导航:首页 > 装置知识 > 空重车自动调整装置

空重车自动调整装置

发布时间:2021-01-16 13:59:19

『壹』 出租车中空车、重车、空重车是什么意思

出租车中空车是指没载客,表示是空车,可以乘坐。

重车表示载客了,不能乘坐。内

空重车表示车上载客容了,但没有坐满,还是乘坐。

注意事项:《中华人民共和国道路交通安全法实施条例》第四章第四节《行人和乘车人通行规定》中的第七十七条规定:乘车人在机动车道上不得从机动车左侧上下车,开关车门不得妨碍其他车辆和行人通行。

(1)空重车自动调整装置扩展阅读:

《中华人民共和国道路交通安全法实施条例》注意事项:

1、不乘坐非正规的出租车,很多时候,非正规的出租车司机可能连驾照都没有,只是向别人租了辆汽车出来拉客而已,乘坐这样的出租车,潜伏着很多危险。

2、上车前要记住出租车的车牌号码,可以通过拍照的方式一键记录车牌号码,记录车牌号码的好处就是如果落下东西在出租车上,可以拨打出租车公司的电话,寻回丢失的物品。

『贰』 城市轨道车辆空重车调整时怎样实现的,最好具体些

车头是双向的,这个我也想知道的,呵呵

『叁』 关于货运车辆应用重力传感器,识别空重车状态(GPS平台显示)的技术成熟么谁能推荐几家,谢谢。

试一下液体储运监测仪看看,集成了GPS等所有功能,是个功能非常强大的产品。

『肆』 列车制动装置的正文

用以实现列车减速或停止运行,保证行车安全的设备
组成部件及其作用 列车制动装置由装在机车上的供风系统和自动制动阀、分装在机车和车辆上的制动机和基础制动装置,以及贯通全列车的制动管(又称刹车管)组成。整个制动系统中充以压缩空气。供风系统包括空气压缩机和总风缸,其作用是供给整个系统所需的压缩空气。柴油机车和电力机车的空气压缩机是电动的,而在蒸汽机车上则以蒸汽机带动,称为风泵。自动制动阀是机车司机用以操纵列车制动系统的装置。司机扳动自动制动阀手柄,控制制动管的排风或充风,使装在机车和车辆上的制动机动作。
制动机包括空气分配阀、副风缸和制动缸等。当制动管减压时,空气分配阀使副风缸中的压缩空气进入制动缸,推动鞲鞴,通过基础制动装置中杠杆的作用,使闸瓦(或闸片)紧压车轮踏面(或制动盘),阻滞车轮的转动,在轮轨间粘着力的作用下使列车减速或停止运行;制动管充风升压时,空气分配阀截断副风缸管路而使制动缸内的压缩空气排入大气,此时制动缸内的复原弹簧使鞲鞴恢复原位,闸瓦离开车轮,从而实现缓解(见图)。基础制动装置由一系列传动杠杆、制动梁和闸瓦(或闸瓦和制动盘)组成。传动杠杆起传递制动缸鞲鞴动作和分配鞲鞴推力的作用。
自动制动阀 机车司机用以操纵列车制动机的装置。自动制动阀最早是简单的排风塞门,以后发展成为由给气阀控制规定压力,由均衡风缸间接控制制动管减压的较为完善的结构。20世纪初,北美和欧洲铁路所使用的自动制动阀均采用回转式滑阀结构。50年代以后,改用柱塞阀、橡胶平面阀或弹簧调压均衡结构。当自动制动阀手柄处于制动区的某一位置时,自动制动阀在得到相应的减压量后能自动保压,在制动时能自动补充制动管漏泄的压缩空气,以保持所需要的减压量。欧洲型制动阀为了实现列车加快缓解功能,另设有能够在高压过充位和在转向运转位时能自动消除过充的装置,以避免产生自然再制动。70年代法国和联邦德国铁路还采用了按钮式自动制动阀,用电磁阀控制制动管的压力来实现制动和缓解。
制动机 机车和车辆上实现制动和缓解作用的装置。在早期的蒸汽机车牵引的列车上,机车和车辆的制动是分别进行的。机车使用蒸汽制动机;车辆则用手制动机,由人力操纵手轮或用杠杆拨动,使闸瓦紧压车轮踏面。机力制动机出现后,手制动机经过改进,仍作为辅助制动设备保留在车辆上,主要是在车辆单独停放时作为防止溜逸之用,在调车作业中也有使用。
随着铁路运输的发展,先后出现了多种机力制动机,如真空制动机、直通空气制动机、自动空气制动机、电空制动机等。
真空制动机 真空制动机系统在机车上设有真空泵、制动阀和真空制动缸,在车辆上则仅有真空制动缸。全列车制动部件用公称直径 50毫米(2英寸)以上的制动管连通。司机操纵制动阀,改变制动管中的真空度,真空制动缸中便产生压力差,从而起阶段的制动或缓解作用。这种制动机是英国铁路在1844年首先应用的。它的优点是构造简单,但制动力不大,而且海拔越高制动力越小。它的制动作用由列车头部车辆向后传播的速度(制动波速)低,制动空走时间和缓解时间都较长,列车前后冲动较大。英国铁路企业自1964年起逐步改用自动空气制动机。使用真空制动机的国家日益减少。
直通空气制动机 它的制动作用是:用空气压缩机产生压缩空气贮存在总风缸中,司机操纵制动阀,将总风缸中的压缩空气通过制动管送入机车和车辆上的制动缸实现制动,或将制动缸中的压缩空气排出,实现缓解。这种制动机是美国发明家G.威斯汀豪斯在1869年发明的。由于压缩空气由前向后逐车输送,列车前后车辆制动机动作时间差较大,这种制动机对较长的列车不适用。当列车分离时,制动能力全部丧失,列车运行安全不能保证,因此这种制动机应用不广。
自动空气制动机 在直通空气制动机基础上发展出来的空气制动机,有北美铁路应用的二压力机构(直接一次缓解)自动空气制动机和欧洲铁路应用的三压力机构(阶段缓解)自动空气制动机两个系统。二压力机构自动空气制动机为G.威斯汀豪斯于1872年所发明。这种制动机在车辆上设有副风缸,由制动管充风至规定压力,司机借助自动制动阀降低或恢复制动管压力,在制动管和副风缸间产生压力差(二压力机构因此得名),以控制制动机起制动或缓解作用。这种制动机可以根据制动管减压量的大小实现分阶段制动;但当制动管压力高于副风缸时,即可直接实现一次缓解。由于不能实现分阶段缓解,在坡道地区列车不易操纵,这是它的不足之处。这种制动机由于只用一根公称直径为25毫米(货物列车后来改用32毫米,按旧制分别为1和1.25英寸)的制动管,可以使用压缩空气(压力0.5~0.6兆帕),副风缸和制动缸的尺寸较小,重量较轻,因此于1889年被定为北美铁路联运货车的标准制动机,后来应用到客车上。随着列车长度的增加,这种制动机增加了快动功能、局部减压功能、常用和紧急制动后的加速缓解功能、常用制动的加速功能等。在结构上也有改进,使检修周期大为延长。新型的二压力机构自动空气制动机适用于100~150辆的长大货物列车,为重载列车的开行创造了条件。
三压力机构自动空气制动机是英国人汉弗莱在1892年设计成的。这种制动机是在每一车辆上除副风缸外再设一个工作风缸,以制动管和工作风缸间的压差来控制副风缸向制动缸的充气和排气,并使制动缸的压力参加力的平衡,所以称三压力机构。它可以按照制动管减压量的大小和压力恢复的多少,分阶段地实施制动和缓解,并且具有在制动系统未充满规定压力前制动缸压力不衰竭性能(压缩空气不会全部排尽)。三压力机构自动空气制动机适用于在山区运行的列车和短小列车,但因缓解作用慢,不适宜于长大列车。
电空制动机 以压缩空气为动力,利用电磁阀控制各节车辆上空气制动机的制动和缓解作用的制动系统。按作用原理可分为:①直通式,电磁阀直接控制压缩空气进入或排出制动缸;②自动式,电磁阀控制制动管压力增减,使自动空气制动机起作用。使用电空制动机可使列车前部和后部的车辆动作一致,能有效地减弱列车的纵向冲动,缩短制动距离。因此各国的地下铁道车辆、动车组和高速旅客列车广泛应用这种设备,货物列车采用尚少。
基础制动装置 制动缸鞲鞴杆的推力通过一系列杠杆扩大适当倍数(称为制动倍率),并分配到各闸瓦(或闸片)上,使其紧压车轮踏面(或制动盘)产生制动力。通常客车采用双侧闸瓦,货车用单侧闸瓦,机车上则两者均有采用。为补偿闸瓦磨耗对鞲鞴行程的影响,有些车辆装有闸瓦间隙自动调整器。为了按车辆载重调整空车或重车时的制动倍率,有些车辆装有两级或多级空重车自动或手动调整装置。欧洲一些高速车辆上还有用一个闸瓦托装两块闸瓦以增加闸瓦作用面积和改善制动性能的。在传统的制动装置结构中,一辆车只有一个制动缸,安装在底架下面。近30年来,美国有些货车把制动缸装在转向架上同制动梁连成一整体,不仅简化了结构,而且传动效率高。在部分客车上也采用安装在转向架上的制动缸以提高传动效率。柴油机车和电力机车上由于存在牵引电动机,在车轮前后的一侧或两侧,单独使用一套由制动缸、传动机构、间隙自动调节器和闸瓦紧凑地组合而成的制动单元。有些液力传动机车上还采用液力制动。
闸瓦 与车轮踏面接触产生摩擦,将列车动能转换为热能散入大气,达到列车减速或停止运行的部件。闸瓦按材质可分为铸铁闸瓦和合成闸瓦两类。
①铸铁闸瓦。已有100多年使用历史,早期是灰铸铁闸瓦,含磷量约0.2%左右,摩擦系数随速度的提高而迅速下降,耐磨性也很差。改用中磷闸瓦(含磷量0.7%~1.0%)可以改善性能,但在制动时容易产生火花引起火灾。高磷闸瓦(含磷量2.5%以上)产生的火花少,比较安全,但质脆容易断裂,浇铸时须添装钢制瓦背。高磷铸铁闸瓦的使用,日益普遍。
②合成闸瓦。又称非金属闸瓦,是用石棉及其他填料以树脂或橡胶作为粘合剂混合后热压而成。合成闸瓦也要用钢背加强。如果闸瓦压制成片状用于盘形制动则称闸片。合成闸瓦于1907年首先在伦敦地铁车辆上使用。50年代以来,应用日益普遍。合成闸瓦重量轻,耐磨,制动时基本上无火花。它与钢轮间的摩擦系数随速度提高的变化小,与轮轨间的制动粘着系数的变化基本一致,从而可以较好地利用粘着作用,改善制动性能和缩短停车制动距离。合成闸瓦有高摩擦系数和低摩擦系数之分。高摩擦系数合成闸瓦的摩擦系数约为铸铁闸瓦的两倍,可使用较小直径的制动缸和副风缸,从而减轻基础制动装置的重量,又能节省压缩空气,优点较多。低摩擦系数合成闸瓦可以直接取代铸铁闸瓦,适合于改造旧车之用。合成闸瓦的缺点是导热性能较差,摩擦所产生的热量使车轮踏面温度升高,甚至使踏面出现局部高温而导致热裂。近年来,为避免对环境的污染,无石棉、无铅等有害物质的合成闸瓦得到越来越多的采用。
盘形制动 用特设的制动盘和闸片作为摩擦副取代传统的车轮踏面和闸瓦摩擦副,将列车动能转换成热能以实现列车制动,多用于时速超过160公里的车辆上,可免制动时产生过高的热负荷而使车轮踏面热裂。自1930年德国在柏林地铁车辆上首次采用这种制动方式以来,对制动盘和闸片的材质、结构形式和安装方法已作了许多改进。制动盘有安装在车轴上的,有安装在车轮辐极上的。铸铁盘和高摩擦系数合成闸片这一对摩擦副有较好的摩擦特性,应用较广。使用盘形制动后,一般仍装有用于清扫踏面的铸铁闸瓦,以免因踏面油污而降低轮轨间粘着系数。在一些高速机车车辆上,踏面清扫闸瓦也承担一部分制动力和盘形制动结合使用,可取得更好的制动效果。

『伍』 铁路货车中,空重车转换质量什么意思

铁路火车空重车重量相差很大,而如果制动系统制动力不变,在重车上制动力不足,无版法有效减速;权在空车上,制动力过大,会造成车轮抱死,造成踏面擦伤和损伤轨道。
所以设置空重车调整装置,以调节车辆制动力,形成合适的制动效果

『陆』 为什么在车辆空气制动机上设置空重车调整装置

可以调整空、重车不同制动力的一种制动装置。

『柒』 轨道车使用的自动空气制动机是几个类型

制动机工作原理:第一,向制动主管充气时缓解;将制动主管内的压缩空气排出(减压)时制动,所以称为“减压制动”。减压制动:当列车分离或拉动车前阀时,由于制动主管的压缩空气向大气排出,压力突然降低,就可以自动地产生紧急制动作用,使列车立即停住,以防事故的发生或扩大。第二,这种装置在制动过程中不是直接用总风缸的压缩空气送入制动缸,而是与先贮存在副风缸内的空气送入制动缸起制动作用,因此称为“间接制动”。间接制动:能使列车前后车辆的制动作用不至于差别过大,使整个列车能平稳的停下来。空重车调整装置:当空重车转换手把放在空车位置时,一部分压缩空气进入降压风缸,使制动缸中产生较小的制动力;当转换手把放在重车位置时,降压风缸不起作用,压缩空气全部进入制动缸中产生较大的制动力。缓解阀:为使制动着的车列缓解,可以拉动副风缸上的缓解阀,使副风缸的压缩空气经缓解阀排出,副风缸内的空气压力低于列车主管的空气压力,三通阀的主活塞就动作,滑阀随其移动,使制动缸内的空气排出大气,闸瓦离开车轮而缓解。紧急制动阀:在每节客车上都装有紧急制动阀,货车一般只在守车上安装紧急制动阀,又称车长阀。在列车运行中,当发现有危及行车和人身安全的紧急情况时,车长或乘务员可以按《铁路技术管理规程》的要求拉动车长阀,使列车紧急制动停车。所以是最后一辆先制动!

『捌』 120型控制阀实际运用存在着哪些不足

1、120型空气制动机缓解不良或缓解灵敏度差的原因有哪些?

答:产生的原因:(1)由于滑阀与滑阀座研磨不良,表面粗糙度差,润滑油不标准粘度太大,滑阀弹力太强;主活塞膜板太厚;缓解通孔有异物堵塞或缓解孔错位造成主活塞下移时阻力大,缓解通路开通较晚。(2)主活塞漏泄相当大,例如主活塞膜板漏泄、穿孔或主活塞密封圈不入槽、松动漏泄很大,使制动管压力空气通过漏泄处进入主活塞下侧,主活塞未下移或下移很小,所以制动缸压力空气无法排出或排出很慢。(3)列车制动管系统产生漏泄,例如局减阀套和局减阀杆密封圈漏泄;加速缓解阀套下端密封圈漏泄;紧急二段阀套和二段阀杆上圈漏泄都将致使列车制动管的压力上升减慢或不上升,主活塞两侧建立不起足够推动作用部移动的压力差,产生缓解不良或不缓解。

2、120型空气制动机不制动或制动灵敏度差的原因有哪些?

答:产生的原因:(1)主活塞漏泄。例如密封圈未装或未入槽、太松,主活塞膜板破损。因此,当制动管减压时,主活塞下侧副风缸压力空气通过漏缝处外流至上侧,副风缸压力随制动管压力下降,主活塞不上移或很晚才移动。(2)由于加工或组装方面的原因,致使主活塞上移时在滑阀与铜套滑阀槽之间,主活塞杆导向面与滑阀套导向槽之间以及滑阀弹簧销子与铜套之间发生别劲现象;或滑阀、节制阀严重缺油,润滑不良等原因,使主活塞与滑阀移动阻力过大,当制动管减压时主活塞不易上移,须到制动管压力减到相当程度时才上移。

3、120型空气制动机自然制动的原因有哪些?

答:产生的原因:(1)稳定弹簧过弱,主膜板老化,当列车制动管稍有漏泄,副风缸压力空气就经过充气限制孔向列车制动管逆流,在主活塞两侧形成足以压缩稳定弹簧并克服主活塞杆上移阻力的压力差,使主活塞上移,造成自然制动。(2)滑阀充气限制孔小或被异物堵塞,副风缸压力空气逆流到制动管受阻,则造成自然制动。

4、120阀试验时,充气缓解位局减排气口漏泄过大是由哪些原因造成的?

答:充气缓解位局减排气口漏泄过大主要有下列3项原因:(1)节制阀与滑阀顶面研磨不良或有拉伤,致使副风缸或列车制动管压力空气经第一阶段局减通路从局减排气口通向大气。(2)滑阀研磨不良,或被异物拉伤,压力空气窜入第一阶段局减通路,从局减排气口通向大气。(3)主阀体或滑阀套漏泄。

5、120阀试验时,紧急制动位主阀排气口漏泄由哪些原因造成?

答:紧急制动位主阀排气口漏泄主要有下列2项原因:(1)滑阀或滑阀座研磨不良或被异物拉伤,造成压力空气窜入主阀排气通路。(2)滑阀套或主阀体漏泄。

6、120阀副风缸充气快是由哪些原因造成的?

答:120阀副风缸充气快主要有以下4个原因:(1)滑阀充气限制孔偏大;(2)与Ф254mm制动缸配套的120阀的列车制动管充气缩孔堵孔径偏大。(3)加速缓解风缸充气孔被堵塞。(4)加速缓解阀的Ф38mm夹心阀与阀座不密贴。

7、120阀缓解不良是由哪些原因造成的?

答:120阀缓解不良主要有以下3个原因:(1)滑阀中的Ф0.2mm眼泪孔过大。(2)列车制动管通过堵塞。(3)主活塞存在漏泄。

8、120阀缓解阀不复位是由哪些原因造成的?

答:120阀缓解阀不复位主要有以下2个原因:(1)缓解阀活塞杆与上阀座不垂直、缓解阀弹簧太弱或活塞杆上的O形密封圈过紧,产生过大的阻力,使缓解阀弹簧不能推动缓解阀活塞杆下移复位;(2)缓解阀活塞杆套上的两个通制动上游通路的小孔被异物堵塞,使缓解活塞下腔的压力空气不能排出。

9、120阀紧急阀排气口漏泄是由哪些原因造成的?

答:120阀紧急阀排气口漏泄主要有以下6个原因:(1)放风阀与阀座密封不良。(2)放风阀座与阀体压装时拉伤。(3)先导阀顶杆内的O形密封圈与放风阀轴向内孔密封不良。(4)先导阀与位于放风阀杆内的先导阀座密封不良。(5)放风阀杆O形密封圈损伤或放风阀盖内套拉伤。(6)紧急阀体内壁有砂眼或放风阀盖内套压装时有拉伤。

10、120阀紧急室充气过慢是由哪些原因造成的?

答:120阀紧急室充气过慢主要有以下4个原因:(1)紧急活塞杆径向充气孔Ⅳ(Ф0.5mm)偏小,引起紧急室充气慢。(2)紧急活塞杆径向孔Ⅳ(Ф0.5mm)或轴向孔Ⅲ(Ф2.3mm)或滤尘套被异物堵塞。(3)紧急阀盖及放风阀盖结合部漏泄。(4)初充气过程排气口漏泄。

11、KZW-4G型货车空重车自动调整装置常见的故障及原因有哪些?

答:(1)空车时制动缸压力过高。原因:与降压风缸相连接的控制管路漏气。(2)空车时制动缸压力过低。原因:制动缸行程过大。(3)制动时传感阀触杆中心孔间歇排气。原因:制动管路漏气。(4)制动时传感阀触杆未伸出中心孔排气。原因:传感阀内部配合阻力增大。

12、TWG-1系列空重车自动调整装置常见故障及原因有哪些?

答:常见故障及原因有下列5项:(1)空车位或重车位制动时,制动缸不出闸。原因:阀体或阀座上制动缸气路的塑料堵未清除。(2)TWG-1A型或C型自动调整装置重车位制动时,制动缸压力只达到220kPa左右。原因:将TWG-1A型或C型自动调整装置错装成TWG-1B或D型。(3)空车位制动时降压气室压力过低。原因:与降压气室相连接的管路漏气。(4)空车位制动时制动缸压力过低。原因:制动缸活塞行程过大。(5)空车位或重车位制动时制动缸压力过低。原因:制动缸管路漏泄。

车辆发生抱闸及安定性能不良的技术原因

由于目前货车车辆多采用120制动阀,因此以此类阀件进行说明:

1、120型控制阀制动报闸原因:

(1)120控制阀主阀膜板穿孔。造成副风缸和列车管的通路在列车管少量减压量时,主阀主活塞两侧没有形成压力差,主阀不起制动作用,当常用制动时,由于列车管减压量较大,主阀主活塞两侧形成压力差,起制动作用,但制动机缓解时,由于列车管进风量较少(或者车辆在机车后部),不能推动滑阀到达缓解位置,造成制动机不缓解。如果列车在中途停车后,再施行缓解,没有确认全列车缓解而发车,就会造成制动报闸。

(2)主阀作用部主活塞的沟槽较浅或者装用了103主活塞。造成主活塞吸附在上盖上(由于主活塞与上盖比较密闭,列车管压力集中作用在膜板周围,当缓解时,压力空气对膜板造成破坏性拉伸)。

(3)作用部配件与阀体有别劲。当列车施行常用制动或者紧急制动后,控制阀不能缓解。

2、120型控制阀安定性不良的原因:

(1)120紧急阀紧急活塞杆轴向孔直径小于2.5mm。在施行常用制动时,紧急室压力空气不能及时向列车管逆流,紧急室压力空气压迫紧急活塞杆、安定弹簧下移,顶开放风阀,发生紧急制动作用。

(2)120紧急阀安定弹簧衰弱或处于极限挠度。

(3)紧急阀排风口大量漏风。如先导阀与座不平或者夹有杂物;先导阀弹簧衰弱;放风阀与座不平或者夹有杂物;放风阀弹簧衰弱等。

3、车辆抱闸其它重要因素:

(1)K2改车辆各级杠杆定位不准,产生顶抗,在运用过程中受震动造成卡死。

(2)冬季风雪较多,温度较低,制动阀内部润滑不良、进水上锈等造成制动阀动作不良。

(3)闸调器在车辆运用过程中存在故障,如外体不转、A推、A杠值超标、内部润滑不良,卡死别劲等。

(4)人力制动机由于车站防溜制动后,没有及时恢复。

(5)基础制动固定支点等处的圆销定位不准确,造成制动力过大,夜间极易产生火花导致车站外勤误报车辆抱闸。

(6)侧架三角孔内易燃杂物过多,由于制动高温导致自燃,被外勤误报车辆抱闸或燃轴。

解决途径:

1、要根据季节(如冬春相交阶段、冬季突降低温及各季节气温突变阶段)作业特点,加强列车队试风作业标准的落实,在进行制动机试验作业时,检车员必须认真确认制动机活塞行程和闸调器技术状态。发现活塞行程不符合规定要求或闸调器作业不良时,须认真查明原因,妥善处理。要加强对基础制动装置的检查,发现各制动杠杆变形、别劲;人力制动机轴链未松;同一制动粱闸瓦厚度差过限;闸瓦紧贴踏面等情况时,须认真处理。要认真落实送车制度,列车起动时必须安排人员送车,监控列车运行状态,特别是对感度试验不出闸的车辆、缓解大于45秒的车辆、K2改车辆基础制动各杠杆等安全重点进行认真把关,确保行车安全。

2、各检修车间制动室是制动阀检修的源头,严格落实检修工艺是消除车辆制动阀类故障的重要途径。定检车间的制动室要加强环境卫生管理,加强对阀内配件的清洗,提高阀内配件的清洁度,对各类弹簧挠度值处于上限或下限的妥善处理,重点针对120阀紧急部安定弹簧等进行专项质量控制,确保制动阀检修质量达标。

3、各站修作业场要保证单车试验质量,单车试验器需按规定进行定期检修和校验,同时要提醒使用人妥善使用设备,确保单车试验器不致于人为因素产生故障。单车试验时应严格进行闸瓦间隙自动调整器及空重车自动调整装置性能试验,试验过程中对基础制动装置是否别劲、变形进行检查;制动阀在装车前的搬运过程中,要加装防尘堵,做好防护,安装前须用压力空气将制动管系吹扫干净

单车试验120阀故障判断处理

单车试验120阀的故障判断和处理

一充气时主阀排风口大排风

1.滑阀弹簧过弱,滑阀与座接触不良或搬运时震动过大,使滑阀与座间夹有不洁物;

2.油质老化或滑阀与座间夹有不洁物;

3.紧急二段阀密封圈漏泄,主管压力进入制动缸后从排气口排出;

4.加速缓解阀套或加速缓解阀顶杆不良;<<p>那一年,我惹生气的女孩 br />
5.半自动缓解阀的加速缓解止回阀或付风缸止回阀漏泄的压力空气进入制动缸后,从主阀排气口排出;

6.也发现有120阀中间体沙眼造成排气;

处理办法:

更换120阀,如果联换几个故障仍然相同时,应考虑中间体有沙眼,更换中间体。

二不制动或制动灵敏度差

1.主活塞模板穿孔,或密封圈不良,当制动管减压时,付风缸风压经过模板穿孔处密封圈漏泻处倒流制动管,轻责造成制动灵敏度差,重责影响制动作用;

2.主活塞合成抗力大,

处理办法:

更换120阀。

三制动后不缓解或缓解过慢

1.滑阀抗力大,油质不标准。滑阀弹簧过强,主活塞模板厚。

2.主活塞漏泄严重,例如模板穿孔,密封圈不入槽,造成活塞两侧压差小或形不成压力差。

3.制动管系漏泄严重,局减阀套或局减阀杆密封圈漏泄,加速缓解阀下端密封圈漏泄,紧急二段套和紧急二段阀杆密封圈漏泄,都将造成制动缸压力上升减慢或不上升,影响压力差的形成。

处理方法:

首先检查制动管的漏泄量,确认制动管不漏泄后再更换120阀

四制动后保压时发生再制动

1.局减阀套、局减阀杆密封圈不良,使制动管的压力进入制动缸,产生再制动。

2.节止阀研磨不良,关不住滑阀制动孔,付风缸压力空气进入制动缸。

3.紧急二段阀,或紧急二段阀杆密封圈不良,制动管压力漏入制动缸。

处理方法:

在保压时,如果制动管系部分漏泄严重,也能造成保压后的再制动,故应先检查制动管系的漏泄,在确定不漏时,再进行换阀处理。

五制动后保压时自然缓解

1.滑阀或截止阀研磨不良或有异物,使付风缸风压经漏泄处排出大气造成自然缓解。

2.主阀后盖结合处有漏泄,使付风缸压力漏入大气,造成自然缓解。

3.加速缓解阀套上的密封圈或止回阀密封不良,加速缓解风缸的高压空气漏入制动管,造成自然缓解。

4.半自动缓解阀,付风缸止回阀密封不良使付风缸的风排出大气产生自然缓解。

处理方法:

付风缸堵,付风缸支管漏泄也会造成自然缓解,因此应先检查漏泄处所,再确定无漏泄时,再换阀。

六紧急制动不灵敏或不起紧急制动作用

1.紧急模板穿孔,当列车管急剧减压时,紧急室压力空气通过穿孔处流向紧急活塞下侧,因而形不成使紧急活塞下移的压力差,或形成压差较晚。

2.紧急活塞中心限孔过大,使紧急活塞两测形成的压力差较小,难以推动先到阀顶杆。

3.安定弹簧过强,紧急活塞两侧压力差,虽然形成,但紧急活塞因安定弹簧过强而难以下移。

4.先导阀杆别劲,放风阀弹簧过强或导向杆卡位,虽然紧急活塞两侧的压力差大且紧急活塞也下移,但紧急活塞杆压不开或不易压开先导阀和放风阀,所以造成不起紧急制动作用或紧急制动灵敏度差。

处理方法:

更换紧急阀

七常用起紧急制动

1.安定弹簧弱,紧急活塞两侧形成的压力差极易压缩安定弹簧。

2.紧急活塞轴向缩孔过小或被异物堵塞,当制动管减压时,紧急室的压力空气经活塞杆轴向孔向制动管逆流,但由于缩孔堵塞,很快就在紧急活塞两侧形成较大的压力差,使紧急活塞下移,产生紧急制动。

处理方法:

更换紧急阀

八无加速缓解作用

1.加速缓解止回阀的四爪圆弧滑有磨均匀,组装不正位或异物阻挡,影响加速缓解风缸的风进入制动管。造成加速缓解不明显或无加速缓解作用。

2.加速缓解风路被蜡或异物堵塞,也会造成无加速缓解作用。

3.加速缓解弹簧过强,或加速缓解阀杆密封圈过紧,或部分主阀前盖的排气孔缩堵孔径偏大,造成打开加速缓解阀的阻力增大,造成加速缓解阀打不开。

4.加速缓解顶杆组装反向,当作用部缓解时,虽然制动缸压力能够推动加速缓解阀顶杆,打开加速缓解阀,但由于加速缓解阀顶杆密封圈向内侧超过最大形程,失去密封作用,则加速缓解风缸和制动管的压力空气就会从失去密封作用的轴孔经制动缸缓解通路从作用部排气口排出大气造成无加速缓解作用。

处理方法

更换120阀

120阀常见故障与分析

随着120型分配阀的普及与推广应用,120阀在我国铁道车辆上逐渐起着主导地位,货物列车向着高速重载方向发展。在运用上120阀可靠性能是列车再次提速的保证。因而保证120阀的正常运用,现显得比较重要。现就120阀在日常检修中常发现的故障进行说明,并对其做简要分析。

一、常见故障分析

1、主阀

a.自然缓解

原因分析:自然缓解是指120阀制动机减压40KPa后,保压不到1分钟就产生自动缓解。主要原因是各结合部、摩擦副、模板等漏泄造成的。

b.副风缸充气快

原因分析:(1)滑阀座充气孔(l1、l2)偏大;

(2)加速缓解风缸充气慢,也会使副风缸充气快;

(3)主活塞橡胶有穿孔,使得主活塞上部l9室的压力空气通过模板进入主活塞下部,进而进入副风缸;

(4)加速缓解阀的夹心阀ф38与阀座密切性不好,

C.加速缓解风缸充气过慢

充气通路:加速缓解风缸充气是由主阀作用部滑阀室内的副风缸压力空气经滑阀顶面的加速缓解风缸充气孔f2,再经滑阀座上的孔h1后通过中间体上的孔h至加速缓解风缸。

产生原因:(1)滑阀上的加速缓解风缸充气通路或充气孔f2(ф0.9)被堵塞;

(2)主阀体内加速缓解风缸充气通路堵塞。

c.加速缓解试验时,加速缓解风缸压力下降

产生原因:(1)半自动缓解阀的两个止回阀没有压到位。120阀的半自动缓解阀顶杆有两种,一种是铜质顶杆,另一种是工业塑料材质的顶杆。一般来说,铜质顶杆较好。而工业塑料材质的顶杆,在使用过程中易变形,会失去其正常功能;

(2)o形圈橡胶密封圈不密切;

(3)缓解阀膜板有漏风。

d.充气时,主阀部排气口漏泄

产生原因:(1)列车管压力空气经滑阀漏出;

(2)副风缸压力空气由滑阀漏出;

(3)列车管压力空气经紧急二段阀O形圈漏出。

一般来说,我们可以根据漏出空气的音响加以辨别,充气刚开始,列车管压力很快就上升,因此若列车管压力空气通过滑阀漏出,在充气一开始就会发出较高的音响,如果是副风缸的压力空气漏出,印象一定是渐渐增高,而且随着副风缸充气时间越长响声越来越长。

e.稳定性试验,稳定性不良

产生原因:(1)充气孔过小或被异物堵塞,如充气时间符合要求,一般不会是充气孔的问题。

(2)稳定弹簧过弱或主膜板老化。

f.紧急制动位时局减阀盖上的小孔有压力空气漏出

产生原因:制动位时,局减阀活塞两侧,一侧为制动缸压力空气,另一侧为大气。局减阀盖上的小孔处有压力空气漏出,表明局减活塞处有漏泄,其原因主要有:

(1)局减膜板紧固螺母松动;

(2)局减膜板有气孔;

(3)局减上活塞、下活塞有砂眼。

g.充气缓解位局减排气口漏泄过大

产生原因:与局减室相通的气路全部在主活塞滑阀部分,因此,造成漏泄的原因也集中于此,主要有:

(1)节制阀与滑阀顶面研磨不良或有拉伤,致使副风缸或列车管压力空气经第一阶段局减通路从局减排气口通向大气;

(2)滑阀研磨不良或被异物拉伤,压力空气窜入第一阶段局减通路,从局减排气口通向大气;

(3)主阀体或滑阀套漏泄。

2、紧急阀

a.不起紧急作用

原因分析:(1)紧急阀上盖泄露或紧急活塞漏泄;

(2)安定弹簧过硬。当实施紧急制动时,紧急活塞两侧产生的压力差不足克服安定弹簧的阻力,使弹簧压缩,紧急活塞起初虽下移,但未能顶开先导阀,紧急活塞杆的下端面与先导阀顶杆之间有一点间隙(3mm),再加安定弹簧的阻力,不能产生足够的压力差;

(3)先导阀顶杆活动不灵活。检查顶杆内的O形圈是否压力过大,或者O形圈四周有橡胶毛刺,致使顶杆运动阻力大。

b.安定试验起紧急制动

原因分析:(1)安定弹簧过弱。紧急活塞两侧有很小的压力差时就可以使活塞下移产生紧急制动作用。这是常见的故障。

(2)紧急活塞轴向限孔Ⅲ(Φ2.3)过小或被异物堵塞,列车管常见制动减压时,紧急室的压力空气经活塞杆轴向限孔向列车管逆流,使紧急活塞两侧不能产生大的压差,但如果限孔堵塞,紧急室压力将跟随列车管压力同步下降,从而在紧急活塞两侧形成较大压差,使紧急活塞下移,产生意外紧急制动作用。

C.紧急制动灵敏度差

产生原因:(1)紧急阀上盖漏泄或紧急活塞漏泄;

(2)紧急活塞杆中的限孔Ⅲ(Φ2.3)过大,使紧急活塞两侧难以形成必要的动作压差,因而无法下移推动先导阀顶杆;

(3)安定弹簧过硬。紧急活塞两侧的动作压力虽然形成,但因安定弹簧过硬,紧急活塞不易下移;

(4)先导阀顶杆别劲,顶杆内的О形圈压量过大或放风阀轴向内孔有拉伤或橡胶未清除干净,致使先导阀顶杆运动阻力大。

d.紧急室充风时间不合格

原因分析:(1)紧急室充气时间长:紧急活塞杆上的横向限孔Ⅴ(ф1.1)被杂质堵塞或接触部有漏风;

(2)紧急室充气时间短:紧急活塞杆上的横向限孔Ⅴ(ф1.1)偏大。

二、其他原因分析

1.在阀制造过程中,一是活塞杆上的О形圈与铜套的尺寸的形位公差未达到技术要求,活塞杆与铜套之间别劲;二是有时没有清除干净阀内的蜡,直接装车,在阀的运用中产生通路被堵塞,影响阀的正常使用。

2.运用中,由于压缩空气中夹杂着粉尘、小颗粒与油脂等异物,对120阀的运用构成极大的威胁,尤其对滑阀、节制阀和夹心阀影响最大。

当压缩空气中较细的粉尘,进入滑阀与滑阀座之间时,它就相当于一种研磨剂,在滑阀长期作用下,就会使滑阀或滑阀座局部区域偏磨,从而造成漏泄。还有的粉尘能直接划伤滑阀或滑阀座而造成漏泄。

当压缩空气中的小颗粒,进入到滑阀体内时,有时会使滑阀上的作用孔堵塞,有时会使夹心阀漏泄。

3、在检修中,要保证所有的橡胶件不接触汽油等清洗剂。滑阀油脂的使用一般大多数人认为,硅油与硅脂涂抹得越多越好,以致多余的油脂粘到膜板上或被吹进阀体暗道中。有资料表明:油和脂的用量过多不仅对滑阀作用毫无益处,而且将降低橡胶件的耐寒性。

『玖』 货车火车空重车调整装置下的横跨梁为什么在安装时留间隙

看技规***条

『拾』 大型货车为什么要设置空重车调整装置

看调整什么了。最多的是空重车刹车调整,不过现在只要装了ABS,其它刹车调整方式都可以不用了。

阅读全文

与空重车自动调整装置相关的资料

热点内容
玉环合众阀门厂 浏览:128
生产钾长石需要什么设备 浏览:29
为什么阀门要8000转 浏览:990
手术实验的器材有哪些 浏览:226
钠燃烧实验的装置图 浏览:854
实验室苯乙烯单体纯化装置图 浏览:130
空气阀门设计 浏览:745
笔记本翻盖轴承多少钱 浏览:886
高铁受电弓检测装置 浏览:423
自动加药装置厂家推荐 浏览:435
暖气阀门回弹 浏览:139
路由器如何设置连接设备 浏览:914
暖气停了阀门关吗 浏览:624
湖南省机械化施工公司宿舍怎么样 浏览:87
电动工具配件图片价格 浏览:33
图吧工具箱升级专业版 浏览:234
空调正常的制冷剂压力是多少 浏览:772
酒泉儿童健身器材怎么样 浏览:145
仪表盘白色车头什么意思 浏览:445
怎么调节埃尔法仪表盘 浏览:948