器的频率在一定范围内跟踪超声波换能器的谐振频率点.让超
声波发生器工作在最佳状态。 超声波内置发生器,一体式超声波发生器。
一.性能简小功率超声波发生器介:控制箱采用微电脑控制下的它激式线路,频率自动跟踪及扫频工作方式
等先进技术。与传统控制箱相比,具有工作稳定可靠、超声功率连续可调,能最大限度地发挥换能器的潜能。工
作频率自动跟踪,使输出匹配更佳,功率更加强劲,效率更高。独特的扫频工作方式,使清洗液在扫频的作用下
形成一股细小的回流,及时把超声剥离下来的污垢带离工件表面,从而达到更快速、更彻底的清洗效果,超声清
洗效率更高。同时,具有完善的保护功能:过热保护和过流保护,工作更加可靠。
小功率超声波发生器配合数码功率调整可适应各种不同的清洗要求。
二.主要技术指标:工作电压: 220V 10% 额定功率 100W 200W 300W 工作频率:28 KHz 40KHZ 时间
控制: 0--59分59秒 功率控制范围:0-100%
适用于:小功率超声波清洗机,家用清洗机,内置发生器型超声波机。 一.性能简介:
控制箱采用 微电脑控制下的它激式线路,频率自动跟踪及扫频工作方式等先进技术。与传统控制箱相比,具
有工作稳定可靠、超声功率连续可调,能最大限度地发挥换能器的潜能。工作频率自动跟踪,使输出匹配更佳,
功率更加强劲,效率更高。独特的扫频工作方式,使清洗液在扫频的作用下形成一股细小的回流,及时把超声剥
离下来的污垢带离工件表面,从而达到更快速、更彻底的清洗效果,超声清洗效率更高。同时,具有完善的保护
功能:过热保护和过流保护,工作更加可靠。
工作电压: 220V 10% 额定功率 600W 900W 1200W 1500W 1800W 2400W 2700W 工作电流 2.5A 3.5A
4.5A 5A 工作电流: 请注意,设备不能在长时间在大于额定电流的状态下运行环境温度: 0-40C° 相对湿度:
40%--90%
工作频率:25KHZ 28KHz 40KHZ 35KHZ 68KHZ 120KHZ 时间控制: 0--59分59秒 功率控制范围:0-100%
16级数控调节机内过热保护:65 C° 外型尺寸: L x W x H =300 x 360 x 150 。 由超声波发生器产生的高于28KHZ音频电信号,通过换能器的压电逆效应转换成同频率的机械振荡,并以超
音频纵波的形式在清洗液中辐射。由于超音频纵波传播的正压和负压交替作用,产生无数超过1000个大气压的微
小气泡并随时爆破,形成对清洗物表面的细微局部高压轰击,使物体表面及缝隙之中的污垢迅速剥落,这就是超
声波清洗所特有的“空化效应”。 推挽式D类功率放大器如图1.35所示,输入激励信号使一管导通时另一管截止,导通截止时 间各占交流半周期。这种放大器有两种组态,一种是电压开关放大器图1,35(a);另一种是电流开关放大器(图1.35(b))。在电压开关组态中,晶体管作为电压开关工作,集电极电压为方波,串联调谐电路只让基波电流通过。因此输出电压为集电极电压的基波分量,集电极电流为半个正弦波。在电流开关组态中,晶体管起电流开关作用。扼流圈L、,维持恒定的直流馈电电流,集电极电流为方波,而集电极电压为半个正弦波。
这里着重介绍电压开关型放大器。在功率超声中电压型开关放大器用得较多,其原因:
一是从饱和损耗来看.电压开关放大器通常比电流开关放大器小,因为电压开关放大器中晶体管电流仅在180。饱和期间是大的,而在电流开关放大器中,整个导通角内保持峰值集电极电流;另外方波电流时的饱和电压往往要大于正弦电流下的饱和电压;
二是电流开关型的效率比电压开关型放大器低。但电流开关放大器取得功率的能力要强些;
三是在电流开关电路中,当负载R突然断开时所出现的瞬态效应,会使开关承受较高的浪涌电压,因此降低了开关元件伏安容量的利用率。同时给设计者带来一定的麻烦。
四是用相同开关元件,电流开关电路比电压开关电路的选用电源电压要低n倍,电源供出的电流大x倍。
五是负载失调时,通过电压开关的电流变小,通过电流开关的电流变大。如果设计要求发生器能在一定的失调范围内工作,则电流开关电路对晶体管伏安容量的利用率又要降低好多。
然而以上两种开关放大器其基本形式的输出特性都是恒压源性质,同时在固定负载下,伏安容量利用率相等。用相同的开关元件可以得到相同的输出功率。
电压型开关放大器还可分成并联型电压开关放大器,如图1-35(a)所示和串联型电压开关放大器,如图1.36所示。
必须注意的是,无论开关如何连接,只要它们“开关出来的”是电压源,即只要它们是用作 电压开关的,那么,它们的负载只能是一个串联谐振电路。这是因为电容在这里不允许作为“开关出来的”方波电压源的负载。否则,由于电容对高次谐波的短路作用.会给开关带来危害。
串联开关电路和并联开关电路的原理是完全一样的。因此设计也是类同的,仅有的区别在于电源电压的选择方面。如果开关元件所能承受的电流和电压是一定的,那么并联接法比串联接法所选 用的电源电压应低一倍,而电源供出的电流应大一倍,举例来说,如果用串联开关选220V电压消耗4A电流,那么改用并联开关时应选110V电压消耗8A电流。 我们以串联电压开关型D类功率放大器为例,如图1. 37所示,该图与图1.36实际是等效的,所不同的是图1.36中的负载Rl可看作变压器次级换能器在谐振时的纯阻反映到变压器初级的电阻。BG1与BG2为两个参数基本相同的晶体管,LC串联回路对工作频率fo谐振。
假如激励信号是频率为fo的正弦波,在正半周时,BG1饱和导通,BG2截止;负半周时BG1截止,BG2饱和导通。图1.38为其电压、电流波形。
当BG1饱和导通时,p点电压为电源电压vcc减去BG1的饱和压降vcs。当BG2饱和导通时,p点电压则为BG2的饱和压降vcs,两管参数基本相同,故vcs1=vcs2=vcs且Up为矩形波。
经过LC串联谐振回路选频滤波后.在负载电阻Rl.上就可得到频率为fo的正弦波电压ul,完成其放大功能。
由于两管轮流导通处于开关工作状态,up为矩形波,故称为电压开关型,且输出的最低谐波是三次,所以输出波形较好。
根据周期性对称方波谐波表示式:
式中Upm是方波振幅,ωo是基波角频率,在D类开关电路中
当LC回路谐振于fo时,在RL上的基波电压幅度为
所以RL上的有效值电压为
放大器的输出功率:
又因
这里IA为基波电流的有效值,其峰值为
所以流过晶体管的直流分量ICO为
电源输入功率为:
放大器的效率η为:
可见,当晶体管的饱和压降vcS愈小,则放大器的效率愈高,若VCS→0则η→100%。以上是在 电感、电容、晶体管都不计损耗的理想情况下得到的结果,实际上是有损耗的。其损耗主要存在着两类,在高频运用时,其晶体管内部损耗更不容忽视的。
(1)闭态饱和损耗
由(1.101)式可知.晶体管饱和压降愈大则效率越低。理论和实验可以说明,随着频率的升高和功率加大,饱和压降将迅速增大,为了减小饱和损耗,必须选用fT高的晶体管。一般来说,对小功率管(<10W),f≥0.1fT,对于大功率管(>10W) f ≥0.01fT时才需考虑饱和压降的影响。
因为这时饱和压降随频率急剧增大,在大功率时由于电流的增加饱和压降也大大上升,因此D类放大器的效率在这些频率和电流下将急剧下降。
(2)开关过程引起的过渡损耗。
过渡损耗是由过渡瞬变过程的时间来确定,它取决于晶体管电流或电压的上升和下降时间及基极和集电极的电荷存储效应。在晶体管电流或电压上升和下降时间内,晶体管处于有源状态,要消耗一定功率。此外接通延迟时间td(由晶体管基极电容和其他电路电容的充电时间决定)和晶体管开关从饱和进入有源状态时,从基区和集电极抽出过量电荷的存储时间ts也要增大过渡损耗。延迟时间td和存储时间ts,不仅延长晶体管的开关过渡过程,而且要产生电流和电压瞬变,会使晶体管由于二次击穿或雪崩效应而损坏。
如果晶体管存储时间大于接通延迟时间,两个晶体管将同时处于闭态。大的瞬间集电极电流将通过低阻通路从集电极电源到地。不仅要降低放大器的效率,而且要使器件的可靠性降低,因为在高的集一射电压下,过大的集电极电流要使器件由于二次击穿而损坏。这种瞬态的集电极电流尖峰可以用附加基一射间的电容,增大器件接通延迟时间,限止两个晶体管都处于“闭态”的时间间隔来减弱。
ib的负脉冲愈大,持续时间愈长,ts愈长,td主要取决于集电极电荷的存储。随着工作频率的上升,晶体管的电荷存储效应愈显著,严重时可使两管同时导通,出现危险的雪崩,使晶体管损坏。集电极电荷存储时间是随着集电极电流的增加而增大,集电极电流又随基极电流增加而增大,基极电流又随激励信号的加大而增大。因此选择开关特性好,ft高且功率满足要求的晶体管,设计最佳激励,对于提高D类功率放大器的效率是完全必要的。
回路参数对p点电压有相当影响程度,图1.41为激励信号对P点波 形的影响。
基极加速电容CP对p点波形的影响,CP使p点电压 波形的上升沿更徒,波形有所改善,略有提高。LC串联谐振回路对p点电压波形的影响是表演为电感上,它是放大器重要元件,要求Q值愈高愈好,若LC回路调谐不准时,尤其回路呈感性时,p点也会出现激励过大那样的波形,对影响颇大。
激励信号对p点电压波形的影响
a信号小,功率小
b信号过大,功率大,效率低
c信号适当,功率大,效率高 开关模式功率放大器除了上面讲到的串联,并联式开关放大器外,还有桥式功率放大器,下面我们分析这种电路。
桥式功率放大器可分成半桥功率放大和全桥功率放大两种形式。半桥式的原理图如图1.42所示
R1,R2为桥平衡电阻;C1、C2为桥臂电容,R3,R4,C3、C4为桥开关管吸收电路元件,其值可通过实验调整。桥与负载两者,通过变压器B连接。
工作原理如下;当t1时刻,U1电平触发BG1导通,i1通过BG1至变压器初级1、2向电容C2充电,同时C1上的电荷向BG1和变压器B1初级放电。从而在输出变压器B1次级感应一个正半周脉冲电压;当在t2时刻.BG2,被触发导通,i2通过电容c1,变压器初级2,1向BG2充电,而C2的电荷也经由变压器初级2,1向BG2放电。在变压器次级感应一个负半周脉冲电压,从而完成一个工作频率的周期波形。
桥式开关功率放大器其设计原理同串联电压开关放大器,它主要适合在大功率的超声源中。
输出功率的调整
一般采用以下两种方法
1 改变激励信号导通角
一个电路应用的实例如图所示
2 改变电源电压
可以采用可控硅调整直流电源电压或者采用开关控制切换电源变压器绕组方式。
功率放大器的保护
⑷ 跪求一个超声波雾化片的驱动电路的原理图!输入一个12v或24v直流电压,通过什么电路使1.7MHZ的雾化片工作
这是一个分离元件的超声雾化器原理图。包括三个主要部分:电源(AC-DC)部分、水位检测与保护部分、超声振荡与换能部分。
如果采用12V或者24V直流电源供电,第一个部分可以不用看。
水位检测与保护部分的工作原理:
水位高于探针A和B时,AB之间呈现一定的电阻,BG3导通,BG2也导通,BG2射极输出4V左右的电压,经R3和L3送到BG1基极,为BG1提供并偏置,BG1及外围元件构成的振荡电路工作。若水位低于探针A和B时,AB之间呈现很高的电阻,BG3截止,BG2也截止,BG1因无偏置而停振。从而防止换能器因缺水而损坏。如果不需要保护电路,只需要将R3接Vcc,并合理选择其阻值。
振荡与换能部分工作原理:
电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。
C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2 和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。
若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率而工作。
⑸ 超声波发生器工作原理
超声波
超声波是指频率为20千赫~50兆赫左右的电磁波,它是一种机械波,需要能量载体—介质—来进行传播。超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5MHz之间,常用为3∽3.5MHz(每秒振动1次为1Hz,1MHz=106Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。
⑹ 超声波的应用原理
一、
超声原理概述
超声波清洗的原理是发生器产的高频振荡电信号。通过换能器转换成高频的机械振动,传播到清洗液中,对工件实施高效的清洗。
其工作机理是运用空化作用成倍或十几售地提高清洗效果。当把液体放入清洗机内,施加超声波后,由于超声波在清洗液中是一种疏密相间,辐射传播的高频波,从而使液体高速往复振动。在振动的负压区由于周围的液体来不及补充,形成无数的微小真空气泡,而在正压区,微小气泡在压力下突然闭合,在闭合过程中由于液体间相互碰撞产生强大的冲击波形成最高可达几千个大气压的瞬时高压,作用在被清洗的工件上。吸附在工件上的油腻、杂质在连续不断的瞬时高压作用下迅速脱离工件。从而达到清洁的目的。
超声波的两个主要参数
超声波的两个主要参数:
频率:F≥20KHz;
功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2;
在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。
太小的声强无法产生空化效应。
超声波清洗机由三个主要部分组成:
(1)装载清洗液的不锈钢清洗缸
(2)超声波发生器
(3)超声波换能器
超声波清洗机具有清洁度高,机器噪音小、设备寿命长等优点。并能对几何形状比较复杂,例如有各种盲孔、微孔、深孔等用其他清洗方法难以清洗的零件进行高效清洗。由于具有以上独特的性能,所以越来越被人们认识和接受。
二、
设备特点
当超声波清洗机注满水接通电源后,电路把50赫兹的交流电转换成超声波频率的交流电、产生振荡,这种振荡的形成就是通过电感及换能器电容组成谐振电路,并将振荡信号通过反馈持继不断地进行下去。经晶体管进行放大后再送给串联谐振电路。这个谐振频率在机器出厂前精确地调整在换能器固有谐振频率上,以发挥换能器最佳效果。
换能器是通过螺柱和强力粘合剂粘结在不锈钢清洗槽底面上的,换能器将超声波机械能通过槽底传施给槽内液体,然后作用于液体中的被清洗工件,从而实现了超声波清洗的功能。
大功率晶体管是工作在开关饱和工作状态,所以其输出波形为方形。
当方波进入谐振电路后,经电感和电容的滤波后,就成为正弦波,所以实际上作用在换能器上的电流波形,已成为正弦波。
超声波清洗机的超声波电源发生器有两种,一种是自激电路,另一种是他激电路。自激电路结构简单、实用、经济性好;他激电路功率大,具有频率跟踪和限流,发热等多种保护,两种电路分别适合不同层次企业和更广泛的客户需要。
三、
使用方法
1.
将发生器与清洗槽连接电缆接好。
2.
将槽内注入选用的清洗液。
3.
将发生器接入220V±10%
50赫兹交流电源。
4.
打开发生器电源开关,电源指示灯亮(此时槽内液体开始振动空化)。
四、
注意事项
1.
为了延长使用寿命,建议将设备放在通风、干燥的区域,发生器后侧的风扇孔应定期清洁。发生器四面留有通风口,以使气流畅通无阻。
2.
(1)清洗槽必须放入液体后才能开机工作,最低水位高度>100mm(底振式)且水平放置,换能器在侧面时,为清洗槽槽沿100mm处,如在空气状态开机会损坏机器。
(2)当清洗缸体温度为常温时,切勿将高温液体直接注入缸内,以免导致换能器松动而影响机器正常使用
。
(3)当清洗液因污染而需要更换时,切勿将低温液体直接注入高温缸体内,这同样可导致换能器脱落,同时应当关闭加热器开关,以免加热器因槽内无液体而损坏。
(4)定期检查换能器,切勿使其变潮及撞击,以免造成不必要的损失。
3.
使用完毕后,应关闭总电源。
4.
关机后不要立刻重新开机,间隙时间应在1分钟以上。
⑺ 关于三极管,超声波功率管
[sān jí guǎn]
三极管 编辑
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。