㈠ 离心式制冷压缩机和螺杆式制冷压缩机一样都属于什么压缩机
旋转式压缩机
压缩机按其原理可分为容积型压缩机与速度型压缩机。容积型又分为:往复式压缩机、回转式压缩机;速度型压缩机又分为:轴流式压缩机、离心式压缩机和混流式压缩机。
㈡ 绂诲績寮忓帇缂╂満灞炰簬浠涔堝瀷鍘嬬缉鏈
1. 绂诲績寮忓帇缂╂満鏄涓绉嶉熷害鍨嬪帇缂╂満锛屽畠閫氳繃楂橀熸棆杞鐨勫彾杞鏉ュ帇缂╂皵浣撱
2. 璇ュ帇缂╂満鐨勫伐浣滃師鐞嗘槸鍒╃敤鍙惰疆鐨勫揩閫熸棆杞浜х敓绂诲績鍔涳紝灏嗘皵浣撲粠涓蹇冨悜澶栨帹杩涘苟鍘嬬缉鑷虫洿楂樼殑鍘嬪姏銆
3. 绂诲績寮忓帇缂╂満鍏锋湁缁撴瀯绠娲併佷綋绉灏忋侀噸閲忚交銆佹晥鐜囬珮銆佸彲闈犳уソ鍜屽櫔闊充綆绛変紭鐐广
4. 鐢变簬杩欎簺鐗圭偣锛岀诲績寮忓帇缂╂満鍦ㄧ煶娌瑰寲宸ャ佸喍閲戙佺數鍔涖佽埅绌鸿埅澶╃瓑琛屼笟涓寰楀埌浜嗗箍娉涚殑搴旂敤銆
5. 閫熷害鍨嬪帇缂╂満鏄鎸囬偅浜涢氳繃澧炲姞姘斾綋閫熷害鏉ユ彁鍗囧帇鍔涚殑鍘嬬缉鏈猴紝鍏朵腑鍖呮嫭绂诲績寮忓拰杞存祦寮忓帇缂╂満銆
㈢ 离心式制冷压缩机的离心式制冷压缩机的特点和发展趋势
我国的科学家及科技工作者也进行了大量的卓有成效的研究,对离心式压缩机的设计及加工进行了深入的研究,并形成了一系列的研究成果,与国外相比,毫不逊色.建议国内的制冷企业高举民族工业的旗帜,研制出真正意义上的国产化离心式制冷压缩机精品. 离心式制冷压缩机作为一种速度型压缩机,具有以下优点:
1.在相同冷量的情况下,特别在大容量时,与螺杆压缩机组相比,省去了庞大的油分装置,机组的重量及尺寸较小,占地面积小;
2.离心式压缩机结构简单紧凑,运动件少,工作可靠,经久耐用,运行费用低;
3.容易实现多级压缩和多种蒸发温度,容易实现中间冷却,使得耗功较低;
4.离心机组中混入的润滑油极少,对换热器的传热效果影响较小,机组具有较高的效率。
具有以下缺点:
1.转子转速较高,为了保证叶轮一定的宽度,必须用于大中流量场合,不适合于小流量场合;
2.单级压比低,为了得到较高压比须采用多级叶轮,一般还要用增速齿轮;
3.喘振是离心式压缩机固有的缺点,机组须添加防喘振系统;
4.同一台机组工况不能有大的变动,适用的范围较窄。 目前国内离心式冷水机组的大部分市场主要由欧日美一些制冷企业所占据.比较有名的企业如特灵、开利、约克、麦克维尔、AXIMA(原苏尔寿)、荏原、三菱等依靠先进的技术及良好工艺主导离心冷水机组市场.国内企业主要为重庆通用,早期引进NREC的技术来开发离心式制冷机。
随着社会的发展,用户需要的冷量越来越高,另外由于节能的要求使得离心机组具有越来越广的市场。一些国内空调厂家如海尔、澳克玛、格力及美的(与重庆通用合并)纷纷推出自己的离心式冷水机组.大冷与AXIMA合作开发出离心冷水机组及区域供暖的离心热泵机组.这些离心机组大部分采用环保工质R134a。
随着能源的形式日趋紧张,节能降耗是产品发展的一大趋势.另外由于中国城镇化水平的不断提高,建筑能耗不断增加.具有最高性能系数的离心冷水机组无疑将成为市场的热点,近年来离心冷水机组的销量不断提高。
国内大部分开发离心冷水机组的企业只是购买进口压缩机,基本上没什么利润.国外离心机厂家不会轻易出让自己的核心技术,要想研制离心式制冷压缩机,只有走自主开发的道路.随着设计及制造技术的不断成熟,使得国产离心式制冷压缩机的研制成为可能。
㈣ 如何摆脱离心式制冷压缩机喘振现象
离心式制冷压缩机属于速度型压缩机,是一种叶轮旋转式的机械。它是靠高速旋转的叶轮对气体做功,以提高气体的压力。那么。离心式制冷压缩机发生喘振现象该怎么办你?看完这篇文章,可以让大家彻底摆脱离心式制冷压缩机喘振现象。
离心式制冷压缩机的特点:
(1)外形尺寸小、重量轻、占地面积小。
(2)动平衡特性好,振动小。
(3)磨损部件少,连续运行周期长。
(4)传热性能高。
(5)易于实现多级压缩和节流,实现多种蒸发温度。
(6)能够经济地进行无级调节。
(7)若用经济性高的工业汽轮机直接驱动节能效果更好。
(8)转速较高,对轴端密封要求高。
(9)当冷凝压力较高时会发生喘振现象。
(10)制冷量较小时,效率较低。
一、喘振产生的机理
离心压缩机的基本工作原理是利用高速旋转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得压力能和速度能。在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。
扩压器流道内的边界层分离现象:扩压器流道内气流的流动,来自叶轮对气流所做功转变成的动能,边界层内气流流动,主要靠主流中传递来的动能,边界层内气流流动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。
当主流传递给边界层的动能不足以使之克服压力差继续前进时,最终边界层的气流停滞下来,进而发生旋涡和倒流,使气流边界层分离。气体在叶轮中的流动也是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。
当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。
当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B流道转移到A流道。这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。
扩压器同样存在旋转脱离。在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,流动严重恶化,使压缩机出口排气压力突然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口排气压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。
而实际上压缩机的总负荷很小,限制了压缩机的排量,压缩机的排量又慢慢减小,气体又产生倒流,如此反复,在系统中产生了周期性的气流振荡现象,这种现象称为喘振。
压缩机达到最小排量点而产生严重的气流旋转脱离是内因,而压缩机的性能曲线状况和工况点的位置是条件,内因只有在条件的促成下,才能发生特有的现象——喘振。
离心冷水机组运行在部分负荷时,压缩机导叶开度减小,参与循环的制冷剂流量减少。压缩机排量减小,叶轮达到压头的能力也减小。而冷却水温由于冷却塔未改变而维持不变,则此时就可能发生旋转失速或喘振。
喘振是速度型离心式压缩机的固有特性。因此对于任何一台离心式压缩机,当排量小到某一极限点时就会发生该现象。冷水机组是否在喘振点附近运行,主要取决于机组的运行工况。在什么状态发生喘振只有通过对机器的试验,即不断减少其流量,才可以测出具体的喘振点。
由于压缩机叶轮流道内气体流量的减少,按照压缩机的特性曲线,其运行的工况点引向高压缩比方向。这时气流方向的改变在叶轮入口产生较大的正冲角,使得叶轮叶片上的非工作面产生严重的气流“脱离现象”,气动损失增大,叶轮出口处产生负压区,引起冷凝器上部或蜗壳内原有的正压气流沿压降方向“倒灌”,退回叶轮内,使叶轮流道内的混合流量增大,叶轮恢复正常工作。
如此时压缩机工况点仍未脱离喘振点(区),又将出现上述气流的“倒灌”。气流这种周期性的往返脉动,正是压缩机喘振的根本原因。
二、喘振的危害性
喘振是离心式压缩机的运行工况在小流量、高压比区域中所产生的一种不稳定的运行状态。压缩机喘振时,将出现气流周期性振荡现象。喘振带给压缩机严重的破坏,会导致下列严重后果:
(1)使压缩机的性能显著恶化,气体参数(压力、排量) 产生大幅度脉动。
(2)噪声加大。
(3)大大加剧整个机组的振动。喘振使压缩机的转子和定子的元件经受交变的动应力:压力失调引起强烈的振动,使机组中心偏移,轴承磨损,密封间隙增大;甚至发生转子和定子元件相碰等:叶轮动应力加大。
(4)电流发生脉动。
(5)小制冷量机组的脉动频率比大型机组高,但振幅小。
不同于一般的机械振动,在压缩机出口产生气流的反复倒灌、吐出、来回撞击,使得主电机交替出现满载和空载,电流表指针或压缩机出口压力表指针产生大幅度无规律的强烈抖摆和跳动。压缩机转子在机内沿轴向来回窜动,并伴有金属摩擦和撞击声响。
三、防喘振措施
1热气旁通喘振防护原理
一旦进入喘振工况,应立即采取调节措施,降低出口压力或增加入口流量。从以上喘振产生的机理来看,在离心式冷水机组中,压比和负荷是影响喘振的两大因素。当负荷越来越小,小到某一极限点时,便会发生喘振,或者当压比大到某一极限点时,便会发生喘振。
用热气旁通来进行喘振防护,是通过喘振保护线来控制热气旁通的开启或关闭,使机组远离喘振点,达到保护的目的。从冷凝器连接到蒸发器一根连接管,当运行点到达喘振保护点而未达到喘振点时,通过控制系统打开热气旁通电磁阀,从冷凝器的热气排到蒸发器,降低了压比,同时提高了排气量,从而避免了喘振的发生。
2改变压缩机转速
压缩机转速改变,压缩机的性能曲线将随着移动,可以增加稳定工况区域,它适用于蒸汽轮机、燃气轮机拖动的机组,是一种比较经济的调节方法,只是调节后的工作点不一定是最高效率点。但对电动机拖动的机组,为了便于变速,就要用直流机组或采用变频方法,这会使设备大大复杂化,同时造价也高。
3多级压缩
多级压缩以降低压缩机转速。一般多级机器中任何一级发生喘振,都会影响到整台机器的正常工作。采用多级压缩,在同样的压比工况下,可大大降低压缩机的转速,增大稳定工况区域。
4采用转动的扩压器调节
流量减小时,一般在扩压器中首先产生严重的旋转脱离而导致喘振。在流量变化时,如果能相应改变扩压器流道的进口几何角,以适应改变了的工况,使冲角α不致很大,则可使性能曲线向小流量区大幅度移动,扩大稳定工况范围,使喘振流量大为降低,达到防喘振的目的。该防喘振控制方式,已在开利的产品中得到具体的应用,但低负荷时仍须采用热气旁通。
5可移动式扩压腔
上面提到,在离心式冷水机组中喘振发生的原因为压比和负荷。当机组运行的压比一定时(提升力),机组的运行负荷将影响机组是否发生喘振。对于离心机组来说,当运行负荷降低时,压缩机的导叶逐渐关闭,吸气量降低,如果扩压腔的通道面积不变,则气体的流速降低:当气体的流速无法克服扩压腔的阻力损失时,气流会出现停滞,由于气体动能的下降,转化的压力能也降低:当气流体压力小于排气管网的压力时,气流发生倒流,喘振发生。
四、结论
热气旁通、改变压缩机转速、多级压缩、转动的扩压器调节以及散流滑块设计均能有效避免“喘振”,对于离心式冷水机组具有较好的节能效果。