『壹』 磁制冷概念定义
磁制冷是利用磁热效应,即融制冷工质在等温磁化时向外界放出热量,而绝热去磁时温度降低,从外界吸收热量的现象。磁制冷技术中的制冷工质是固态的磁性材料。磁性材料的离子或原子磁矩在无外磁场时是杂乱无章的,加外磁场后,原子的磁矩沿外磁场取向排列,使磁矩有序化,从而减少材料的磁惰,向外放出热量。一旦去掉外磁场,材料系统的磁有序减小,磁熵增大,从外界吸收热量。磁熵是温度和磁场的函数,通过控制磁熵,磁性材料不断从一端吸热而在另一端放热,从而达到制冷目的。
磁制冷根据制冷温度区分为低温磁制冷和高温磁制冷。低温磁制冷在16K以下的极低温区,磁离子系统的磁熵变近似等于整个固体的总熵变,磁制冷采用卡诺循环,磁材料用稀土顺磁盐。磁制冷卡诺循环包括等温磁化、绝热退磁、等温退磁和绝热磁化四个过程,通过这些过程,磁性材料在两端进行吸热和放热,实现制冷。
开发出的磁材料有钆镓石榴石(Gd3Ga5O12)、镝铝石榴石(Dy3Al5O12)等,其制冷温度范围为(4.2~20)K。正在开发的磁材料如Ral2和RNi2(R代表Gd、Dy、Ho、Er等重稀土),其制冷温度范围为(15~77)K。磁制冷装置需要有超导强磁体产生强度达(4~7)T的磁场,利用旋转法实现循环,将磁介质做成小球状充填入空心圆环中,通过圆环的旋转实现磁化放热和退磁吸热制冷。
高温磁制冷在20K以上,特别是近室温附近,磁性离子系统的热运动加强,顺磁盐中磁有序态难以形成,磁热效应减弱。这时应采用艾里克森循环(Ericsson),它由等温磁化、等磁场过程、等温退磁和等磁场过程四个过程组成,通过这些过程,金属钆在不同温度区间实现制冷。
高温磁制冷研究包括寻找合适的磁材料、采用高磁通密度的永磁体以及研究最合适的磁循环并解决实现循环所涉及到的热交换问题。目前,力图使高温磁制冷实用化的研究包括寻找具有大离子磁矩、接近室温的居里点、较小磁场作用时能引起显著磁热效应的磁材料,以及优化磁循环和解决热交换问题。
基于“磁热效应”(MCE)的磁制冷是传统的蒸汽循环制冷技术的一种有希望的替代方法。在有这种效应的材料中,施加和除去一个外加磁场时磁动量的排列和随机化引起材料中温度的变化,这种变化可传递给环境空气中。Gd5Ge2Si2是其中一种所谓的巨型MCE材料,当在上个世纪90年代后期被发现时曾引起人们很大兴趣。
『贰』 磁冰箱原理
磁冰箱
磁冰箱是利用磁热效应制冷的冰箱
传统的冰箱或制冷机采用的是气体压缩循环系统,也就是将容易液化的氟利昂气体用泵送到制冷机内部吸收热量,然后传送到制冷机外面。当气体通过制冷机背后的蛇形管时,压缩机的压力使气体冷凝并向周围散发热量。在整个循环过程中,氟利昂和管壁之间的摩擦要消耗能量。因此,即使是最好的气体压缩式制冷机效率也只有40%。而且,氟利昂冰箱在废弃后,它释放出的氟利昂会进入大气破坏臭氧层。
而磁冰箱不用气体介质,其效率可达60%以上。新研制的磁冰箱的核心是一个旋转装置,装置包括含有金属钆片的转轮和一块高磁场强度稀土永磁铁。钆是一种特殊的金属,它被置于磁性环境后温度升高,当磁场被去除后则温度下降,这一现象被称为“磁热效应”。工作时,钆轮通过永磁铁缺口进入磁场后出现巨大的磁热效应,由此导致钆轮升温,系统内第一条循环管道的水将钆轮温度升高获得的热量带走以使钆轮冷却;当钆轮离开磁场后,钆轮温度就会下降到比它进入磁场前还要低的温度,此时系统内第二条循环管道的水通过钆轮并被钆轮冷却,被冷却的水成为制冷源,可用于制冷。
“我们正在见证历史,”美国能源部的冶金专家、爱荷华州立大学教授卡尔·格斯克奈德这样说。因为这一新的科研成果将改变传统的冰箱制冷系统,不再排放使地球变暖的气体,对于环境保护具有重要意义。与此同时,它的制冷系统在工作时几乎没有声音,因为它没有什么振动。
这种制冷系统的另一个优点是节能。这位专家说,这种磁冰箱只耗费驱动钆轮转动的发动机和抽水机的电力,节省了电能。刚开始要完全靠电,以后还可以发展到用电池驱动。他还说,这种磁冷却技术今后将广泛用于空调、冷冻和其它商用和家用设备。
应该说,利用“磁热效应”制冷,人类已经研究了很长时间。早在1918年,科学家们就发现有些金属在磁化时会变热,而退磁后又会变冷。从那以后,对于用这种效应制冷的研究和探索从未停止过,但长期以来,这个领域的研究进展非常缓慢。
美国埃姆斯实验室是从1985年开始在磁冰箱领域进行研究的,主要为美国的宇航公司研制,同时得到了美国能源部的资助。刚开始时,埃姆斯实验室的研究人员用笨重的超导磁铁来研究设计磁冰箱,遭到多次挫折。这次研发出来的新产品采用了新技术,首次使用了永磁铁。与此同时,埃姆斯实验室的研究人员还开发出了大量制造硅锗钆合金技术,这种材料具有更高的磁制冷效果,比使用纯钆磁制冷材料的效率要高出很多。
磁热效应:magnetocaloric effect
绝热过程中铁磁体或顺磁体的温度随磁场强度的改变而变化的现象。
这一效应的数学表示是,其中H是磁场强度,S是磁介质的熵,T是热力学温度。
用热力学理论研究磁介质的热力学性质,可以得到如下关系
其中是磁场强度H不变时单位体积的热容[1],表示磁场强度H不变时磁化强度M随温度T的变化率。利用这个关系,并设磁介质遵守居里定律可以得到关系。
对于顺磁介质,ⅹ和K都是正数,磁介质的热容CH也是正数,故有
可见,绝热地减小磁场时,物质的温度将降低。这种现象叫做磁致冷效应。利用绝热去磁法获得低温,就是依据这一效应。因为在没有磁场时,各个磁活动性离子的角动量取向是混乱的,使得每摩尔分子的熵,除了点阵振动所引起的部分外,又增加了一部分。若将磁介质在温度保持一定的情况下放入强磁场中,磁场将使所有离子的角动量取能量较小的方向,因而减小了系统的熵,这时有热量ΔQ=ΔS/T流出磁介质。若再绝热地慢慢减小磁场,使整个过程为可逆过程,则系统的总熵保持不变,但过程中各离子角动量取向引起的熵增加到原来的值,所以与点阵振动相联系的那部分熵必然减小,结果物质被冷却。绝热去磁法是现代得到低温的有效方法,可以得到约0.001K的低温。
物质的点阵振动和磁矩取向都对系统的熵有贡献,如先在等温情形下加外磁场,物质被磁化,分子磁矩趋向于一致的排列,对熵的贡献减小,系统放出热量;然后在绝热条件下撤去外磁场,磁矩恢复为无规排列,相应的熵增加,但由于是绝热去磁,系统的总熵不变,磁矩的熵的增加是以点阵振动的熵的减少作代价,这导致物质的冷却。绝热去磁与绝热去极化一样可用来获得低温 。
基于“磁热效应”(MCE)的磁制冷是传统的蒸汽循环制冷技术的一种有希望的替代方法。在有这种效应的材料中,施加和除去一个外加磁场时磁动量的排列和随机化引起材料中温度的变化,这种变化可传递给环境空气中。Gd5Ge2Si2是其中一种所谓的巨型MCE材料,当在上个世纪90年代后期被发现时曾引起人们很大兴趣。该化合物作为制冷物质有一个缺点:当在该材料表现出大的磁热效应的温度范围内循环其磁化时,它会因磁滞现象而损失大量能量。但是现在,研究人员找到了克服这一问题的一个简单方法。只是通过添加少量铁,就可将磁滞现象减少90%,所获得的合金成为一种性能得到很大改善的制冷物质,可在接近室温的环境下应用
『叁』 磁制冷技术的原理是什么
磁制冷是一种利用磁性材料的磁热效应来实现制冷的新技术,所谓磁热效应是指外加磁场发生变化时磁性材料的磁矩有序排列发生变化,即磁熵改变,导致材料自身发生吸、放热的现象。
在无外加磁场时,磁性材料内磁矩的方向是杂乱无章的,表现为材料的磁熵较大;有外加磁场时,材料内磁矩 的取向逐 渐趋于一致,表现为材料的磁熵较小。
磁制冷基本原理如图所示,在励磁的过程中,磁性材料的磁矩沿磁场方向由无序到有序,磁熵减小,由热力学知识可知此时磁工质向外放热;在去磁的过程中,磁性材料的磁矩沿磁场方向由有序到无序,磁熵增大,此时磁工质从外部吸热。
其次在绝热条件下,磁工质与外界没有发生热量交换,在励磁和去磁的过程中,磁场对材料做功,使材料的内能改变,从而使材料本身的温度发生变化。
(3)磁体为什么一直制冷扩展阅读:
磁制冷技术发展历史
1、1881 年,Warburg在金属铁中首次发现了这种现象,随后 Giauque进行了绝热去磁的应用研究, 并于1927年获得小于1 K的低温。
2、1976 年室温磁制冷技术出现了突破性进展,美国NASA的Brown采用稀土金属钆(Gd)搭建了第一台室温磁制冷样机,并引入回热概念,在7T超导磁场下获得47K无负荷制冷温跨。
3、基于回热器式室温系统的实践经验,1982年Barclay与Steyert进一步提出了主动磁回热器原理,并构建出主动磁制冷循环,为目前绝大多数室温磁制冷机采用。当前室温磁制冷技术已在磁热材料研发、流程设计回热器制备工艺、磁路设计等方面获得了不小的进步。
4、1997年Gschneidner 和 Gschneidner发现了GdSiGe基材料的巨磁热效应,随后胡凤霞等发现了比 Gd 绝热温变更大且价格更便宜的LaFeSi基材料;当单层 AMR 技术满足不了制冷性能的需求时,通过元素调节和掺杂可以调节材料的居里温度点,为多层 AMR 的应用奠定了材料学基础。
『肆』 磁制冷的概念定义
磁制冷就是利用磁热效应,又称磁卡效应 (MagnetoCaloric Effect) 的制冷.磁热效应是指融制冷工质在等温磁化时向外界放出热量,而绝热去磁时温度降低,从外界吸收热量的现象.磁制冷技术中的制冷工质是固态的磁性材料.我们知道,物质由原子构成,原子由电子和原子核构成,电子有自旋磁矩还有轨道磁矩,这使得有些物质的原子或离子带有磁矩. JI顶磁性材料的离子或原子磁矩在无外磁场时是杂乱无章的,加外磁场后,原子的磁矩沿外磁场取向排列,使磁矩有序化,从而减少材料的磁惰,因而会向外放出热量;而一旦去掉外磁场,材料系统的磁有序减小,磁恼增大,因而会从外界吸收热量.磁'脑是温度和磁场的函数,如果把这样两个绝热去磁引起的吸热过程和绝热磁化引起的放热过程用一个循环连接起来,通过外加磁场,有意识地控制磁惰,就可使得磁性材料不断地从一端吸热而在另一端放热,从而达到制冷的目的。
(1)
不同的磁介质产生的附加磁场情况不同,附加磁场与原磁场方向相同的磁介质为顺磁体(如铁、锰);附加磁场与原磁场方向相反的磁介质为抗磁体(如铋、氢等)。磁感应强度单位是特斯拉(Tesla),用符号T表示,量纲为N/Am。
依热力学方法讨论磁制冷。设物体的磁矩为 物体在磁场H中磁矩增加 时,磁场对物体作功为 。该过程中物体吸热 ,内能增加 。则由热力学第一定律有
(2)
式中 ----- 真空磁导率,;
―― ----- 磁场强度,A/m;
―― ----- 磁矩,。
将式(2)与熟知的气体热力学第一定律表达式 相类比。磁系统中的相当于气体系统中的压力 ; 则相当于体积 。并类似地引出磁熵 的概念。用 图可以描述磁性物体的磁热状态,反映出物体温度T、磁熵与磁场B(常用磁感应强度代替磁场度H)三者之者的关系。
低温磁制冷
在16K以下的极低温区,由于固体的晶格振动和传导电子的热运动可以忽略,故磁离子系统的磁熵变近似等于整个固体的总熵变这种情况下,磁制冷采用卡诺循环,磁材料用稀土顺磁盐。
磁制冷卡诺循环如图1所示。它由四个过程组成:
1-2 为等温磁化(排放热量);
2-3 为绝热退磁(温度降低);
3-4 为等温退磁(吸收热量制冷);
4-1 为绝热磁化(温度升高)。
已开发出的磁材料有:钆镓石榴(Gd3Ga5O12)、镝铝石榴石(Dy3Al5O12)、钆镓铝石榴石(Gd3(Ga1-xAl2)5O12,x=(0.1~0.4)。其制冷温度范围:(4.2~20)K。
正在开发的磁材料有:Ral2和RNi2(R代表Gd,Dy,Ho,Er等重稀土)。其制冷温度范围:(15~77)K。
磁制冷装置 首先需要有超导强磁体,用于产生强度达(4~7)T的磁场。用旋转法实现循环:将钆镓石榴石(磁介质)做成小球状,充填入一个空心圆环中。使圆环绕中心轴旋转,转到冰箱外的半环受磁场作用,磁化放热;转到冰箱内的半环退磁,吸热制冷。日本川崎公司研究的这类转动式磁制冷机需要的最大磁场强度为4.5T;旋转速度为0.72r/min;制冷温度达(4.2~11.5)K;制冷量为0.12w。
高温磁制冷
温度20K以上,特别是近室温附近,磁性离子系统热运动大大加强,顺磁盐中磁有序态难以形成,它在受外磁场作用前后造成的磁系统熵变大大减小,磁热效应也大大减弱。所以,进入高温区制冷,低温磁制冷所采用的材料和循环都不适用。
图2 高温磁制冷循环的 图
图2示出金属钆(Gd)在(200~300)K条件下的 图。如图若按卡诺循环制冷(图中 ),则温降很小。故这时应采用艾里克森循环(Ericsson),如图中12341所示。它由四个过程组成:1-2为等温磁化;2-3为等磁场过程(温度降低);3-4为等温退磁(吸热制冷);4-1为等磁场过程(温度上升)。
布朗用7T的磁场和金属钆,按上述循环成功地从室温制取到-30℃的低温。布朗的实验装置如图3所示。将金属钆板(磁材料)浸在蓄冷筒的蓄冷液体(水+乙二醇溶液)中。利用磁场变化配合蓄冷筒上下运动实现循环。图3中示出了一个周期的变化过程。经过多次反复,筒体上部达到323K;下部达到243K。
目前,力图使高温磁制冷实用公的研究包括以下主要方面:①寻找合适的磁材料(工质)。它应具有的特点是:离子磁矩大、居里点接近室温、以较小磁场(例如1T)作用与除去作用时能够引起足够大的磁熵变(即磁热效应显著)。现已研制出一系列稀土化合物作磁制冷材料,如R-Al,R-Ni,R-Si等系列的物质(其中R代表稀元素),还有复合型磁制冷物质(由居里点不同的几种材料组成)。②外磁场。需采用高磁通密度的永磁体。③研究最合适的磁循环并解决实现循环所涉及到的热交换问题。