A. 制动系统的传动装置
目前,轿抄车上的制动传动装置有机械式和液压式两种。 目前,轿车的行车制动系统都采用了液压传动装置,主要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等组成,见右图。主缸与轮缸间的连接油管除用金属管(铜管)外,还采用特制的橡胶制动软管。各液压元件之间及各段油管之间还有各种管接头。制动前,液压系统中充满专门配制的制动液。
踩下制动踏板4,制动主缸5将制动液压入制动轮缸6和制动钳2,将制动块推向制动鼓和制动盘。在制动器间隙消失并开始产生制动力矩时,液压与踏板力方能继续增长直到完全制动。此过程中,由于在液压作用下,油管的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都可以继续移动一段距离。放开踏板,制动蹄和轮缸活塞在回位弹簧作用下回位,将制动液压回主缸。
B. 汽车液压制动装置有哪些部件组成
气压增压式液力制动传动装置主要由制动踏板、制动主缸、储液罐、出器、储气筒、空气压缩机、制动轮缸、制动控制阀、气压伺服气室、辅助缸、安全缸等零部件组成
C. 制动传动装置的作用是什么
制动传动装置的作用是将制动缸产生的制动原力应用杠杆原理增大若干倍,均衡地传递给各个闸瓦。
D. 什么叫半轴对半轴型液压制动传动装置
半轴也叫驱动轴。是将差速器与驱动轮连接起来的轴。半轴是变速箱减速器与版驱动轮权之间传递扭矩的轴,其内外端各有一个万向节别通过万向节上的花键与减速器齿轮及轮毂轴承内圈连接。
半轴是变速箱减速器与驱动轮之间传递扭矩的轴(以前实心居多,但由于空心轴转动不平衡控制更容易,因此,很多轿车上都采用空心轴),其内外端各有一个万向节分别通过万向节上的花键与减速器齿轮及轮毂轴承内圈连接。
半轴用来在差速器与驱动轮之间传递动力。普通非断开式驱动桥的半轴,可根据外端支承形式不同分为全浮式、3/4浮式和半浮式3种。
E. 真空助力式液压制动传动装置组成部分有哪些
全液压制动系统由:充液阀、蓄能器、脚踏阀、钳盘制动器(或其他形式的制动版器),以及制动尾灯开关,压权力开关等组成。工作原理是压力油经由充液阀向蓄能器供油后,一路进入脚踏阀,脚踏阀实际上为一个脚踩的比例换向阀,然后进入轮胎旁的制动器。当制动力不够时可由蓄能器短时供油。还有一种是气推液形式的刹车。由发动机上的真空助力泵产生压力气体,推动刹车油缸,刹车油壶的右进入刹车油缸,起到增力的目的,然后进入制动器中。目前大多数制动器为碟刹,而不是鼓刹。
F. 气压增压式液力制动传动装置有那些主要部件组成
空气液压制动传动装置(油气复合式) 一、目的 气压制动的长处是小的踏板力和小的踏板行程,能产生大的促动力。液压制动之长是滞后时间短,摩擦件少,性能稳定,非悬架支承件少,行驶平顺性好,适用多种高性能制动器,可用双轮缸,更合理的布置双管路系统。 为了兼取气压制动和液压制动两者的优点,不少重型汽车采用了空气液压制动传动装置。它和真空加力装置的原理一样,只是以压缩空气作为动力源。由于压缩空气的工作压力较大,多为(0.45~0.6)mpa,而真空式所具有的最大压力差,只能略等于大气压力。故加力气室小巧紧凑,安装位置不受限制,系统布局合理。 二、控制型式 这种制动传动装置,由于控制阀的安装和控制方式的不同,可分为两种控制型式: (1)直接控制式--利用气压控制阀同时直接控制两个单腔的增压器或一个双腔的增压器(又称气顶油式)。 (2)间接控制式--利用一个单腔液压主缸,同时控制两个带有气压控制阀的增压器(又称油控气、气顶油式)。 三、间接控制式的空气液压制动传动装置 (一)组成和构造特点 图20-67所示为双管路油控气、气顶油制动系统的组成。它由空气压缩机1、调压器2、贮气筒3、4组成加力气源。各管路分别装有2各自的空气增压器,用一个单腔液压主缸34控制。 图20-67 间接控制式的空气液压制动传动装置 1-空气压缩机;2-调压器;3、4-贮气筒,5、7-轮缸;6、9-空气增压器;8-制动主缸;10-气压表(二)空气增压器 1、空气增压器的组成 从图20-68看出:空气增压器是由加力气室17、辅助缸12和控制阀三部分组成。是气压和液压制动结构的变型体,故省略结构内容。 图20-68 间接控制的空气增压器简图 1-加力气室活塞;2-回位弹簧;3-控制阀活塞;4-放气螺钉;5-膜片芯管;6-空气滤清器;7-膜片;
8-排气阀;9-进气阀;10-放气螺钉;11-复合式单向阀;12-辅助缸;13-球阀;14-辅助缸活塞;
G. 气压增压式液力制动传动装置有哪些主要部件组成
空气液压制动传动装置(油气复合式) 一、目的 气压制动的长处是小的踏板力和小的踏板行程,能产生大的促动力。液压制动之长是滞后时间短,摩擦件少,性能稳定,非悬架支承件少,行驶平顺性好,适用多种高性能制动器,可用双轮缸,更合理的布置双管路系统。 为了兼取气压制动和液压制动两者的优点,不少重型汽车采用了空气液压制动传动装置。它和真空加力装置的原理一样,只是以压缩空气作为动力源。由于压缩空气的工作压力较大,多为(0.45~0.6)mpa,而真空式所具有的最大压力差,只能略等于大气压力。故加力气室小巧紧凑,安装位置不受限制,系统布局合理。 二、控制型式 这种制动传动装置,由于控制阀的安装和控制方式的不同,可分为两种控制型式: (1)直接控制式--利用气压控制阀同时直接控制两个单腔的增压器或一个双腔的增压器(又称气顶油式)。 (2)间接控制式--利用一个单腔液压主缸,同时控制两个带有气压控制阀的增压器(又称油控气、气顶油式)。 三、间接控制式的空气液压制动传动装置 (一)组成和构造特点 图20-67所示为双管路油控气、气顶油制动系统的组成。它由空气压缩机1、调压器2、贮气筒3、4组成加力气源。各管路分别装有2各自的空气增压器,用一个单腔液压主缸34控制。 图20-67 间接控制式的空气液压制动传动装置 1-空气压缩机;2-调压器;3、4-贮气筒,5、7-轮缸;6、9-空气增压器;8-制动主缸;10-气压表(二)空气增压器 1、空气增压器的组成 从图20-68看出:空气增压器是由加力气室17、辅助缸12和控制阀三部分组成。是气压和液压制动结构的变型体,故省略结构内容。 图20-68 间接控制的空气增压器简图 1-加力气室活塞;2-回位弹簧;3-控制阀活塞;4-放气螺钉;5-膜片芯管;6-空气滤清器;7-膜片;
8-排气阀;9-进气阀;10-放气螺钉;11-复合式单向阀;12-辅助缸;13-球阀;14-辅助缸活塞;
15-片状推叉;16-加力气室推杆;17-加力气室;18-保养孔 2.空气增压器的工作情况 (1)不制动时–––控制阀活塞3左侧c室无控制油压,控制阀的膜片7和活塞3在其回位弹簧的作用下被推到左侧极端位6置,进气阀9关闭,压缩空气不能进入d室。排气阀8开启,使d和e室与大气相通。加力气室的a室、b室也与大气相通, 活塞1被推到左侧极端位置。辅助缸活塞14与推杆16用销连接,也处在左侧极端位置。此时,片状推叉15球端将球阀13推开,使辅助缸左右两腔连通,增压器处于不工作状态,制动主缸和辅助缸油压与大气压力相等。 (2)制动时–––制动主缸的控制油液进入辅助缸活塞14的左侧,通过活塞14的中心孔,球阀13、出油阀11进入各自轮缸而制动。另一部分油液经节流小孔进入c室,推动活塞3和膜片7及芯管5右移。先消除排气阀间隙使排气阀8关闭,切断d室和e室的通道,再将进气阀9推开。贮气筒的压缩空气进入d室,并经空气管进入a室,推动活塞1、推杆16和活塞14右移。b室中的空气经e室排出,并产生较小的嘘声。此时,由于辅助缸活塞14离开了左侧的极端位置,片状推叉15对球阀13的推力消失,球阀立即关闭,活塞14右腔的油压升高。此时,作用在活塞14上的压力,等于增压推力和控制油压推力之和。但前者比后者更大,因而减轻了操纵力。 (3)维持制动时–––若踏板停止不动时,随着辅助缸活塞的右移,控制阀活塞左侧的油压趋于下降,膜片总成左移,进气阀9关闭,控制阀即处于“双阀关闭”的平衡状态。此时,控制活塞左侧的控制油压推力与右侧膜片上的气压推力平衡。辅助缸活塞左侧的推力也与右侧的总阻抗力平衡。 可见,制动主缸输出的控制油压,决定了控制阀随动输入的气压。当加力气室的气压达到一定值时(0.6mpa),辅助缸输出的油压达13mpa。制动踏板再继续踩下时,增压器即进入定值加力段。 (4)放松制动时–––制动主缸的输出油压撤消,作用在控制阀活塞3和辅助缸活塞14左侧的油压即撤消回位。排气阀8开启,a室的压缩空气经空气管返回d室,并经排气间隙、芯管和e室带着较大的嘘声排入大气。活塞1、活塞3、活塞14都返回左侧的极端位置。片状推叉15又顶开球阀13,各轮缸油管的油液推开复合式单向阀11返回辅助缸和主缸,制动即解除。当阀门11外侧油压达到残余压力值时即关闭,使辅助缸输出管路和各轮缸间保持一定的残压,制动主缸内无复合式单向阀,它和辅助缸间无残压存在。 (5)增压器失效时和无压缩空气时 由于辅助缸活塞有中心孔和球阀13,在增压器失效时和无压缩空气时,能进行应急制动。但制动力显著降低,且踏板沉重。因此项应急功能必须存在,辅助缸只能是单活塞式,双管路系统只能是并装两个空气增压器。 另外,从工作过程得知:在踩下制动踏板和放松制动踏板时,空气滤清器6处会有一小、一大的排气嘘声,这是人工检验空气增压器好坏的表征。
H. 什么叫液压制动传动装置
由于液体传动有多向性,可以向任何方向传动。并且是比较简单和轻便回,所以大多应用在轻型汽车上答。液压制动一般有制动总泵及储油罐,油管和分泵、摩擦片等组成。踩下制动踏板,制动液从油罐进入总泵,经皮碗和活塞压缩进入油管达到分泵,然后经分泵皮碗及活塞的推理推动摩擦片对制动鼓或摩擦片作用产生制动力。