① 继电保护装置主要是起什么作用的
当电力系统发生故障时,利用一些电气自动装置将故障部分从电力系统中迅速切除;当发生异常时及时发出信号,以达到缩小故障范围,减少故障损失,保证系统安全运行的目的。
② 距离保护装置一般由哪几部分组成各部分的作用是什么
距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成,它们的作用分
述如下:
(1)启动部分:用来判别系统是否发生故障。系统正常运行时,该部分不动作;而当发生故障时,该部分能够动作。通常情况下,只有启动部分动作后,才将后续的测量、逻辑等部分投入工作。
(2)测量部分:在系统故障的情况下,快速、准确地测定出故障方向和距离,并与预先设定的保护范围相比较,区内故障时给出动作信号,区外故障时不动作。
(3)振荡闭锁部分:在电力系统发生振荡时,距离保护的测量元件有可能误动作,振荡闭锁元件的作用就是正确区分振荡和故障。在系统振荡的情况下,将保护闭锁,即使测量元件动作,也不会出口跳闸;在系统故障的情况下
,开放保护,如果测量元件动作且满足其他动作条件,则发出跳闸命令,将故障设备切除。
(4)电压回路断线部分:电压回路断线时,将会造成保护测量电压的消失,从而可能使距离保护的测量部分出现误判断。这种情况下应该将保护闭锁,以防止出现不必要的误动。
(5)配合逻辑部分:用来实现距离保护各个部分之间的逻辑配合以及三段式保护中各段之间的时限配合。
(6)出口部分:包括跳闸出口和信号出口,在保护动作时接通跳闸回路并发出相应的信号。
③ 请问, 继电保护装置,装置里面都有哪些元件组成,及作用是什么
微机保护的硬件平台一般由以下多个功能模块组成:(1)CPU与存储器接口;(2)定时计数器;(3)中断逻辑;(4)串并行通信接口;(5)实时时钟;(6)看门狗电路;(7)显示控制电路;(8)数据存储器;(9)固态盘或存储器A(程序);(10)固态盘或存储器B(报告);(11)固态盘或存储器C(整定值);(12)开关量光隔输入;(13)开关量光隔功放输出;(14)工业局域网接口。
随着集成电路和计算机技术的飞速发展,以及嵌入式应用的日益广泛,许多器件厂家将功能模块1~7集成到一个芯片中,而工控机厂家在此基础上,将模块8~9甚至14进一步集成到STD、PC/104、VME等总线工控机的主板或单板工控机上,基本上实现了“总线不出板”,大幅度提高了系统的性能和抗干扰能力,为微机保护装置整机性能和可*性的增强奠定了良好基础。
本文就处理器、开发方式及存储空间、数据采集、通信方式的现状及今后的发展趋势做简短的分析和比较。
1. 处理器
目前主要有3类处理器可供高性能微机保护装置选用,即DSP、RISC和X86 3类器件。
DSP器件的突出特点是计算能力强、精度高、总线速度快、I/O吞吐量大,尤其是采用专用硬件实现定点或浮点的乘加(矩阵)运算,极大地缩短了数字滤波、滤序和傅氏算法的计算时间,有助于保护动作速度的提高。目前,针对嵌入式应用的需求,DSP器件厂家在提高器件集成度、简化系统设计的同时大幅度降低了价格,以期替代单片机(MCU)占领嵌入式应用市场,这为继电保护厂家提高保护装置性能,进行产品更新换代提供了一个非常好的物质手段。就上述2种方案而言,较为理想的DSP器件有TI公司的TMS 320C30/31/32和AD公司的ADSP 210C60/62 2类32位浮点器件,其中TMS320C30有系统和外设2条总线,使运算和I/O可同时进行、互不影响。
RISC器件一般具有较高的主频和很强的运算能力,由于其集成度和性能价格比的提高,不仅被应用于要求较高的计算环境,而且广泛出现在各种投资类和消费类电子产品中,日本的一些电气厂商如三菱、日立、东芝等,也都利用RISC器件开发其继电保护产品。在这类器件中,日立公司SH?3系列中的7718(32位)和SH?4系列中的7750(64位)、IDT公司的79R3081(32位)和79640(64位),以及IBM和Mrtorola的Power PC系列,DEC Alpha系列中的部分产品,由于兼有嵌入式设计和出众的浮点计算能力,因而能够较好地满足微机保护的要求。然而RISC器件由于主频较高、系统设计和制造较单片机(MCU)复杂、开发工具有国内不普及等原因,目前还不易为继电保护厂家所接受。随着其在消费类电子产品和电信业中应用的日益普及,特别是随着国内计算机和家电厂商对个人数字助理(PDA)的研制开发,RISC器件必然为更多的用户所接受和熟悉,出现在微机保护装置中将不过是时间问题。
X86器件得益于Wintel体系在个人机领域的优势,为了占领嵌入式应用市场,Intel、AMD、国家半导体(NS)和ST等器件厂家均在386或486内核的基础上,通过集成外围器件和接口推出了一系列与PC软硬件兼容的嵌入式处理器,如Intel 386EX、AMD386/486E、ElanSC300、SC400系列,NS486SXF以及ST486等,国家半导体公司更是提出了“PC on a chip”的口号。尽管这类器件在性能上较前两者逊色(相同主频而言),然而由于可以利用PC丰富的开发环境、应用软件和电路设计技术,因而一经推出就得到了众多工控机厂家的欢迎,并纷纷在其基础上开发出ISA、STD、PC/104、VME、Compact PCI等总线工控主板(EPSON公司的主板仅为信用卡大小),继电器厂家也推出了基于Intel 386EX的微机发电机组保护和录波装置。就微机保护对计算精度和速度的要求而言,比较合适的是集成了浮点协处理器的486DX及以上等级的微处理器及其对应的嵌入式芯片。值得指出的是,英特尔多能奔腾、高能奔腾及奔腾两代微处理器中除集成了浮点协处理器外,还增加了以整形数乘加运算为基础的多媒体指令(MMX),而AMD公司最近推出的K6?2 3D Now!中进一步扩展和增强了以浮点数乘加运算为基础的图形操作指令,灵活运用MMX和3D Now技术可以达到DSP器件同样的效果。
除上述3类器件外,由于可编程控制器(PLC)体积小、可*性高、扩展性强,前端可带电插拔等优点,在工业自动化领域得到了广泛应用,其中部分产品(如奥地利B&R公司的PCC)通过高速总线支持多个高性能CPU插件,内嵌实时多任务操作系统和多种通信协议并支持C语言编程。因此,用户无需任何外部软件支持即可完成应用软件的编程、调试和固化。采用这种PLC作为机组保护装置的硬件平台既可简化软硬件开发工作,又提高了装置的整体可*性。其不足是价格较为昂贵,从而影响了其应用范围。
2. 开发方式
随着高性能处理器在微机保护装置中的采用,其开发方式与单片机时代相比有了很大的不同,其中最突出的一点是在操作系统支持下采用高级语言进行编程。对于X86器件而言,受益于Wintel体系的规模效应和丰富的软件资源,用户往往直接在MS?DOS操作系统支持下,采用编程、编译、调试集成环境进行开发。这种方式最大的优点是节省了购置专用开发装置软硬件的费用以及开发人员的培训时间,且在DOS支持下能够生成汉化人机界面和报告,然而由于是商用机的开发技术,因而必然存在着以下不足:(1)仅支持X86器件且硬件平台需与PC兼容;(2)DOS不支持多任务、多线程,对内存的管理和安全机制均有局限性,要由开发人员自己考虑所有可能发生的问题并加以解决,增加了开发的难度和周期;(3)DOS环境中,用户程序需调入内存才能运行,不仅增加了硬件开销,同时也推迟了保护功能的投入;(4)集成环境无法对硬件系统进行调试。
随着商用微机操作系统由DOS向32位的Windows 95和NT过渡,一些第三方厂家(如Phar Lap)以Windows NT的内核和Win 32API为基础推出了适应于嵌入式应用的32位实时操作系统及开发工具,有效地提供了抢先式多任务和事件驱动机制并增强了内存管理和系统运行的稳定性。
随着PDA的兴起,Windows 95/NT的袖珍版Windows CE在嵌入式应用领域也有了更高的市场占有率。相比前者,其能够支持更多的器件种类,硬件平台也不要求与PC兼容,因而具有更强的适应能力。然而对于上述(3)、(4)2点,不仅没有改进反而进一步增加了硬件开销和引导时间。
与上述借用商用操作系统和集成环境的开发方式相对应,许多实时操作系统专业厂家为嵌入式应用推出了多种实时多任务操作系统(RTOS),如QNX、PSOS、Nuleus、VRTX、VxWork等,不仅代码紧凑、对硬件资源占用少,而且与用户程序一同固化到EPROM或闪存中就地运行,无需加载至内存。此外,由于这类RTOS专门针对了工业(军事)应用的需要,而不是从商用操作系统改良而来,因而具有更强的任务切换和线程通信机能,实时性和稳定性很强且支持多种微处理器及嵌入式控制器(包括DSP),在开发或仿真系统支持下,可对硬件系统进行调试(甚至是多CPU或DSP系统)和实时仿真。当然,这种开发方式也存在需专门购置RTOS和开发工具,以及需培训开发人员等不足。
针对以上两者的不足,同时也是得益于处理器寻址空间的扩大,代码驻留或就地运行技术(XIP)得到了越来越多工控厂家的支持。该技术仍然基于ROM?DOS和X86平台,然而与第1种开发方式相比,电子盘位于其寻址空间的高端,并可在保护模式下直接寻址而不是通过I/O或页面方式访问。因此,用户程序可用文件方式固化到闪存电子盘中,上电运行后,CPU进入保护模式并直接跳转到用户程序处运行,不用再将其加载到内存空间,这种方式既利用了DOS环境丰富的资源,又节省了内存空间。此外,由于代码和数据分别在寻址空间的高端和低端,因而系统具有更好的安全性。不过,这种开发方式要求用户程序在编译连接时进行代码、数据分离和代码重新定位并以bin文件形式进行固化。
在编程语言选择方面,由于C/C++语言效率高、灵活、可移植性好,而得到了广泛使用,但安全性较差是其最为致命的缺点;PL/M?86/386语言尽管效率、安全性好但缺乏灵活性,又仅针对X86芯片,因而使用不如C/C++广泛。而兼有上述优点的Ada 95语言在安全、高效、灵活、可移植性好的基础上又增加了对面向对象程序设计的完全支持,并提供了更加有效的实时、分布式和并行程序的设计环境,已成为军事嵌入式应用的主流语言并正向工业领域扩展。采用Ada 95开发微机保护软件将有助于进一步提高代码质量、可维护性和可移植性。
此外,利用OOP技术将各种保护算法和判据编制成“标准元件”,并根据保护方案中各判据的逻辑关系将其“组态”(如SEL公司的SEL?321?5,ABB公司的REG 216中已采用这种技术),将极大地提高微机保护装置的开发效率和质量。
3. 其它相关问题
3.1 存储空间
微机保护装置的存储空间一般由5部分组成:
(1)操作系统和用户应用程序的驻留(固化)空间。对于ROM?DOS支持下的X86平台而言,该部分空间多以电子盘的形式存在,而用户程序亦以DOS文件方式固化在高速EPROM或闪存中,只是逐渐采用XIP就地运行方式取代了加载至内存运行。这部分存储空间必需直接位于CPU的寻址范围内(对高档X86芯片而言,是在保护模式下的高端寻址空间)。
(2)暂存系统参数、运算数据和中间结果的内存空间。当采用XIP技术后,这部分空间可大为减小。如果装置直接采用PC内存条,那么最好支持ECC功能以进一步提高系统的容错能力。
(3)整定值的存储空间。由于整定值在微机保护中占有特别重要的地位,因而对这部分存储空间有着特殊的要求:①由于整定值的重要性,因此必须保存在本质性的非易失性存储介质中,而单独的NVSRAM不能满足上述要求;②由于每一整定项都要求可单独访问,而目前的闪存芯片必需以页或扇区方式访问,因此E2PROM较闪存更适合整定值的保存;③由于E2PROM的写入速度很慢,因此不支持DOS环境下数据文件中的浮点数分字节快速连续写入,因而整定值不应以DOS文件方式保存在E2PROM中。此外,SRAM与E2PROM组合型器件的出现使整定值可以数据文件方式保存在电子盘中,但必须在对盘进行写操作后将整个数据文件从器件的SRAM区写回E2PROM中保存,对闪存电子盘而言,也至少须将对应扇区重写;④E2PROM有串行和并行两种,并行E2PROM访问方便,但占用一定的地址空间且被误操作的可能性亦多些;串行E2PROM通过串行通信总线或I/O口线访问,不占用地址空间且安全性亦较并行E2PROM要好,但访问不如后者便利;⑤为了提高E2PROM中数据的安全性,可设置写保护或将其安排在X86器件保护模式寻址空间的中端,与高端程序代码和低端的数据空间有足够的间隔。
此外,还可在不同的地址空间或同一E2PROM中的不同区域设置多个镜像的整定值块,并定期进行整定值自检。
(4)各类报告的存储空间。为了便于长期保存和阅读,可将报告制成DOS文本文件格式,保存在基于NVSRAM器件的电子盘中,该盘以I/O方式访问即可。
(5)其它用途的存储空间,如与数据采集系统交换数据的双口RAM等。这部分存储空间应安排在常规内存的高端以免与低端的数据空间发生冲突。
3.2 数据采集
微机保护装置中数据采集的速度、精度以及动态范围对其性能有着十分重要的影响。近年来,以ANN为代表的人工智能技术和小波分析等理论,以及瞬态保护概念等逐步引入继电保护领域,这对采样率提出了更高的要求。
由于采样率的提高导致了采样间隙的缩短,为了给CPU留出更多的时间进行数据预处理、起动计算和主保护计算,有必要大幅度压缩数据采集本身的时间开销。一种措施是增设专门的处理器,控制数据采集过程并进行预处理,然后将数据通过双口RAM、FIFO等方式传递给主CPU进行保护计算〔2〕。这种方式虽节省了主CPU的数据采集时间,但由于增设了采集处理器和相应的外围电路与器件,使系统的开发、调试更为复杂。另一种方法是,采用高速转换器件并减少CPU干预,以减少其数据采集时间〔3〕。该方案中,一轮数据采集的总时间可由下式来描述:
式中N——总的模拟通道数;M——并行设置的A/D转换器数;t0——外部采样时间;t1——通道切换与信号建立时间;t2——模数转换时间;t3——采集数据读取时间。
由此可见,要缩短ts,必须采用高速S/H、MUX、BUF和ADC,以分别缩短t0~t1;通过提高处理器的I/O速度或采用DMA来缩短t3;此外,增加ADC的数量也可减小ts(由于机组保护所需的模拟信号较多,因此通过增加M来减小ts是一个非常有效的方法)。
为了进一步简化电路设计和调试,一些半导体元件厂家将完整的数据采集系统集成到一块芯片中,其能够自动完成所有输入通道的数据采集工作而无需CPU干预。这类器件以美国MAXIM公司的MAX125/6和AD公司的AD7874为代表,其中MAX125集成了两组各4路输入通道(4个采样保持器),具有14位分辨率和3 μs的模数转换时间;4×14位双口RAM以及与多数DSP及16/32 位微处理器兼容的并行接口,因此采用多片MAX125或AD7874并行工作,将会极大地提高微机保护装置的数据采集能力,同时简化了电路设计与调试。
3.3 通信方式
为了减轻微机保护装置中微处理器的负担,一般不由它单独承担人 机交互和文档管理任务,而是通过通信接口与上层管理机或调试用微机交换,诸如整定值、采样值报告、故障报告、硬件测试命令与结果,以及一些实时测量参数等信息。目前常用的通信接口有RS-232(需光隔)、RS-422/485以及Bitbus、Arcnet、Lonworks、CAN、GPIB等工业局域网。由于后几者利用硬件自动实现检错、纠错、重发等差错控制功能,因而在具有较高传输速率的同时也有效地降低了误码率。此外、通过提供用户编程接口,极大地简化了通信软件的开发工作。在几种工业局域网中,CAN的实现方式最为简单,成本最低且作为无主网络,增减结点也非常方便,因而非常适合在机组保护装置中应用。
随着计算机技术和虚拟仪器技术的长足发展,USB和IEEE 1394高速总线已逐步成为上述领域的标准配置并受到越来越多的软硬件厂家支持,因而亦有可能在不久的将来作为X86硬件平台的一部分出现在微机保护装置中,以统一现有的各种通信方式。
此外,部分嵌入式器件或工控主板上集成有显示器接口,保护装置可以利用其将调试信息(如采样值、I/O状态等)和部分实时测量参数(如差流、绕组对地阻抗、机端视在阻抗、有功和无功功率等)以及简单故障信息进行就地显示,既减轻了网络负荷,又提供了远比面板上的LED指示更为丰富的信息,并且还方便了开发调试过程。
④ 继电保护装置一般由哪三个部分组成
继电保护装置一般由测量比较元件、逻辑判断元件、执行输出元件组成。继电保专护主要是利用属电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量。
如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。
(4)继电保护装置由几部分组成各部分的作用是什么扩展阅读
特点:
1、智能型主机,主机采用DSP芯片控制,16位DAC输出,对基波可产生每周2000点的高密度正弦波,为国内测试仪中的最高水平。大大改善了波形质量,提高了测试仪的精度。
2、单机独立运行,装置由旋转鼠标通过大屏幕液晶显示屏幕进行操作。
3、联接电脑运行,连机打印报告等。
4、“傻瓜式”操作,采用先进的“光电旋转鼠标”控制器,免去复杂的键盘操作,不需要计算机知识都可操作,简便易学。
⑤ 微机保护装置硬件主要包括哪几部分各部分的作用是什么
通常微机保护的硬件电路由六个功能单元构成,即数据采集系统、微机主系统、开关量输入输出电路、工作电源、通信接口和人机对话系统。
传统的继电保护装置是使输入的电流、电压信号直接在模拟量之间进行比较和运算处理,使模拟量与装置中给定的机械量(如弹簧力矩)或电气量(如门槛电压)进行比较和运算处理,决定是否跳闸。
计算机系统只能作数字运算或逻辑运算,因此微机保护的工作过程大致是:当电力系统发生故障时,故障电气量通过模拟量输入系统转换成数字量,然后送入计算机的中央处理器,对故障信息按相应的保护算法和程序进行运算,且将运算的结果随时与给定的整定值进行比较,判别是否发生故障。
一旦确认区内故障发生,根据开关量输入的当前断路器和跳闸继电器的状态,经开关量输出系统发出跳闸信号,并显示和打印故障信息。
(5)继电保护装置由几部分组成各部分的作用是什么扩展阅读
微机保护装置硬件采用最新的芯片提高了技术上的先进性,CPU采用80C196KB,测量为14位A/D转换,模拟量输入回路多达24路,采到的数据用DSP信号处理芯片进行处理,利用高速傅氏变换,得到基波到8次的谐波,特殊的软件自动校正,确保了测量的高精度。
利用双口RAM与CPU变换数据,就构成一个多CPU系统,通信采用CAN总线。具有通信速率高(可达100MHZ,运行在80或60MHZ)抗干扰能力强等特点。通过键盘与液晶显示单元可以方便的进行现场观察与各种保护方式与保护参数的设定。
⑥ 继电保护装置是由什么组成的
继电保护装置的简介
[编辑本段]
当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。实现这种自动化措施的成套设备,一般通称为继电保护装置。
继电保护装置的任务
[编辑本段]
①、监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置能最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。(如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等)。
②、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,提示值班员迅速采取措施,使之尽快恢复正常,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。
③、实现电力系统的自动化和远程操作,以及工业生产的自动控制。如:自动重合闸、备用电源自动投入、遥控、遥测等。
继电保护装置的基本要求
[编辑本段]
继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。
A、动作选择性---指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。上、下级电网(包括同级)继电保护之间的整定,应遵循逐级配合的原则,以保证电网发生故障时有选择性地切除故障。切断系统中的故障部分,而其它非故障部分仍然继续供电。
B、动作速动性---指保护装置应尽快切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用设备自动投入的效果。
C、动作灵敏性---指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数(规程中有具体规定)。通过继电保护的整定值来实现。整定值的校验一般一年进行一次。
D、动作可靠性---指继电保护装置在保护范围内该动作时应可靠动作,在正常运行状态时,不该动作时应可靠不动作。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行,可靠性是对继电保护装置性能的最根本的要求。
说明:继电保护的整定、校验应由上一级供电部门进行。(收费)
继电保护装置的基本原理
[编辑本段]
继电保护主要是利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。
①、电力系统运行中的参数(如电流、电压、功率因数角)在正常运行和故障情况时是有明显区别的。继电保护装置就是利用这些参数的变化,在反映、检测的基础上来判断电力系统故障的性质和范围,进而作出相应的反应和处理(如发出警告信号或令断路器跳闸等)。
②、继电保护装置的原理框图分析:
A、取样单元---它将被保护的电力系统运行中的物理量(参数)经过电气隔离并转换为继电保护装置中比较鉴别单元可以接受的信号,由一台或几台传感器如电流、电压互感器组成。
B、比较鉴别单元---包括给定单元,由取样单元来的信号与给定信号比较,以便下一级处理单元发出何种信号。(正常状态、异常状态或故障状态)比较鉴别单元可由4只电流继电器组成,二只为速断保护,另二只为过电流保护。电流继电器的整定值即为给定单元,电流继电器的电流线圈则接收取样单元(电流互感器)来的电流信号,当电流信号达到电流整定值时,电流继电器动作,通过其接点向下一级处理单元发出使断路器最终掉闸的信号;若电流信号小于整定值,则电流继电器不动作,传向下级单元的信号也不动作。鉴别比较信号“速断”、“过电流”的信息传送到下一单元处理。
C、处理单元---接受比较鉴别单元来的信号,按比较鉴别单元的要求进行处理,根据比较环节输出量的大小、性质、组合方式出现的先后顺序,来确定保护装置是否应该动作;由时间继电器、中间继电器等构成。电流保护:速断---中间继电器动作,过电流——时间继电器动作。(延时过程)
D、执行单元---故障的处理通过执行单元来实施。执行单元一般分两类:一类是声、光信号继电器;(如电笛、电铃、闪光信号灯等)另一类为断路器的操作机构的分闸线圈,使断路器分闸。
E、控制及操作电源---继电保护装置要求有自己独立的交流或直流电源,而且电源功率也因所控制设备的多少而增减;交流电压一般为220伏,功率1KVA以上。
常用继电保护装置的类型
[编辑本段]
①、电流保护:(按照保护的整定原则,保护范围及原理特点)
A、过电流保护---是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。
B、电流速断保护---是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。
过电流保护和电流速断保护常配合使用,以作为设备或线路的主保护和相邻线路的备用保护。
C、定时限过电流保护---在正常运行中,被保护线路上流过最大负荷电流时,电流继电器不应动作,而本级线路上发生故障时,电流继电器应可靠动作;定时限过电流保护由电流继电器、时间继电器和信号继电器三元件组成(电流互感器二次侧的电流继电器测量电流大小→时间继电器设定动作时间→信号继电器发出动作信号);定时限过电流保护的动作时间与短路电流的大小无关,动作时间是恒定的。(人为设定)
D、反时限过电流保护---继电保护的动作时间与短路电流的大小成反比,即短路电流越大,继电保护的动作时间越短,短路电流越小,继电保护的动作时间越长。在10KV系统中常用感应型过电流继电器。(GL-型)
E、无时限电流速断---不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化,将影响电流速断的保护范围,为了保证动作的选择性,其起动电流必须按最大运行方式(即通过本线路的电流为最大的运行方式)来整定,但这样对其它运行方式的保护范围就缩短了,规程要求最小保护范围不应小于线路全长的15%。另外,被保护线路的长短也影响速断保护的特性,当线路较长时,保护范围就较大,而且受系统运行方式的影响较小,反之,线路较短时,所受影响就较大,保护范围甚至会缩短为零。
②、电压保护:(按照系统电压发生异常或故障时的变化而动作的继电保护)
A、过电压保护---防止电压升高可能导致电气设备损坏而装设的。(雷击、高电位侵入、事故过电压、操作过电压等)10KV开闭所端头、变压器高压侧装设避雷器主要用来保护开关设备、变压器;变压器低压侧装设避雷器是用来防止雷电波由低压侧侵入而击穿变压器绝缘而设的。
B、欠电压保护---防止电压突然降低致使电气设备的正常运行受损而设的。
C、零序电压保护---为防止变压器一相绝缘破坏造成单相接地故障的继电保护。主要用于三相三线制中性点绝缘(不接地)的电力系统中。零序电流互感器的一次侧为被保护线路(如电缆三根相线),铁芯套在电缆上,二次绕组接至电流继电器;电缆相线必须对地绝缘,电缆头的接地线也必须穿过零序电流互感器;原理:正常运行及相间短路时,一次侧零序电流为零(相量和),二次侧内有很小的不平衡电流。当线路发生单相接地时,接地零序电流反映到二次侧,并流入电流继电器,当达到或超过整定值时,动作并发出信号。(变压器零序电流互感器串接於零线端子出线铜排)
③、瓦斯保护:油浸式变压器内部发生故障时,短路电流所产生的电弧使变压器油和其它绝缘物产生分解,并产生气体(瓦斯),利用气体压力或冲力使气体继电器动作。故障性质可分为轻瓦斯和重瓦斯,当故障严重时(重瓦斯)气体继电器触点动作,使断路器跳闸并发出报警信号。轻瓦斯动作信号一般只有信号报警而不发出跳闸动作。
变压器初次投入、长途运输、加油、换油等原因,油中可能混入气体,积聚在气体继电器的上部(玻璃窗口能看到油位下降,说明有气体),遇到此类情况可利用瓦斯继电器顶部的放气阀(螺丝拧开)放气,直至瓦斯继电器内充满油。考虑安全,最好在变压器停电时进行放气。容量在800KVA及以上的变压器应装设瓦斯保护。
④差动保护:这是一种按照电力系统中,被保护设备发生短路故障,在保护中产生的差电流而动作的一种保护装置。常用做主变压器、发电机和并联电容器的保护装置,按其装置方式的不同可分为:
A、横联差动保护---常用作发电机的短路保护和并联电容器的保护,一般设备的每相均为双绕组或双母线时,采用这种差动保护。
B、纵联差动保护---一般常用作主变压器的保护,是专门保护变压器内部和外部故障的主保护 。
⑤高频保护:这是一种作为主系统、高压长线路的高可靠性的继电保护装置。目前我国已建成的多条500KV的超高压输电线路就要求使用这种可行性、选择性、灵敏性和动作迅速的保护装置。高频保护分为相差高频保护;方向高频保护。
相差高频保护的基本原理是比较两端电流的相位的保护。规定电流方向由母线流向线路为正,从线路流向母线为负。就是说,当线路内部故障时,两侧电流同相位而外部故障时,两侧电流相位差180度。方向高频保护的基本工作原理是,以比较被保护线路两端的功率方向,来判别输电线路的内部或外部故障的一种保护装置。
⑥距离保护:这种继电保护也是主系统的高可靠性、高灵敏度的继电保护,又称为阻抗保护,这种保护是按照长线路 故障点不同的阻抗值而整定的。
⑦平衡保护:这是一种作为高压并联电容器的保护装置。继电保护有较高的灵敏度,对于采用双星形接线的并联电容器组,采用这种保护较为适宜。它是根据并联电容器发生故障时产生的不平衡电流而动作的一种保护装置。
⑧负序及零序保护:这是作为三相电力系统中发生不对称短路故障和接地故障时的主要保护装置。
⑨方向保护:这是一种具有方向性的继电保护。对于环形电网或双回线供电的系统,某部分线路发生故障时,而故障电流的方向符合继电保护整定的电流方向,则保护装置可靠地动作,切除故障点。
⑦ 电流保护是由哪几部分组成 各部分的作用是什么
继电保护装置一般由测量.逻辑和执行三大基本部分组成。其中测量部分的作用是测内量容被保护设备的物理量,如电流.电压.阻抗.电压电流之间的相位差等,再与给定的整定值比较,以确定电子机械系统是否发生故障或出现不正常工作状态,然后输出相应的信号至逻辑元件