⑴ 液力传动的液力传动装置
液力传动装置是以液体为工作介质以液体的动能来实现能量传递的装置,常见的有液力耦合器、液力变矩器和液力机械元件。
目前,液力传动元件主要有液力元件和液力机械两大类。液力元件有液力耦合器和液力变矩器;液力机械装置是液力传动装置与机械传动装置组合而成的,因此,它既具有液力传动变矩性能好的特点,又具有机械传动效率高的特征。
液力传动装置主要由三个关键部件组成,即泵轮、涡轮、导轮。
泵轮:能量输入部件,它能接受原动机传来的机械能并将其转换为液体的动能;
涡轮:能量输出部分,它将液体的动能转换为机械能而输出;
导轮:液体导流部件,它对流动的液体导向,使其根据一定的要求,按照一定的方向冲击泵轮的叶片。 下图a是液力变矩器的实物模型图,图b是其结构原理简图。它主要由泵轮、涡轮、导轮等构成。泵轮、涡轮分别与主动轴、从动轴连接,导轮则与壳体固定在一起不能转动。当液力变矩器工作时,因导轮D对液体的作用,而使液力变矩器输入力矩与输出力矩不相等。当传动比小时,输出力矩大,输出转速低;反之,输出力矩小而转速高。它可以随着负载的变化自动增大或减小输出力矩与转速。因此,液力变矩器是一个无级力矩变换器。
下面以目前广泛使用的三元件综合式液力变矩器来具体说明其工作原理。
如图4所示,泵轮与变矩器外壳连为一体,是主动元件;涡轮通过花键与输出轴相连,是从动元件;导轮置于泵轮和涡轮之间,通过单向离合器及导轮轴套固定在变速器外壳上。
发动机启动后,曲轴通过飞轮带动泵轮旋转,因旋转产生的离心力使泵轮叶片间的工作液沿叶片从内缘向外缘甩出;这部分工作液既具有随泵轮一起转动的园周向的分速度,又有冲向涡轮的轴向分速度。这些工作液冲击涡轮叶片,推动涡轮与泵轮同方向转动。
从涡轮流出工作液的速度可以看为工作液相对于涡轮叶片表面流出的切向速度与随涡轮一起转动的圆周速度的合成。当涡轮转速比较小时,从涡轮流出的工作液是向后的,工作液冲击导轮叶片的前面。因为导轮被单向离合器限定不能向后转动,所以导轮叶片将向后流动的工作液导向向前推动泵轮叶片,促进泵轮旋转,从而使作用于涡轮的转矩增大。
随着涡轮转速的增加,圆周速度变大,当切向速度与圆周速度的合速度开始指向导轮叶片的背面时,变矩器到达临界点。当涡轮转速进一步增加时,工作液将冲击导轮叶片的背面。因为单向离合器允许导轮与泵轮一同向前旋转,所以在工作液的带动下,导轮沿泵轮转动方向自由旋转,工作液顺利地回流到泵轮。当从涡轮流出的工作液正好与导轮叶片出口方向一致时,变矩器不产生增扭作用(这时液力变矩器的工况称为液力偶合工况)。
液力耦合器其实是一种非刚性联轴器,液力变矩器实质上是一种力矩变换器。它们所传递的功率大小与输入轴转速的3次方、与叶轮尺寸的5次方成正比。传动效率在额定工况附近较高:耦合器约为96~98.5%,变矩器约为85~92%。偏离额定工况时效率有较大的下降。根据使用场合的要求,液力传动可以是单独使用的液力变矩器或液力耦合器;也可以与齿轮变速器联合使用,或与具有功率分流的行星齿轮差速器(见行星齿轮传动)联合使用。与行星齿轮差速器联合组成的常称为液力-机械传动。
液力传动装置的整体性能跟它与原动机的匹配情况有关。若匹配不当便不能获得良好的传动性能。因此,应对总体动力性能和经济性能进行分析计算,在此基础上设计整个液力传动装置。为了构成一个完整的液力传动装置,还需要配备相应的供油、冷却和操作控制系统。
⑵ 汽车传动系统的液力机械式传动系统是怎么样的
液力机械式传动系统(见图)的特点是组合运用液力传动和机械传动。
液力机械式传动系统的组成1—自动变速器;2—液力变矩器;3—前驱动桥;4—半轴
此外
⑶ CH-1000型综合传动装置的结构与性能
CH-1000型传动装置为双流传动系统(所谓双流传动,是指该传动装置的变速和转向功能,分别由2条功率流进行独立传递的,再经汇流装置汇合后输出),净重约1900KG。传动装置的主体结构,是由箱体、一对前传动锥齿轮,带自动闭锁功能并与主动轴同轴的液力变矩器,1个三自由度行星变速箱,大功率液压机械无级转向机,汇流行星排,液力减速器等主要部件组成的;此外还有为液压控制系统提供动力的辅助液压泵,以及置于传动装置顶部的2个液压冷却风扇等部件。
同轴行星侧传动和停车机械制动器为传动装置的外围部件,两者集成于一个壳体内,通过弹性联轴节与传动装置的主体连接。
传动装置与发动机通过连接件连接成一整体固定在一个三点式支承框架上,可以实现整体吊装,在战场上可在40分钟内进行拆装,为车辆重新投入战斗赢得了宝贵时间。
CH-1000型传动装置的变速机构为一个串联式的三自由度行星变速机构,由有2个简单行星排、1个复合行星排和6个控制件组成。其中2个简单行星排和3个控制件构成一组,操纵其中一个控制件可以得到“高”“低”“倒”3个档位;1个复合行星排和3个控制件构成另一组,操纵其中一个控制件可以得到“1-2-3”3个档位;2组以串联的形式结合。因此,结合2组内的各一个操纵件则可以得到6个前进挡、3个倒档共9个挡。由于系统采用了可自动闭锁的液力变矩器,因此可以动力换挡,并且在速度逐渐降到零的过程中保证动力不间断输出;而在4档以上时,液力变矩器的离合器自动闭锁,可以实现较高的传动效率。CH-1000型传动用于配套坦克时,最高试验速度可达80KM,最高公路运用速度和越野速度分别可达70KM和54KM,最高倒车速度可达34KM,0-32KM/H的加速时间为6-7秒。这为坦克带来了良好的机动性,特别是较高的倒车速度便于坦克快速撤退,大大提高了坦克的战场生存能力。
CH1000型的转向系统为我国自主研发的大功率液压机械无级转向机,实际上是一个简易的液压机械无级变速器,由连体式液压泵-马达,正反转行星排(含3个控制件)、功率合成机构和输入-输出机构组成。在大半径转向时,行星排机构由制动件锁定,功率全部由液压马达输出,此时为纯液压转向工况;在小半径转向时,结合正反转行星排上2个控制件的其中一个,就可以得到行星机构正、反方向的转向,此时功率由液压马达和机械行星机构共同输出,为液压-机械转向工况。它相对国际上广泛使用的纯液压转向机构而言,具有更高的输出效率,而且液压件的功率只需要1/3,这样就克服了我国在高压、大排量、大功率液压马达上的软肋造成的技术瓶颈。它独立地做成一个箱体模块集成于综合传动系统中,并具有独立的操纵机构。该转向系统可以实现最小转向半径至无穷大的无级转向,转向时内侧履带的制动功率可以回流到外侧履带,因此功率损失较小,效率较高;而传统的单流转向装置大部分工况都是非规定半径的滑摩转向,这需要驾驶员多次间歇操纵,费力繁琐,而且大量的能量消耗在摩擦和元件发热中,效率低下,磨损严重。当车辆挂空挡时,可以实现0半径“中心转向”,最小理论周转时间为8秒左右。
⑷ 机械式传动系和液力机械式传动系统有什么区别
液压传动系统的组成1.动力元件
动力元件是把原动机输入的机械能转换为油液压力能的能量转换装置。其作用是为液压系统提供压力油。动力元件为各种液压泵。
2.执行元件
执行元件是将油液的压力能转换为机械能的能量转换装置。其作用是在压力油的推动下输出力和速度(直线运动),或力矩和转速(回转运动)。这类元件包括各类液压缸和液压马达。
什么是液力传动液力传动是液体传动的一个分支,它是由几个叶轮组成的一种非刚性连接的传动装置。这种装置把机械能转换为液体的动能,再将液体的动能转换为机械能,起着能量传递的作用。液力传动有诸多优点,如自动适应性,防振、隔振性能,还具有过载保护、自动协调、分配负载的功能。也有一些缺点,比如:效率较低、高效范围较窄等。
⑸ CH-1000型综合传动装置的介绍
CH系列液力机械综合传动装置,是我军为适应军队装备现代化建设,追赶世界军内用履带传动装容置的发展潮流 ,改变我军履带装甲车辆传动装置长期以来采用技术含量低、性能表现差、操作强度大的手动机械传动装置的局面,由北京理工大学与北方车辆研究所等共同开发的新一代传动装置。CH系列传动装置现有4个级别:CH300,CH400,CH700和CH1000,分别对应300KW,400KW,700KW和1000KW4个功率级别。其中CH-1000型综合传动装置主要是为50-55吨级主战坦克而开发的,是三代增强型(也有称99A2型)主战坦克的配套项目,亦可运用于99式主战坦克未来动力系统的升级,以及外贸坦克(如MBT2000)的选配传动装置。
⑹ ZTZ99与ZTZ99A有什么区别
1、首次亮相时间不同
2014年上合组织“和平使命—2014”多国联合军事演习回中,99A坦克首次亮相答。
99坦克在1999年10月1日国庆50周年阅兵式首次亮相。
2、反应装甲配置不同
99A坦克相对于99坦克来说,99A坦克在炮塔前部、后部栅栏和车体首上装甲上加装了爆炸反应装甲。
3、最大公路速度不同
99A坦克安装着最大输出功率为1500马力先进发动机,CH-1000型液力机械综合自动传动装置,可以使五十多吨的坦克达到75千米/小时最大公路速度。
99坦克的动力系统而言,采用了883千瓦(1200马力)的涡轮增压中冷式大功率柴油机,最大公路时速达70公里/小时。
⑺ 液力传动装置的作用是什么
是为了满足机来车牵引性能要求。源这个问题一两句话也说不清楚。要分析机车的牵引性能和机车发动机的性能。如果没有传动装置,直接将柴油机和机车动轮通过离合器和一对传动比为i=1的齿轮直接相连,这种直接传动的内燃机车牵引力性能不能满足机车理想牵引性能,直接传动的机车,在低速范围内牵引力太小,在高速范围内牵引力又太大,而机车的速度范围等于柴油机的弹性系数,不能适应机车运行要求。因此机车不采用直接传动,要有传动装置。
⑻ 坦克的传动系统是液压传动还是液力机械式传动
这两个概念是运用在不同的领域的。
液压传动:是把旋转的机械能转回换成液体压力的一答种传动方式。液体依靠压力直接做工,压力的变化是往复性的,简单的说就是控制液压筒的前后往复运动,要转换成旋转能就要依赖曲柄,就跟以前的蒸汽火车一样。
液力传动:是把旋转的机械能传递到另外一个旋转物体上,液体依靠流体动力做工,直观的说就像吧一个风扇放水里,然后在它对面放另一个风扇,用前一个风扇对着后一个风扇吹,吧后一个风扇吹动。
所以一般坦克自动变速箱采用都是液力传动,液压不会应用到变速箱上,只会应用到悬挂系统上。
⑼ 汽车上采用哪些液力传动装置特点有哪些
耦合器液力传动和变矩器液力传动。液力耦合是由两个直径相同,彼此相对的叶轮组成;液力变回矩器是由可旋转的答泵轮、涡轮和固定不动的导向轮三个元件组成。液力传动的特点:1.可根据车辆运行的阻力或其他工作阻力的变化,在一定范围内自动无级改变传动比和扭矩。当外载荷突然增大时,车辆能自动降速而增大牵引,以克服增大的外载荷,从而避免发动机因超载而熄火。反之当外载荷减小时,车辆有能自动减小牵引力,提高工作速度,自动适应工作需要。2.由于有自动变速与变距的特性,因此可减少换挡次数,减轻司机的劳动强度,也便宜实现换挡工作的自动化或半自动化,从而使操作简易。3.由于它是传动系统中的一个柔和性环节,可使车辆的起步和换挡都非常平稳柔和,从而减少各相关零件所受的振动和冲击,提高整台轨道车的使用寿命。4.可是变速箱的挡数大大减少。
⑽ 99A2主战坦克的传动系统如何。
99A2式坦克采用了先进的全自动的CH-1000液力机械综合传动装置,达到了90年代初国际先进水平,与勒克莱尔坦克使用的SESM-500大致相当。
该传动装置为双流传动系统,由一对前传动齿轮,带自动闭锁功能的同轴液力变矩器,行星变速箱,大功率无级转向机,汇流行星排,液力减速器。此外还有为2个冷却风扇提供动力的风扇液力耦合传动机构和为液压控制系统提供动力的辅助液压泵等部件。传动装置与发动机通过连接件连接成一整体固定在一个三点式框架上,可以实现整体吊装,在战场上可在40分钟内进行拆装,为车辆重新投入战斗赢得了宝贵时间。
CH1000型传动变速装置为6个前进挡和3个倒档行星变速箱,但实际使用时只采用其中5个前进挡和2个倒档,该传动装置使得99A2具有良好的机动性,最高时速可达70KM,最高越野时速达54KM,(试验时最高时速曾经达到了80KM,最高越野时速达到了60KM)0-32KM/H加速时间仅为7秒,远好于99式的12秒;于战场上快速推进和撤退;操纵装置采用电液全自动手自一体操作,省去了繁琐的换挡操纵,操纵轻松和方便很多,大大降低了驾驶员的体力消耗和精神疲劳。当使用自动挡操纵时,系统会自动从2挡起步,并根据路面状况逐步升级至预选的档位;而在恶劣地形起步时可手动从1挡起步,再切换至预选档位;驾驶员也可以根据自己的驾驶习惯,选择手动加减挡的操作模式;一旦电控换挡装置损坏,系统还有备用的机械-液压手动应急换挡装置,可以挂前进2挡和倒车1挡,尽快离开作战现场,避免了坦克“坐以待毙”的情况。
CH1000型的转向系统为我国自主研发的大功率液压机械无级转向机。它相对广泛使用的纯液压转向机构而言,具有更高的效率,而且液压件的功率只需要1/3,这样就克服了我国在大功率液压马达上的技术瓶颈。它独立地做成一个箱体集成于综合传动系统中,并具有独立的操纵机构。CH1000的转向操作抛弃了原有99式的双杆式操作,改为和M1坦克类似的液压转向舵操作,简单、方便、省力,驾驶员只要稍用力转动手柄即可进行转向,而不用像以前那样呵哧呵哧地费力拉左右转向杆进行转向了;转向手柄还可以根据驾驶员的身高调节位置。大功率转向系统可以实现每档最小转向半径至无穷大的无极转向,因此功率损失较小,效率较高;而传统的单流转向装置大部分情况都是非规定半径的滑摩转向,这需要驾驶员多次间歇操纵,费力繁琐,而且大量的能量消耗在摩擦和生热中,效率低下,严重磨损转向部件,从这点而言,该转向装置的优点是不言而喻的。转向手柄上安装还有超限转向开关以便车辆在高速行驶中可以自动降挡以适应狭窄转向路段。特别值得一提的是,当车辆挂空挡时,可以实现0半径“中心转向”,实现了我国坦克在这方面“零的突破”;而在车俩挂倒档时,具有双流传动特有“反转向”操纵,也就是相同操纵时,倒车方向与前进方向正好相反,这和轮式车辆以及单流传动的履带车辆有所不同,转向手柄控制的不是左右转向,而是车体顺逆时针的转向,驾驶员可能需要稍微适应一下。