㈠ 加工中的“颤振”是追求精度的最大障碍之一,如何解决
从技术上讲,颤振是由非稳态切削导致的自激振动。我们知道,任何切削过程都要求系统具有一定动态刚性,这个系统由工件、刀具和机床组成。当上述系统的弹性超过所需要的刚性时,切削过程就会失稳,切削过程振动水平增加,最终导致颤振。
失稳的不利影响:更差的表面质量,刀具磨损加剧以及机床某些部件寿命降低。从经济角度看,颤振导致能耗和物耗增加。而减少这些耗费往往又牺牲了生产时间、切削能力和生产率。
在生产实践中,一般来说机床的振动是不希望产生的。这是因为振动所产生的噪声能刺激操作工人引起疲劳,降低工作效率.并且它又能使机床零件过早出现疲劳破坏,从而使零件的安全程度、可靠性和强度下降,机床的振动还会导致被加工工件的精度降低,刀具寿命和生产率下降。在机床上面发生的自激振动类型较多,例如回转主轴(或与工件联系、或与刀具联系)系统的扭转或者弯曲自激振动;机床床身、立柱、横梁等支撑件的弯曲或扭摆自激振动;切屑形成的周期性引起的颤振和整台机床的摇晃。此外还有机床工作台等移动部件在低速运行时所发生的张弛摩擦自激振动(通称爬行)等等。通常把金属切削过程中表现在刀具与工件间强烈的相对振动的这种自激振动称为“颤振”。切削过程中形成不连续切削的周期与工件、刀架或者机床的传动机构中的任一部分振动的固有周期相同,是产生颤振的主要原因之一。
切削颤振由切削过程中所产生的动态周期性力激发而引起,并能维持其振动不衰减。机械加工中的颤振是影响机械产品加工质量和机床切削效率的关键技术问题之一。切削颤振叠加在剥离多余金属必须的工作运动如切削、进给及切入运动上,并影响刀具乃至机床的使用寿命。为减小颤振所带来的不良影响,加工中被迫临时改变切削用量,如降低切削深度等。而这却妨碍充分利用机床额定功率,导致加工工时,即制造成本上升,延误工期。颤振问题在投资庞大的现代化数控机床上尤为值得关注,因为这类机床的经济性建立在其时间和功效方面的高度利用上。长期以来,机械制造业中的噪声污染相当突出,大大超过国家环保标准。刺耳的噪声是工件—刀具系统强烈切削颤振的结果,它降低了产品的表面质量,降低了生产效率和刀具、设备寿命,增加了材料和能源消耗。同时会诱发长期在这种环境下工作的人们的心血管等系统疾病,严重危害人们的身心健康。
㈡ 车床常见故障及排除方法
普通车床属于机械行业中最为常见的装备,运行中涉及到很多技术,如电机技术、传感技术、自动化技术等,表现出综合性的特点。虽然普通车床的工作能力强,但是仍旧面临着故障的干扰。以下是我为你整理的普通车床的常见故障与排除方法,希望能帮到你。
结合车床以及故障原因分析,列举普通车床运行中常见的故障及相关的排除方法,以此来维护普通车床的运行性能。
1、振动故障及排除
普通车床的振动故障是最为常见的故障类型,车床在加工生产的期间,振动是很难避免的,存在一些振动属于正常的运行范围,当振动较为剧烈时,就会影响普通车床的加工精度,降低车床的生产效率,同时还会加重车床的磨损,不利于车床刀具的稳定性。当普通车床出现振动故障时,在陶瓷、硬质合金内,故障的表现最为明显。
车床发生振动故障时,在实践中提出几点排除的措施,辅助普通车床快速恢复到正常的运行状态,如:
(1)普通车床的故障维护人员,检查车床上的固定螺栓,如地脚螺栓,保障螺栓安装的准确性,一旦发现有松动或安装不正确的螺栓,实行现场处理,立即执行故障排除,拧紧螺栓后,确保螺栓的安装位置准确;
(2)控制旋转件的跳动幅度,特别是胶带构件,实现径向圆跳动,防止其跳动幅度过大而造成振动;
(3)检查普通车床的主轴中心,避免存在径向过大摆动的问题,维护人员可以主动地调整主轴摆动,减小主轴的摆动幅度或者直接采取角度选配法的方式,控制主轴摆动;
(4)校正普通车床的磨削刀具,保持稳定的切削路径,保持刀尖的位置,稍高于中心位置,排除车床工作时的振动问题。
2、噪声故障及排除
噪声故障不仅影响普通车床的运行,同时也会影响车床运行的环境。一般情况下,噪声是故障发生的前提,当普通车床运行时,出现不符合常规的噪声,就表示车床出现了故障,维护人员需准确地分析噪声的来源及成因,以便快速地排除故障。普通车床运行后,噪声会随着周期、温度、负荷的增加而增加,最终导致车床进入不良的运行状态,干扰正常的运行。
噪声故障的排除要根据普通车床的实际情况执行。列举普通车床噪声故障中,常见的排除方法,如:
(1)维护人员检查普通车床的运动副,结合运动副反馈出的情况,调整、修复引起噪声的零件,促使车床的主轴,可以恢复正常,处理噪声的干扰,保障车床的工作精度;
(2)全面检查普通车床的管道,杜绝出现管道不通畅的情况,疏通有堵塞的管道;
(3)噪声故障内,很大一部分是因为相互摩擦,所以定期安排润滑工作,在适当的位置增加润滑油,控制润滑油的用量、位置,保证润滑油符合相关的规定。
3、发热故障及排除
普通车床运行时,发热故障集中在主轴位置,因为主轴连接着滚动、滑动的轴承,构成一体化的运行结构,所以主轴处于高速旋转状态时,就会发散出热量。主轴是普通车床的主要热源,当热量无法正常散发出来时,就会造成主轴以及周围连接装置过度发热,车床局部位置的温度升高,引起热变形的问题,发热故障较为严重时,会出现主轴、尾架不同高的问题,直接降低车床的加工精度,还会存在烧坏主轴的情况。
主轴发热故障,可能是主轴与轴承之间,经过长期摩擦而囤积了热量,导致全负荷车床工作状态下,主轴的刚度变化,影响了主轴的稳定性。主轴发生故障的排除方法中,在车床运行前,先要主动地调整好主轴与轴承之间的距离,同时安排好润滑工作,保持油路的畅通性,再控制好主轴的工作量,避免主轴处于超负荷的工作环境中。
4、漏油故障及排除
漏油在普通车床故障中比较常见,增加了车床的油耗,引起了较大的经济损失,干扰了车床的运行性能。普通车床漏油故障处理需采取日常的检测方法,安排漏油检查的相关工作,及时发现漏油问题并处理。
5、轴承故障及排除
普通车床的轴承故障,影响车床加工的传动工作,影响载荷的运行,属于故障多发点。轴承故障的排除需采取更换和改进的措施,检查轴承的性能,选择恰当的排除措施,一般情况下,轴承零部件损坏,可直接更换零部件,传动轴承断裂,就需要改进内部结构,重新布设轴承装置,以此来解决故障问题。
6、刀架故障及排除
普通车床的刀架故障,表现为卡刀、接触器烧毁,最终导致刀盘不转动。刀架故障排除时,需根据具体的故障,逐渐缩小故障的范围,明确故障的原因后并定位。车床刀位的元件损坏,更换主题的原因,刀盘不到位,需保持刀架锁紧的状态,使用扳手松动磁钢盘,对准霍尔元件与磁钢。
7、手柄故障及排除
车床手柄最容易出现脱开的故障。以普通车床的溜板箱自动进给手柄脱开故障为例,分析排除的方法,如:调整手柄的弹簧压力,保持手柄在正常负荷下的稳固性,利用焊补的方法修复手柄故障,定位孔出现磨损后,要采用铆补的方式打孔。
8、床鞍故障及排除
床鞍下沉故障,导致普通车床无法正常的工作,丧失车床的功能。床鞍故障的排除,采取日常修理的方法即可,改善齿轮以及刻度盘的刻度,保障小齿轮和齿条达到稳定的啮合状态,恢复床鞍。
机械加工厂内,普通机床在车间内,占有大部分的影响比重,渗透到机械加工的行业中,行业提高了对普通车床故障的重视度,致力于采取故障排除的方法,保障普通车床的有效性。车床在机械行业中,用于加工各种各样的回转表层,如圆面、锥面等,同时也能够加工螺纹、沟槽等,利用床身、刀架等普通车床的部件,配合普通车床的工作原理,实现主运动、进给运动,在车床车刀、工件的运动过程中,促使毛坯可以加工成指定的几何尺寸。
普通车床使用中,故障是不可避免的问题,如果不能在第一时间排除车床内的故障,就会干扰车床的运行水平,进而影响到车床加工的精度、速度,不利于车床的高效性。普通机床的故障出现于日常的运行和使用中,为了提高普通车床的工作能力,应该将故障作为首要的监督对象,保护好普通机床的运行过程。普通车床故障中存在一些典型的征兆,有经验的操作人员会根据车床故障的征兆,大概地判断运行故障,及时把控车床运行中的故障信息,弥补车床运行时的缺陷,进而落实好故障排除的方法。
㈢ 车床车轴振动由什么原因引起
1 振动 车削加工过程中,工件和刀具之间常常发生强烈的振动,破坏和干扰了正常的切削加工,是一种极其有害的现象。当车床发生震动时,工件表面质量恶化,产生明显的表面振纹,工件的粗糙度增大,这时必须降低切削用量,使车床的工作效率大大降低。强烈振动时,会时车床产生崩刃现象,使切削加工过程无法进行下去。由于振动,将使车床和刀具磨损加剧,从而缩短车床和刀具的使用寿命;振动并伴随有噪音,危害工人身心健康,使工作环境恶化。车床振动可公为自由振动’强迫振动和自系振动,据测算,这三类振动分别5%,30%,65%。 当振动系统的平衡被破坏,弹性力来维持系统的振动,称为自由振动(如图1),在外界周期性干扰力持续作用下,被迫产生的振动称为强迫振动(如图2),由振动过程本身引起切削力周期性变化,又由这个周期性变化的切削力反过来加强和维持的振动称为自激振动(如图3)。2 车床振动的振源 寻找振动的来源,并加以排除或限制,是有效控制振动的途径。振源来自车床内部的,称为机内振源;来自车床外部的,称为机外振源。 由于自由振动是由切削力的突然变化或其它外力冲击引起的,可快速衰减,对车床加工过程影响非常小,可以忽略不计。 1. 强迫振动的振源 机内振源:车床上各个电动机的振动,包括电动机转子旋转不平衡及电磁力不平衡引起的振动;机床回转零件的不平衡,如皮带轮、卡盘、刀盘和工件不平衡引起的振动;运动传递过程中引起的振动,如变速操纵机机构中的齿轮啮合时的冲击力,卸荷带轮把径向载荷卸给箱体时的振动,三角皮带的厚度不均匀,皮带轮质量偏心,双向多片摩擦离合器,滑动轴承和滚动轴承尺寸及形位误差引起的振动;往复部件运动的惯性力,如离和器控制箱体的正反转引起的惯性力振动;切削时的冲击振动,如切削带有键槽的工件表面时循环冲击载荷引起的振动;车床液压传动系统的压力脉动。 机外振源:其它机床、锻压设备、火车、汽车等通过地基传给车床的振动。 2. 自激振动的振源 引起自激振动的振源主要有车削时切削量过大、主切削力的方向、车刀的几何角度的选择不当等。3 振源分析 1. 查找车床振动振源的框图 2. 车床主轴箱内振源分析 一方面主轴箱中齿轮、轴承等零部件设计、制造及装配过程中存在某些不足之处,另一方面长期工作过程中使得某些零件失效,导致主轴箱在工作过程中产生了振动。齿轮在啮合时引起冲击产生频率为啮合频率的振动,主轴安装偏心所引起周期性振动;轴承的损伤所引起周期性冲击或者激发自身的各个元件以固有频率振动;以及其它因素所引起的振动。现以CA6140车床为例。对CA6140主轴箱传动系统中轴的回转频率和齿轮啮合频率进行计算和实际测量(计算过程从略)。由于主轴转速档位较多,故仅选取主轴转速为200rpm时计算主轴箱内各轴的回转频率和齿轮啮合频率,计算结论数据如表1所示;主轴前端D3182121双列向心短圆柱滚子轴的有关元件脉动频率计算结论数据如表2所示。3. 数据分析 经过大量实践分析对比,发现主轴箱内频率为f=173HZ、f=790HZ对切削力影响很大,f=173HZ频率的振动主要是通过工件直接传输给刀架的,而f=790HZ一部分能量通过车床床身传递给刀架,一部分能量通过工件传递给刀架。 进一步对f=173HZ,f=790HZ频率所产生振动原因进行分析=计算并与表1、表2对比。得出如下结果:f=173HZ是由主轴前端的双列向心短圆柱滚子轴承的内圈滚道表面粗糙度很大所引起的,f=790HZ为轴承上齿轮(Z=56)的啮合频率,由摩擦片离合器在啮合处刚性不足造成齿轮啮合时不平稳所引起的。 通过以上分析可知,在切削过程中,f=173HZ和f=790HZ振动频率对切削力影响很大。f=173HZ是由主轴前端的双列向心短圆柱滚子轴承所引起的;f=790HZ是由轴承上的齿轮啮合时不平稳所引起的。 4 车床振动的控制 1. 对强迫振动的控制 a. 将振源与车床隔离。设置隔振装置,将振源所产生的振动由隔振装置大部分吸收,减少振源对车削加工的干扰。挖防振沟,将车床安置在防振地基上,设置弹簧或橡皮垫减少振动。 b. 减少激振力。如精确平衡回转零部件,将电动机转子、皮带轮和卡盘作静平衡和动平衡试验,提高轴承装配精度。 c. 提高车床传动的制造精度。如将变速操纵机构中齿轮啮合的制造精度提高,可以减少因齿轮啮合传动而引起的振动。 d. 提高工艺系统的刚度及阻尼。车床系统刚度增加,对振动的抵抗能力提高,亦可减少振动。 e. 调节系统的固有频率,避免共振现象发生。 f. 采用减振器和阻尼器。 2. 对自激振动的控制 a. 合理选择与切削有关的系数; b. 合理选择车刀的几何参数; c. 合理安排刀尖高低、润滑; d. 提高工艺系统的抗振性。