① 数控机床对导轨的基本要求
(1)导向精度高
导向精度是指数控机床的运动部件沿导轨移动时的直线性和它与有关基面之间相互位置的准确性。数控机床无论在空载或切削加T时,导轨都应有足够的刚度和导向精度。数控机床影响导向精度的主要因素有导轨的结构形式、导轨的制造精度和装配质量及导轨与基础件的刚度等。
(2)良好的精度保持性
精度保持性是指导轨在长期的使用中保持导向精度的能力。数控机床导轨的耐磨性是保持精度的决定性的因素,它与导轨的摩擦性能、导轨的材料等有关。数控机床导轨面除了力求减少磨损量外.还应使导轨面在磨损后能自动补偿和便于调整。
(3)低速运动甲稳性
运动部件在导轨低速运动或微量位移时,运动应平稳、无爬行现象,这一要求对数控机床尤为重要。数控机床低速运动平稳性与导轨的结构类型、润滑条件等有关,其要求导轨的摩擦系数受小.以减小摩擦阻力,而且动摩擦、静摩擦系数应尽量接近并有良好的阻尼特性。
结构简单,工艺性好
要便于加工、装置、调整和维修。
② 怎么才能提高数控机床的加工精度
数控机床是数字控制机床的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,从而使机床动作并加工零件的控制单元,数控机床的操作和监控全部在这个数控单元中完成。通常情况下,要保证被加工零件的精度和表面粗糙度,机床本身必须具备一定的几何精度、运动精度、传动精度和动态精度。下面就简单的介绍下怎么才能提高数控机床设备的加工精度:
一、数控机床的精度介绍
(1)几何精度是指机床在不运转时部件间相互位置精度和主要零件的形状精度、位置精度。机床的几何精度对加工精度有重要的影响,因此是评定机床精度的主要指标。
(2)运动精度是指机床在以工作速度运转时主要零部件的几何位置精度,几何位置的变化量越大,运动精度越低。
(3)传动精度是指机床传动链各末端执行件之间运动的协调性和均匀性。
(4)对于机床的动态精度,尚无统一标准,主要通过切削加工典型零件所达到的精度间接的对机床动态精度作出综合的评价。
二、影响数据机床精度的因素
(1)机床的空载精度
以上的几何精度、运动精度和传动精度三种精度指标都是在空载条件下检测的,为全面反映机床的性能,必须要求机床有一定的动态精度和温升作用下主要零部件的形状、位置精度。而影响动态精度的主要因素有机床的刚度、抗振性和热变形等。
(2)数据机床外力作用
机床的刚度指机床在外力作用下抵抗变形的能力,机床的刚度越大,动态精度越高。机床的刚度包括机床构件本身的刚度和构件之间的接触刚度。机床构件本身的刚度主要取决于构件本身的材料性质、截面形状、大小等。构件之间的接触刚度不仅与接触材料、接触面的几何尺寸和硬度有关,而且还与接触面的表面粗糙度、几何精度、加工方法、接触面介质、预压力等因素有关。
(3)切削油的选用
数控机床在加工时所使用切削油的性能直接决定了工件的精度,性能优异的切削油可以从物理润滑到化学润滑全程平稳的对工件和刀具提供有效的防护作用,减少刀具磨损,大幅度提高工件加工精度。
(4)数控机床的振动影响
机床上出现的振动,可分为受迫振动和自激振动。自激振动是在不受任何外力、激振力干扰的情况下,由切削过程内部产生的持续振动。在激振力的持续作用下,系统被迫引起的振动为受迫振动。机床的抗震性和机床的刚度、阻尼特性、质量有关。由于机床的各个零部件热膨胀系数不同,因而造成了机床各部分不同的变形和相对位移,这种现象叫机床的热变形。由于热变形而产生的误差最大可占全部误差的70%。
温馨提醒:在数据机床生产过程中万万不能因为贪图便宜使用劣质油品,劣质油品性能低下会降低机床加工精度,并且会腐蚀设备,严重的会直接对人体产生危害,造成生产业的直接损失。
③ 数控机床电源的常见故障及抗干扰措施
数控机床电源的常见故障及抗干扰措施
由于我国工业用电电网电压波动较大,由此造成数控系统电源部分故障频率较高。那具体的故障都有哪些呢?有什么抗干扰措施没有?我为此特意整理了相关知识分享给大家!
电源是电路板的能源供应部分,电源不正常,电路板的工作必然异常。
一、开关电源常见的故障
1、熔丝熔断
如果烧断时保险管发黑有斑点,说明线路有严重短路,它是由于高压滤波电容击穿,整流管击穿等明显故障原因引起。如果保险管不黑,属慢慢熔断,可进行静态测量。一般是半桥中的一个开关管击穿或不良。
2、熔丝不断,输出无电压
这种情况先检查有无300V直流电压。如果没有,故障发生在逆变之前;如果有300V高压而无输出,这时可用示波器检查开关管集电极有无20kHz波形。如果开关管被击穿或没有振起。高频变压器开路均可造成逆变停止。另外,逆变电器正常但被后级的过流或过压电路动作而保护,使输出无电压。如果12V档主输出电源输出空载,就会引起过保护而使输出无电压。
3、电源输出电压不准
一般情况下,数控系统各档稳压直流电压的允许电压范围为额定值的±5%之内,如果超此范围,可调整电压调节电位器。将主输出电压档调至标准值。如果不能调至标准值,可能是电位器坏了或稳压管坏了。如果只有某一档电压偏离较大,则很可能是该档整流二极管损坏,要尽可能调换同型号的二极管。有时开关电源的负载能力差,也会使输出电压降低过大,这可能因参数变化使电路工作点偏离线性区域,如放大环节增益降低,检测电路处于非线性状态等。
4、开关电源发出重复地特殊响声
这通常是工作频率过低所造成,可用示波器检测脉冲宽度调制器,正常工作时将近20kHz左右。如定时回路电容器容量变大,也会引起振荡频率过低,使电源产生特殊的重复的响声。使开关电源不能正常工作。更换合适的电容即可恢复其正常工作。
二、数控机床抗干扰途径
1、采用抗干扰的优质电源
经验表明由电源引入的干扰是系统干扰的主要来源,抗干扰性能好的优质电源是提高系统可靠性的关键。
2、阻断噪声干扰传递路径
数控系统使用现场的电磁环境一般较为恶劣,特别是附近大型电气设备起动及停止时会在公用交流电网和控制回路上产生高频瞬变噪声。这些噪声会通过数控系统的输入电源窜入系统内部,因此必须采取滤波、隔离、屏蔽和保护等措施将噪声阻断在系统外部。
1)使用电源滤波器抑制输入电源噪声
电源滤波器是抑制电源干扰的有力措施,目前市场上有各种型号规格的滤波器可供选择。从抗干扰的角度出发,应验证其插入衰减量是否达到要求。另外,滤波器对噪声的实际抑制效果还取决于使用方法,应注意以下三点:
a、滤波器要尽量靠近电源输入插座安装,进线和出线使用双绞线并靠近地电位布线,二者一定要分开走线,不能平行走线,更不能捆扎在一起。
b、滤波器的接地电阻应越小越好,最好直接安装在系统机壳上离系统接地端子最近的位置,这样能更好的抑制高频共模噪声。
c、数控系统内部的伺服电动机驱动器、外围接口电路和计算机电路的电源可分别用3个滤波器供电,这样不仅能抑制外部电源干扰,还能抑制各部分之间的相互干扰。
2)采用变比为1∶1的隔离变压器进行隔离
隔离变压器是在它的初级绕组和次级绕组之间加了一层屏蔽层,并将它和铁芯一起接地,防止干扰信号通过初次级之间的电路进人直流供电系统。它能有效地抑制由电网侵入的瞬态强脉冲干扰,使得直流或低频干扰信号不容易通过传导的方式形成感应噪声。
3)将电源装在金属屏蔽盒内,并与系统内其它部分尽量隔开安装,可减少噪声在系统内部的辐射干扰。
4)建立掉电保护功能
工业电网的供电不稳定或者系统电源的偶然故障,突然掉电的事故是难免的。这就要求系统在发生掉电时保护好现场的数据,待电压恢复正常时,便可从掉电处继续执行程序。系统的掉电保护方案可用带掉电保护的RAM(如FLASH)或可读写EEPROM等来保存系统掉电时的现场数据及标志字。
3、抑制电源工作产生的噪音
1)抑制直流稳压电源噪声
一部分数控系统的电源(+5V)是由三端集成稳压器构成的。电路中有TTL器件时,其开关动作时间为5~10ns,在瞬变电流和公共阻抗的作用下,直流电源线上产生开关噪声。使电路的噪声容限降低,导致逻辑电路和微处理器误动作。减小开关噪声的有效方法是在每个集成电路的电源端与接地端之间接入一个0.01~0.1μF的限噪 钽 电容或高频无感滤波电容,在设计电路板时应将此电容安装在该集成电路的.电源输入侧并尽量缩短电容的配线。
2)抑制开关电源的噪声
目前,开关电源在数控系统中得到广泛使用。但是开关电源的噪声大、噪声频谱宽及高频辐射干扰严重。这些固有的缺点不能从根本上予以消除,只能使用隔离、滤波和屏蔽等措施来阻断噪声的传输。具体方法如下:
a.减小开关级晶体管与电源屏蔽壳之间的耦合电容,以减少噪声的产生;
b.用电感线圈将开关电源机壳与数控系统外壳相连,以减小共模噪声;
c.在交流电源输入端接入线路滤波器,不但能抑制共模噪声和串模噪声的产生,并且对外部电源噪声也同样有效。
d.开关电源有多个负载时,应采取将各负载电路在电源处就分开的布线方法,而不采用在离开开关电源一段距离后再接负载的方法。按后者布线时,分布电容使各负载的线路不平衡,导致形成较大的串模噪声。另外,电源外壳与负载电路一点接地并且接地阻抗要尽可能小。开关电源到各个负载电路采用双绞线相连;
e.开关电源需要同时给大功率负载与小信号负载供电,尽管它们的电压一致,也要分别用两组独立的开关电源来供电,这两组电源的地线要有公共连接点,这样不会形成公共阻抗,防止两路负载之间相互影响。
4、合理接地与布线
系统中直流电源的工作地应与系统中继电器、电磁阀及其驱动电源所构成的功率地分开,两者不可混接。另外、接地电缆应足够粗,并且电阻要小。布电源线时,应使强电和弱电分开,输入线与输出线分开。要根据电流的大小,尽量加粗导线的宽度,使电源线、地线的走向与数据传输的方向一致。采取以上方法对数控系统电源部分进行改进设计,有效地消除了干扰的影响,增加了整个数控系统的可靠性。
;④ 数控机床的试机的程序与注意事项
数控机床在启动前需要进行一系列的调试程序,以确保其运行状态良好。首先,主轴需进行空载慢转,并通过换挡来设定合适的转速,这包括最低和最高转速。如果配置了刀库,还需要进行换刀测试,并检查最大行程(XYZ方向)。接着,应测试打眼和攻丝功能,同时也要验证工作台的旋转功能,具体取决于工作台的类型,可能还需要测试旋转角度。如果具备交换工作台的功能,也应进行相应的测试。
为了确保机床的稳定性和可靠性,建议进行72小时无故障的拷机测试。在此期间,需要定期检查润滑状况,确保润滑系统正常工作。此外,还需监控主轴的温度,防止因过热导致设备损坏。
在进行试机的过程中,操作人员应密切注意设备的运行状态,一旦发现任何异常情况,应立即停机并查找原因,避免故障进一步扩大。此外,试机完成后,应详细记录试机过程中的各项数据,为后续维护和保养提供参考。
值得注意的是,在试机过程中,应避免对机床施加过大的负载,以免造成不必要的损害。同时,操作人员应熟悉机床的操作规程和安全规定,确保试机过程的安全。
在试机完成后,应对机床进行彻底的清洁和维护,确保其处于最佳状态。最后,应将试机过程中发现的问题和改进措施记录下来,为未来的使用和维护提供指导。
⑤ 机床静态精度都包含哪些内容简介
机床静态精度是指机床的几何精度、运动精度、传动精度、定位精度等在空载条件下检测的精度。
一、几何精度
机床的几何精度是指机床某些基础零件工作面的几何精度,它指的是机床在不运动(如主轴不转,工作台不移动)或运动速度较低时的精度.它规定了决定加工精度的各主要零、部件间以及这些零、部件的运动轨迹之间的相对位置允差。例如,床身导轨的直线度、工作台面的平面度、主轴的回转精度、刀架溜板移动方向与主轴轴线的平行度等。在机床上加工的工件表面形状,是由刀具和工件之间的相对运动轨迹决定的,而刀具和工件是由机床的执行件直接带动的,所以机床的几何精度是保证加工精度最基本的条件。
二、传动精度机床的传动精度是指机床内传动链两末端件之间的相对运动精度。这方面的误差就称为该传动链的传动误差。例如车床在车削螺纹时,主轴每转一转,刀架的移动量应等于螺纹的导程。但是,实际上,由于主轴与刀架之间的传动链中,齿轮、丝杠及轴承等存在着误差,使得刀架的实际移距与要求的移距之间有了误差,这个误差将直接造成工件的螺距误差。为了保证工件的加工精度,不仅要求机床有必要的几何精度,而且还要求内传动链有较高的传动精度。
三、定位精度
机床定位精度是指机床主要部件在运动终点所达到的实际位置的精度。实际位置与预期位置之间的误差称为定位误差。对于主要通过试切和测量工件尺寸来确定运动部件定位位置的机床,如卧式车床、万能升降台铣床等普通机床,对定位精度的要求并不太高。但对于依靠机床本身的测量装置、定位装置或自动控制系统来确定运动部件定位位置的机床,如各种自动化机床、数控机床、坐标测量机等,对定位精度必须有很高的要求。
机床的几何精度、传动精度和定位精度通常是在没有切削载荷以及机床不运动或运动速度较低的情况下检测的,故一般称之为机床的静态精度。静态精度主要决定于机床上主要零、部件,如主轴及其轴承、丝杠螺母、齿轮以及床身等的制造精度以及它们的装配精度。
四、工作精度
静态精度只能在一定程度上反映机床的加工精度,因为机床在实际工作状态下,还有一系列因素会影响加工精度。例如,由于切削力、夹紧力的作用,机床的零、部件会产生弹性变形在机床内部热源(如电动机、液压传动装置的发热,轴承、齿轮等零件的摩擦发热等)以及环境温度变化的影响下,机床零、部件将产生热变形由于切削力和运动速度的影响,机床会产生振动机床运动部件以工作速度运动时,由于相对滑动面之间的油膜以及其他因素的影响,其运动精度也与低速下测得的精度不同所有这些都将引起机床静态精度的变化,影响工件的加工精度。机床在外载荷、温升及振动等工作状态作用下的精度,称为机床的动态精度。动态精度除与静态精度有密切关系外,还在很大程度上决定于机床的刚度、抗振性和热稳定性等。目前,生产中一般是通过切削加工出的工件精度来考核机床的综合动态精度,称为机床的工作精度。工作精度是各种因素对加工精度影响的综合反映。