❶ 目前市场上大量碳酸饮料、矿泉水、食用油等产品包装瓶几乎都是用PET(聚对苯二甲酸乙二醇脂,简称聚酯)
(1)①根据方程式知,饮料瓶碎片逐渐和碳酸氢钠反应生成二氧化碳,所以看到的回现象是固体溶解答,有气泡产生,故答案为:固体溶解,有气泡产生;
②乙二醇熔沸点较低,减压蒸馏,有利于乙二醇分离,故答案为:乙二醇;
③抽滤需要用到的主要仪器有布氏漏斗和吸滤瓶,故答案为:布氏漏斗、吸滤瓶;
(2)加4滴酚酞指示剂,用0.1000mol?L-1氢氧化钠标准溶液滴定,反应终点是滴入最后一滴氢氧化钠溶液变浅红色说明反应达到终点;
取0.2000g对苯二甲酸样品于250mL烧杯中,加入30mL DMF,搅拌溶解,加入10mL蒸馏水,搅匀后加4滴酚酞指示剂,用0.1000mol?L-1氢氧化钠标准溶液滴定,消耗氢氧化钠标准溶液体积为22.60mL.对苯二甲酸和氢氧化钠物质的量之比为1:2,对苯二甲酸物质的量=
0.1000mol/L×0.02260L |
2 |
0.00113mol×166g/mol |
0.2000g |
❷ 实验室废物,废液处理办法有哪些
废液的处理 实验室废液可以分别收集进行处理,下面介绍几种处理方法: 2.1、 无机酸类:将废酸慢慢倒入过量的含碳酸钠或氢氧化钙的水溶液中或用 废碱互相中和,中和后用大量水冲洗。 2.2、 氢氧化钠、氨水:用6mol/L盐酸水溶液中和,用大量水冲洗。 含氰废液:加入氢氧化钠使pH值在10以上,加入过量的高锰酸钾(3%)溶液,使CN- 氧化分解。如含量高,可加入过量的次氯酸钙和氢氧化钠溶液。 2.3、 普通简单的废液: 如石油醚、乙酸乙酯、二氯甲烷等可直接倒入废液桶 中,废液桶尽量不要密封,不能装太满(3/4即可)。 2.4、 有特殊刺激性气味的液体倒入另一个废液桶内立即封盖,统一处理。固体废弃物的处理: 3.1、 沾附有有害物质的滤纸、包药纸、棉纸、废活性炭及塑料容器等东西, 不要丢入垃圾箱内,要分类收集。 3.2、 废弃不用的药品可交还仓库保存或用合适的方法处理掉。 3.3、 废弃玻璃物品单独放入纸箱内;废弃注射器针头统一放入专用容器内, 注射管放入垃圾箱内。 3.4、干燥剂和硅胶可用垃圾袋装好后放入带盖得垃圾桶内;其他废弃的固体药品包装好后集中放入纸箱内,放到液体废液集中放置点由专业回收公司处理(剧毒,易爆危险品要先预处理)。
❸ 实验室废液的处理方法,为什么
实验室废液处理方法
有机类实验废液的处理方法
注意事项
1).尽量回收溶剂,在对实验没有妨碍的情况下,把它反复使用
2).为了方便处理,其收集分类往往分为:a)可燃性物质b)难燃性物质c)含水废液d)固体物质等。
3).可溶于水的物质,容易成为水溶液流失。因此,回收时要加以注意。但是,对甲醇、乙醇及醋酸之类溶剂,能被细菌作用而易于分解。故对这类溶剂的稀溶液经,用大量水稀释后,即可排放。
4).含重金属等的废液,将其有机质分解后,作无机类废液进行处理。
处理方法:
1).焚烧法
①将可燃性物质的废液,置于燃烧炉中燃烧。如果数量很少,可把它装入铁制或瓷制容器,选择室外安全的地方把它燃烧。点火时,取一长棒,在其一端扎上沾有油类的破布,或用木片等东西,站在上风方向进行点火燃烧。并且,必须监视至烧完为止。
②对难于燃烧的物质,可把它与可燃性物质混合燃烧,或者把它喷入配备有助燃器的焚烧炉中燃烧。对多氯联苯之类难于燃烧的物质,往往会排出一部份还未焚烧的物质,要加以注意。对含水的高浓度有机类废液,此法亦能进行焚烧。
③对由于燃烧而产生NO2 SO2 或HCl 之类有害气体的废液,必须用配备有洗涤器的焚烧炉燃烧。此时,必须用碱液洗涤燃烧废气,除去其中的有害气体。
④对固体物质亦可将其溶解于可燃性溶剂中然后使之燃烧。
2).溶剂萃取法
①对含水的低浓度废液,用与水不相混合的正己烷之类挥发性溶剂进行萃取,分离出溶剂层后,把它进行焚烧。再用吹入空气的方法,将水层中的溶剂吹出。
②对形成乳浊液之类的废液,不能用此法处理,要用焚烧法处理。
3).吸附法
用活性炭硅藻土矾土层片状织物聚丙烯聚酯片氨基甲酸乙酯泡沫塑料稻草屑及锯末之类能良好吸附溶剂的物质使其充分吸附后与吸附剂
一起焚烧
4).氧化分解法(参照含重金属有机类废液的处理方法)
在含水的低浓度有机类废液中,对其易氧化分解的废液,用H2O2 KMnO4 NaOCl H2SO4+HNO3 HNO3+HClO4 H2SO4+HClO4 及废铬酸混合液等物质,将其氧化分解。然后,按上述无机类实验废液的处理方法加以处理。
5).水解法
对有机酸或无机酸的酯类,以及一部份有机磷化合物等容易发生水解的物质,可加入氢氧化钠或氢氧化钙, 在室温或加热下进行水解。水解后,若废液无毒害时,把它中和、稀释后,即可排放。如果含有有害物质时,用吸附等适当的方法加以处理。
6).生物化学处理法
用活性污泥之类东西并吹入空气进行处理。例如,对含有乙醇、乙酸、动植物性油脂、蛋白质及淀粉等的稀溶液,可用此法进行处理。
含一般有机溶剂的废液
一般有机溶剂是指醇类、酯类、有机酸酮及醚等由C、H、O 元素构成的物质。
对此类物质的废液中的可燃性物质,用焚烧法处理。对难于燃烧的物质及可燃性物质的低浓度废液,则用溶剂萃取法、吸附法及氧化分解法处理。再者,废液中含有重金属时,要保管好焚烧残渣。但是,对其易被生物分解的物质(即通过微生物的作用而容易分解的物质),其稀溶液经用水稀释后,即可排放。
含石油动植物性油脂的废液
此类废液包括:苯、已烷、二甲苯、甲苯、煤油、轻油、重油、润滑油、切削油、机器油、动植物性油脂及液体和固体脂肪酸等物质的废液。
对其可燃性物质,用焚烧法处理。对其难于燃烧的物质及低浓度的废液,则用溶剂萃取法或吸附法处理。对含机油之类的废液,含有重金属时,要保管好焚烧残渣。
文章来源:VOLAB中国 www.volab.com.cn
❹ 压敏胶带初粘性的试验方法
压敏胶粘带初粘性试验方法(滚球法)
本标准等效采用Z0237:1991《压敏胶粘带和胶粘片试验方法》中的第12部分:《倾斜式滚球初粘性试验》和参考部分的第4部分:《滚球式初粘性试验》。本标准与JISZ0237,1991第12部分的主要技术差异为:本标准规定的试验用钢球只有29种,比JISZ0237:1991中第12部分规定的试验用钢球少了两种公称直径21.431mm和24.606mra的钢球。这是因为我国滚动轴承用钢球系列中一直没有这两种尺寸的钢球的缘故。
本标准与修订前标准相比,主要技术差异为:
(1)增加了方法B:斜槽滚球法。因此本标准的名称从修订前的《压敏胶粘带初粘性测试方法(斜面滚球法)》改为修订后的《压敏胶粘带初粘性试验方法(滚球法)》。
(2)方法A中倾斜板的角度一般情况下规定为30%特殊情况下可用20°或40°。而修订前的标准对特殊精况下的倾斜板角度未作明确规定。
(3)方法A中滚球的数量,修订前为33个,修订后滚球数量为29个。本标准自实施之日起,同时代替GB/T4852—1984。
方法A斜面滚球法1试验装置1.1斜面滚球装置由能倾斜20°、30°、40°的倾斜板及其联接结构组成,
如图1所示,各部分如下:滚球图1初粘性测试装置(斜面滚球装置)1.1.1倾斜板倾斜板采用光滑的硬质平面板(玻璃板、金属板、木板、塑料板等)。1.1.2助滚段助滚段由长100mm以上,厚约25jwn的透明聚酿薄膜,在规定的位置粘贴于试片之上而成。助滚段长100mm。1.1.3测定段测定段为从助滚段下端开始算起,长度为100mm范围内的胶粘面。1.2滚球采用如下规格的滚球:材质以G015轴承钢制造,钢球形状公差和表面粗糙度的精度级别应达到GB/T308规定的等级40以上。
试验方法2.1用水平仪把滚球装置水平地固定在测试台上,倾斜面取标准角度30%需要时也可以取20°或40。。2.2在试片的下端分别用定位胶粘带或砝码(质量约500g),将试片以胶粘面向上的方式固定在规定的位置上。把助滚段用聚酯薄膜贴敷在试片胶粘面的规定位置上,在贴敷聚酯薄膜时,应勿使气泡夹杂或起皱,也不要加上大的压力。在固定试片时,注意不要使之发生翘曲或鼓起。若在边缘部分发生鼓起,则应用别的胶粘带把这部分固定在倾斜面上。2.3为使助滚段的长度恒定为100mm,根据球的大小,如图1所示,把球中心调整在球的起始位置上。2.4将保存在防锈剂中的球,用镊子取出,按1,2.5所述的试验滚球清洁方法清洗,洗洁后,放置在起始位置上,让球经助滚段滚下去。2.5试验滚球的清洁试验滚球的表面,用脱脂纱布类材料”沾溶剂2).擦洗淸洁。表面干后,再用新的清洁纱布沾溶剂擦洗,反复擦洗三次以上,直至目视检査认为清洁为止。注:1)擦洗时无短纤维掉落的纱布、无纺布等织物,并且不含可溶于溶剂的物质。'2)环烷烃、溶剂油、酒精、异丙醇、甲苯等试剂级或没有残留物的工业级的溶剂。2.6预选最大钢球调整起始位置,用不同大小的球,重复球的清洗、滚转等一系列操作,从停止在测定段内(球不动达5s以上)的各种球中挑出最大的。拿出同一试片中发现的最大球以及该球号与之相邻的大小两个球,在同一试样上各进行一次测试,以确认最大球号的钢球。在挑出最大球之前,在同一张试片上滚动若干次都可以,但是它不能作为正式试验数据处理。2.7正式测试.取三个试样,用最大球号钢球各进行一次滚球测试。若某试样不能粘住此钢球,可换用球号仅小于它的钢球进行一次测试,若仍不能粘住,则须按7.2.6〜7.2.7步骤重新测试。3试验结果试验结果以正式测试时三个试样滚球试验结果的钢球号的中位数(球号)表示。
方法B斜槽滚球法1试验装置>1.1斜槽滚球装置的结构如图2所示,倾斜角为21°30、1.2滚球1.2,1材质按7.1.2.1规定。1.2.2滚球大小按方法A规定,用其中球号为14号的钢球。2试验方法2.1试验前,按照2.5所述的方法,把试验装置中的斜槽和钢球淸洗干净,其后不能再用手指触碰它们。2.2用胶粘带等把试片固定在硬质水平的平面测试板上(玻璃板、金属板、木板、塑料板等)。在固定试片时,勿让试片鼓起、起皱或翘曲。当试片边缘发生翘曲、鼓起时,用别的胶粘带把该部分固定在测试板上。.•*2.3把斜槽滚球装置水平遥固定在已装好试片的测试台上。2.4把滚球安置在规定的起始位置,操纵控制杆,使滚球滚下,测定滚球停止滚动的距离。该距离是指从倾斜槽末端到滚球停止时与胶粘面接触的中心点之间的长度。
8.3试验结果试验结果以滚球在3张试片中停止滚动的距离的算术平均值表示。
以上资料由济南铭威检测技术有限公司[马刚]整理0531-6780208013864023635
❺ 求助关于聚酯性质及工业技术
废塑料的回收和再生利用
废塑料的回收:
废塑料的回收是进行再利用的基础。回收的难度在于废塑料数量大、分布广、品种多、体积大,许多废塑料与其他城市垃圾混在 一起,给回收造成很大困难。
目前,国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。德国于1993年开始实施包装容器回收再利用,1997年回收再 利用废塑料达到60万吨,是当年80万吨消费量的75%。 目 前,德国在全国设立300多个包装容器回收、分类网点,各网 点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制 品,并有统一颜色标志。日本树脂再生利用成功的秘诀就在于 建立了回收循环体制。回收循环管理体制的核心就是尽量减少 回收环节,各厂家在建立销售网点的同时也要考虑建立回收网 点。厂家负起回收利用自家生产的产品废旧物品的责任,在回 收自家生产的废旧物品时,原标准零部件及其材料性能就容易 把握,可以充分有效地再生利用,能够确保再生产品的性能。 同时,还可以减少热回收,减少烦琐程序和环境污染。由于产 品的模块化,使再生利用部分的技术研究开发方向更加明确。
为进一步利用,回收的废塑料往往进行分离,采用的主要分离 技术有密度分离、溶解分离、过滤分离、静电分离和浮游分离等, 见图2.1。日本塑料处理促进协会的水浮选分离装置一次分离率就 可达到99.9%以上,美国DOW化学公司也开发了类似的分离技 术,以液态碳氢化合物取代水分离混合废塑料,取得了更佳的效 果。美国凯洛格公司与伦塞勒综合技术学院联合开发出溶剂性分离 回收技术,不需人工分拣,即可使混杂的废旧塑料得到分离。该法 是将切碎的废旧塑料加入某种溶剂中,在不同温度下溶剂能有选择
地溶解不同的聚合物而将它们分离。应用的溶剂以二甲苯为最佳, 操作温度也不太高。 对一些新的分离技术如电磁快速加热法、反应性共混法等也有 不少报道。电磁快速加热法可回收分离金属—聚合物组件,反应性 共混法能实现对带涂料层废弃保险杠的回收分离。另外,国外已开 发出计算机自动分选系统,实现了分选过程的连续自动化。瑞士的 Bueher公司用卤素灯为强光源照射下,经过4种过滤器的识别,由计算机可分离出PE、PP、PS、PVC和PET废塑料,生产能力为It/h。
直接使用或与其他聚合物混制成聚合物合金。这些产品可用于制造 6生塑料制品、塑料填充剂、过滤材料、阻隔材料、涂料、建筑材 料和粘合剂等。这是一种简单可行的方法,实现了重复使用,可分 为熔融再生和改性再生两类。
(1)熔融再生
该法是将废塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。
简单再生已被广泛采用,主要回收树脂生产厂和塑料制品厂生 产过程中产生的边角废料,也可以包括那些易于清洗、挑选的一次 性使用废弃品。这部分废旧料的特点是比较干净、成分比较单一,采用简单的工艺和装备即可得到性质良好的再生塑料,其性能与新料相差不多。现在塑料废弃物品约有20%采用这种回收利用方法, 现阶段大多数塑料回收厂是属于这一类的。
复合再生所用的废塑料是从不同渠道收集到的,杂质较多,具 有多样化、混杂性、污脏等特点。由于各种塑料的物化特性差异及 不相容性,它们的混合物不适合直接加工,在再生之前必须进行不 同种类的分离,因此回收再生工艺比较繁杂,国际上已采用的先进 的分离设备可以系统地分选出不同的材料,但设备一次性投资较 高。一般来说,复合再生塑料的性质不稳定,易变脆,故常被用来 制备较低档次的产品,如建筑填料、垃圾袋、微孔凉鞋、雨衣及器 械的包装材料等。
目前,我国大连、成都、重庆、郑州、沈阳、青岛、株洲、邯 郸、保定、张家口、桂林以及北京、上海等地分别由日本、德国引 进20多套(台)熔融法再生加工利用废塑料的装置,主要用于生 产建材、再生塑料制品、土木材料、涂料、塑料填充剂等。
(2)改性再生
是指通过化学或机械方法对废塑料进行改性。改性后的再生制品力学性能得到改善,可以做档次较高的制品。
日本宝冢市工业技术研究开发试验所发明了一种方法,可将废纸和废聚乙烯加工成合成木材,这种合成木材可以和天然木材一样 加工,质地也和天然木材一样好。澳大利亚克莱顿聚合物合作研究中心研究出一种用聚乙烯薄膜边角料和废纸纤维生产建筑业用木材 替代物的生产工艺,该加工过程系在一台双螺杆挤出机内进行,工 艺温度低于200℃,能避免纤维的降解。用该方法生产的新闻纸/ 聚乙烯复合材料的外观、密度和机械性能与硬纤维板相似,可用标准工具进行切割、成型,在钉钉子时的防裂性也很好,防水性能比 硬纤维板要好。西堀贞夫的“爱因木”技术以干态研磨清洗达到塑 料废弃物再资源化,使用再生原料PE、PP、PVC、ABS等混合废 弃木屑,生产木屑含量超过50%以上的新型木板。爱因木技术的 问世引起了世界各国,特别是发达国家的关注并产生了强烈反响。
在化学添加剂方面,汽巴—嘉基公司生产出一种含抗氧剂、共 稳定剂和其他活性、非活性添加剂的混合助剂,可使回收材料性能 基本恢复到原有水平;荷兰也有人开发出一种新型化学增容剂,能 将包含不同聚合物的回收塑料键合在一起。美国报道采用固体剪切 粉碎工艺(Solid State Shear Pulverization,S3P)进行机械加工,无需加热和熔融便可对树脂进行分子水平上的剪切,形成互容的共 混物,共混物大部分由HDPE和LLDPE组成,极限拉伸强度和挠 曲模量可与HDPE和LLDPE纯料相媲美。近两年出现的固相剪切 挤出法、反应性共混法、多层夹心注塑技术以及反应挤塑法则使一 些难以回收的废塑料的再生利用成为可能。
(3)木粉填充改性废塑料
木粉填充改性废塑料是一种全新的绿色环保塑木材料,其加工 方法也是物理改性再生方法。由于近几年来国内外对该方面的研究 较多,发展较快,并且已有商品化产品出现,塑木材料及其相关技术的发展已成为一种趋势
木粉与废旧塑料复合材料的开发与研究不但可以提供充分利用 自然资源的机会,而且也可以减轻由于废旧塑料而引起的环境污 染,因此,这种木塑复合材料是一种节约能源、保护环境的绿色环保材料。其应用范围很广,主要应用在建材、汽车工业、货物的包 装运输、装饰材料及日常生活用具等方面,有广阔的发展前景。从国内外专利调研中也可看出这点。木粉作为塑料的一种有机填料,具有许多其他的无机填料所无法比拟的优良性能:来源广泛、价格 低廉、密度低、绝缘性好、对加工设备磨损小。但它并没有像无机填料那样得到广泛应用,原因主要有以下两点,与基体树脂的相容性差;在熔融的热塑性塑料中分散效果差,造成流动性差和挤出成 型、加工困难。
①木粉的处理:木纤维材料优选为炊木材料,如白杨木、雪 松锯屑等,这种木纤维有规则的形状和纵横比,使用前需经处理干 净,尽量干燥,然后加工成类似锯屑规格的木粉。各专利对木粉的规格、大小都作了相应规定:长度优选为1—10mm,厚度0.3—1.5mm,纵横比2.5—6.0,吸湿率小于12%(按重量计)。
②对塑木复合物的加工要求:复合物颗粒挤出成材时,若采用的是无通风设备的挤出工艺,颗粒应尽可能干燥,含水量应在 0.01%~5%(质量分数)之间,最好小于3.5%。有通风设备的,含水量小于8%是可以接受的。否则,挤出材料会产生裂纹或其他表面缺陷。
对复合物颗粒的截面形状作了研究,认为有规则几何形状的截面更有利,包括三角形、正方形、矩形、六边形、椭圆形、圆形等’,优选为有近似圆形或椭圆截面的规则圆柱体。
在挤出工艺中木纤维更宜沿挤出方向取向,这种定向能使相邻平行的木纤维与包覆在定向木纤维上的高分子相互交叠,从而能改善材料的物理性能。通常取向度为20%,优选30%。这种结构的材料有着充分增强的强度、拉伸模量,适宜于制作门窗。
研究了木粉与废塑料的混合比例,优选条件为塑料45%(质量分数,后同)、木粉55%,还发现从塑料40%、木纤维60%到 塑料60%、木纤维40%的混合比例都可生产合用的产品。混合物组分的选定视终产品的特性、塑料和木纤维的类型而定。
③相容性的改善:由于木粉中主要成分是纤维素,纤维素中含有大量的羟基,这些羟基形成分子间氢键或分子内氢键,使木粉具有吸水性,吸湿率可达8%一12%,且极性很强,而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小。使用适当的添加剂改性聚合物和木粉的表面,可以提高木粉与树脂之间的界面亲和能力,改性的木粉填料具有增强的性质,能够很好地传递填料与树脂之间的应力,从而达到增强复合材料强度的作用。因此,要得到性能优良、符合条件的塑木复合材 料,首先要解决的问题是相容性的问题。 ·
相容性问题主要依靠加入各种添加剂解决。
偶联剂法:偶联剂可以提高无机填料及无机纤维与基体树脂之间的相容性,同时也可改善木粉与聚合物之间的界面状况。硅烷偶联剂和钛酸酯偶联剂是应用最广泛的两类偶联剂,实验表明,这两种偶联剂都能改善填料与树脂的相容性。
相容剂法:加入相容剂法是最简单而且很有效的方法。据报道,合适的相容剂有马来酸酐等接枝的植物纤维或马来酸酐改性的聚烯烃树脂、丙烯酸酯共聚物、乙烯丙烯酸共聚物。这些相容剂中大部分含有羟基或酐基,能够与木粉中的羟基发生酯化反应,降低木粉的极性和吸湿性,故与树脂有很好的相容性。
④添加剂的用量对复合材料性能的影响:偶联剂的用量与填料的活化效果并非成正比关系,当添加剂含量为1%时,材料的拉伸强度和拉伸模量最好,随着添加剂用量的增加,材料的性能反而下降。因此添加剂的用量不能太多,否则,既影响性能,又造成不必要的浪费。
⑤流动性能的改善:对于挤出成型加工来说,要求所加工的物料有一定的流动性。大多数情况下填充塑料都需要经过熔融、受力、变形后,经冷却定型制成各种制品,因此木粉填料的加人对熔体流变性能的影响是必须加以研究的。其中最重要的是对熔体粘度的影响。
随着木粉含量的增加,聚合物熔体粘度升高,这与木粉在基体树脂中的分散状况有关。木粉颗粒在基体中是以某种聚集状态的形式存在,呈聚集态的木粉对填充体系流动性能的影响是不利的,可加入适量的硬脂酸来降低木粉颗粒的集聚数量,改善成团现象,使其在基体树脂中充分分散。此外,木塑复合材料在熔融状态时属于假塑性流体,随着剪切速率的增加,表观粘度下降。所以为了使填充体系具有良好的加工流动性能,应当尽可能采用较高的剪切应力,以降低填充体系的剪切粘度,使之适合于挤出成型加工。
⑥加工条件的改善:挤出成型、热压成型、注射成型是加工 塑木复合材料的主要成型方法。由于挤出成型加工周期短、效率 高、成型工艺简单,因此挤出成型方法是一种较佳的选择方案。
单螺杆挤出机可完成物料的塑化和输送任务。由于木粉的填充 使聚合物熔体粘度增大,增加了挤出难度,所以,用于木粉填充改 性的单螺杆挤出机必须采用特殊设计的螺杆,螺杆应具有较强的混炼塑化能力。
由于木粉结构蓬松,不易对挤出机螺杆喂料,在挤出之前应对物料进行混炼制粒。由于木粉具有吸水性,制粒前应对木粉进行干燥处理,干燥温度为150℃左右,时间以3h为宜,如果干燥不充分,制品中会有气泡产生,致使材料的机械强度下降。加工温度的控制也十分重要,温度过高,木粉由于热作用会发生炭化现象,从而影响材料表观颜色。因此,在加工过程中应适当控制加工温度。
化学方法:
是指通过化学反应使废旧塑料转化成低分子化合物或低聚物。 这些技术可用于以废旧塑料为原料生产燃料油、燃气、聚合物单体 及石化、化工原料。
从技术角度来说,化学方法主要有高温裂解、催化裂解、加氢裂解、超临界流体法以及溶剂解。热裂解法生成沸点范围宽的烃类,回收利用价值低。催化裂解由于有催化剂存在,反应温度可降低几十度,产物分布相对易于控制,能得到晶位高的汽油。超临界流体法因其环保、经济、分解速度快、转化率高等特点,正成为目前的研究热点,既适用于废塑料油化,又可用于缩聚物溶剂解。溶剂解主要用于缩聚型废塑料的解聚回
收单体。
从用途来讲,化学方法因终产品的不同又可分为两种,一种是制取燃料(汽油、煤油、柴油、液化气等),另一种是制取基本化工原料、单体。
(1)制取燃料(油、气)的油化技术
国外早在20世纪70年代石袖危机时期已开始开发油化技术,
裂化,lkg废塑料产油最多可达iL。这种技术不使用搅拌装置,只适合于聚烯烃,还不能用于含卤类塑料。
APME(欧洲塑料生产者协会)认为,回收工艺要有生命力,必须能够接受组成广泛的混合塑料。目前工业界已对富含PVC (高至60%)的废塑料进行了实验室工程研究和初步的中试,但尚未对示范装置的建设提供最佳工艺条件。
日本在2000年4月对废塑料全面实施“包装容器再生法”后,为解决混杂塑料的油化问题,日本废塑料再生促进协会及废物研究 财团在政府的资助下,开发成功一般混合废塑料的油化技术。其工 艺过程包括前处理工序、脱氯工序、热分解。为了改善油品质量, 加入催化剂进行改质。
三菱重工、东芝、新日铁等日本公司均已先后进行了中试或工业化试验,可产出汽油、柴油、重油等油晶,技术已过关,但经济上尚未过关。为此,有关公司正通过改进工艺以大幅度降低成本,突出的为东北电力会同三菱重工利用超临界水进行废塑料油化试验的结果,反应时间由过去的2h大幅缩短至2min后,油品的回收率仍保持在80%以上的高水平,从而有利于成本的降低。考虑到油价的上涨将有利于提高经济效益,目前正在进行的0.5t/h的工业化试验,预计成功后将较快实用化。
(2)制取基本化学原料、单体回收的技术:
混合废塑料热分解制得液体碳氢化合物,超高温气化制得水煤气,都可用作化学原料。德国Hoechst公司、Rule公司、BASF公司、日本关西电力、三菱重工近几年均开发了利用废塑料超高温气化制合成气,然后制甲醇等化学原料的技术,并已工业化生产。
近年来废塑料单体回收技术日益受到重视,并逐渐成为主流方向,其工业应用亦在研究中。1998年5月在德国慕尼黑举行的第14届国际分析应用裂解学术会议上,出现了有关高分子废弃物再生利用发展的新趋向。从本次会议发表的论文看,对于高分子材料的“白色污染”问题,国际上在基本解决了高分子废弃物经裂解制备燃料的研究和工业化之后,已趋向将高分 子废弃物通过有效的催化—裂解方法转化为高分子合成原料的新
阶段。目前研究水平已达到单体回收率聚烯烃为90%,聚丙烯酸酯为97%,氟塑料为92%,聚苯乙烯为75%,尼龙、合成橡胶为80%等。这些结果的工业应用亦在研究中,它对环境及资源利用将会产生巨大效益。
美国BattelleMemorial研究所(美国专利US5136117)已成功开发出从LDPE、HDPE、PS、PVC等混合废塑料中回收乙烯单体技术,回收率58%(质量分数),成本为3.3美分/kg,目标是两年后实现工业化。日本总代理商——三菱商社已引进该技术并商业化开发,已建成流量20L/h的连续反应装置。
溶剂解(包括水解和醇解)主要用于缩聚高分子材料的解聚回收单体,适用于单一品种并经严格预处理的废塑料。目前主要用于处理聚氨酯、热塑性聚酯和聚酰胺等极性废塑料。例如利用聚氨酯泡沫塑料水解法制聚酯和二胺,聚氨酯软、硬制品醇解法制多元醇,废旧PET解聚制粗对苯二甲酸和乙二醇等。
另外,近年来超临界流体法也越来越多地应用于解聚缩聚型高分子材料,回收其单体,效果远优于通常的溶剂解。日本T.Sako等人利用超临界流体分解回收废旧聚酯(PET)、玻璃纤维增强塑料(FRP)和聚酰胺/聚乙烯复合膜。他们采用超临界甲醇回收PET的优点是PET分解速度快,不需要催化剂,可以实现几乎100%的单体回收。他们还用亚临界水回收处理PA6/PE复合膜,使PA6水解成单体‘·己内酰胺,回收率大于70%一80%。
热能再生:
塑料燃烧可释放大量的热量,聚乙烯和聚苯乙烯的热值高达46000kJ/kg,超过燃料油平均44000kJ/kg的热值。燃烧试验表明,废塑料完全具备作为燃料的基本性质。它与煤粉、重油的燃烧对比试验详见表2.2。从表2.2中可看出,废塑料发热量与煤和石油相 当,且不含硫。此外由于含灰分少,燃烧速度快。
因此,国外将废塑料用于高炉喷吹代替煤、油和焦,用于水泥回转窑代替煤烧制水泥,以及制成垃圾固形燃料(RDF)用于发电,收到了很好的效果。
(1)燃料化:垃圾固形燃料RDF
日本积极推广用废塑料制垃圾固形燃料(RDF)。RDF技术原 由美国开发,日本近年来鉴于垃圾填埋场不足、焚烧炉处理含氯废 塑料时造成HCI对锅炉的腐蚀和尾气产生二D8英污染环境的问题,利用废塑料发热值高的特点混配各种可燃垃圾制成发热量20933kJ/kg和粒度均匀的RDF后,既使氯得到稀释,同时亦便于贮存、运输和供其他锅炉、工业窑炉燃用代煤。垃圾固形燃料发电最早在美国应用,并已有RDF发电站37处,占垃圾发电站的21.6%。日本结合大修将一些小垃圾焚烧站改为RDF生产站,以便于集中后进行连续高效规模发电,使垃圾发电站的蒸汽参数由<30012提高到45012左右,发电效率由原来的15%提高到20%~25%。秩父小野田水泥公司已在回转窑上试烧RDF成功,不仅代替了燃煤,而且灰分也成为水泥的有用组分,效果比用于发
电更好。目前日本各水泥厂正积极推广。
(2)高炉喷吹、水泥回转窑喷吹
高炉喷吹废塑料技术是利用废塑料的高热值,将废塑料作为原料制成适宜粒度喷人高炉,来取代焦炭或煤粉的一项处理废塑料的新方法。国外高炉喷吹废塑料应用表明,废塑料的利用率达80%. 排放量为焚烧量的0.1%~1.0%,仅产生较少的有害气体,处理费用较低。高炉喷吹废塑料技术为废塑料的综合利用和治理“白色污染”开辟了一条新途径,也为冶金企业节能增效提供了一种新手段。
德国的不莱梅钢铁公司于1995年首先在其2号高炉(容积2688m3)上喷吹废塑料,并建立了一套70kt/a的喷吹设备,随后克虏伯/赫施钢铁公司也建立了一套90kt/a的喷吹设备,德国其他的钢铁公司也准备采用此项技术。日本NNK公司1996年在其京滨厂1 号高炉(容积4093m3)上喷吹废塑料,计划处理废塑料30kt/a,它
还打算向日本其他厂转让此项技术。日本环保界和舆论界对此寄予厚望,日钢铁联盟已将此纳入2010年节能规划,要求年喷吹100万吨以上,相当于钢铁工业能耗的2%,前途大有可为。
另外,日本水泥回转窑喷吹废塑料试验成功。德山公司水泥厂在长期燃烧废轮胎的基础上,于1996年在废塑料处理促进协会的配合下成功进行了回转窑喷吹废塑料试验。
发酵法
有资料报道,废聚乙烯可以通过氧化发酵和热解发酵两种方法转化成微生物蛋白。该法为非主流方法,目前不常用。
❻ 聚酯如何结晶
聚酯结晶:
1、聚酯是结晶性聚合物,在成型过程中会出现结晶现象,如在熔体冷却结晶时最常见的是生成球晶,在高应力作用下也会形成纤维状或片状晶体,随结晶条件不同,聚酯可以形成形态极不相同的晶体。
2、球晶是聚合物多晶体的一种主要形式。就结构层次来讲属于高次结构。它可以从浓溶液中沉析出来也可以在熔体冷却时得到。当它的生长不受阻碍时其外形呈球状,但当球晶密集地生长在一起时就得到多面体的外形。球晶的基本特点在于它是以核为起点,球形对称地生长起来的,而不在于其外形是否呈球状。球晶的大小可因聚合物种类和结晶条件的不同,有很大的差别。小的只有10-3μm的数量级,大的可达mm的数量级。
3、分子链的结构愈简单、对称性愈高其结晶速度就愈大;链的规整性愈高其结晶能力愈强。 相对分子质量及相对分子质量分布:相对分子质量增大,链活动能力降低,导致结晶速度下降,所以相对分子质量愈大其结晶速度就愈慢;相对分子质量分布宽,低相对分子质量的含量则多,使结晶速度加快,所以相对分子质量分布宽结晶速度就愈快。
4、聚合物中杂质的存在对其结晶过程有很大的影响,有些杂质要阻碍结晶,而另一些杂质能促进结晶。
5、温度对结晶速度的影响非常大。聚合物均相成核阶段是热运动形成有序排列的,如果如果太高(>熔点Tm),分子的热运动太剧烈,晶核不易形成或虽形成晶核但不稳定,易被分子的热运动破坏,因而总的结晶速度为零;随温度降低,均相成核的速度逐渐增大,晶核数目相应增多,由于温度高,链段活动能力强,晶粒生长速度快,因而总的结晶速度增大。当温度降至某一温度时晶核形成和晶粒生长都有较大速度,此时总的结晶速度出现极大值。温度进一步下降,熔体粘度增大,链段活动能力降低,晶粒生长速度明显减小,导致总结晶速度下降,下降程度决定于晶粒生长速度,当温度继续下降至玻璃化温度(Tg)时链段补冻结,晶粒生长速度为零,结晶停止。因而均相成核结晶过程是在Tm-Tg范围进行的。
6、聚酯(PET)属于高分子化合物。是由对苯二甲酸和乙二醇经过缩聚产生聚对苯二甲酸乙二醇酯,其中的部分PET再通过水下切粒而最终生成。
❼ 环氧树脂和不饱和聚酯树脂哪个将来发展前景较好
给你看两篇文章
不饱和聚酯树脂产品发展至今大约有70多年的历史。在这么短的时期内,不饱和聚酯树脂产品无论从产量还是从技术水平方面均得到了飞速的发展,目前不饱和聚酯树脂产品已发展成为热固性树脂行业中最大的品种之一。
在不饱和聚酯树脂的发展过程中,从产品专利、商业杂志、技术书籍等方面的技术信息层出不穷。至今每年都有上百项发明专利是关于不饱和聚酯树脂的。由此可见,不饱和聚酯树脂制造和应用技术随着生产的发展也日益成熟,逐步形成了自己独特的完整的生产与应用理论的技术体系。
在过去的发展过程中,不饱和聚酯树脂对于一般用途来说,具有特殊意义的贡献。将来我们要向一些特殊用途的领域发展,同时还要使通用树脂低成本化。下面介绍几种比较有意义和发展前景的不饱和聚酯树脂类型。
1)低收缩树脂。这个树脂品种或许只是一个老话题,不饱和聚酯树脂在固化时伴随有较大的收缩,一般体积收缩率达6-10%。这种收缩会使材料严重变型甚至破裂,尤其是在模压成型工艺中(SMC、BMC)。为了克服这一缺点,通常采用热塑性树脂作低收缩添加剂。在这个领域的第一个专利是1934年杜邦公司,专利号为U.S.1,945,307。专利叙述了二元羧酸与乙烯基化合物的共聚合反应。很明显,在当时,这项专利开创了聚酯树脂低收缩技术的先河。此后,有很多人志力于共聚物体系的研究,这些共聚物体系当时被认为是塑料合金。1966年Marco的低收缩树脂被首次用于模塑成型中并用于工业化生产。其后塑料工业协会将这种产品称为"SMC",含义为片状模塑料,它的低收缩预混配合物"BMC"含义为团状模塑料。对于SMC板材,一般要求树脂成型后的部件具有良好的配合公差、柔韧性和A级光泽,要避免表面有微裂纹,这就要求配合的树脂要有较低的收缩率。
当然,其后又有很多专利对这项技术进行了改进和提高,对于低收缩作用的机理的认识也逐渐成熟,各种各样的低收缩剂或低轮廓添加剂品种应运而生。常用的低收缩添加剂有聚苯乙烯、聚甲基丙烯酸甲酯等。
2)阻燃树脂。有时阻燃材料与药品救助具有同等的重要性,阻燃材料可以避免或减少灾难的发生。欧洲最近十年由于采用了阻燃剂,火灾致死人数降低了约20%。阻燃材料本身的安全性也是很重要的,在工业上,规范使用材料类型是缓慢的、艰难的过程,目前欧共体已经和正在对很多卤系及卤-磷系阻燃剂进行危害性评估,其中很多将于2004年-2006年间完成。
目前我国一般采用含氯或含溴的二元醇或二元酸卤素取代物作为原料来制得反应型阻燃树脂。卤素阻燃剂在燃烧时会产生大量烟雾并伴有刺激性很强的卤化氢生成。在燃烧过程产生的这一浓烟毒雾给人们造成极大的危害。据统计,火灾事故中80%以上的死亡原因是由此而造成的。用溴或氯系作为阻燃剂的另一不利条件是在其燃烧时还会产生腐蚀性和污染环境的气体,会导致对电器原件的破坏。采用无机阻燃剂如水合氧化铝、镁、硼、钼化合物等阻燃添加剂,虽有明显消烟作用,能制得低烟低毒阻燃树脂,但如果无机阻燃剂填料量过大,不但树脂粘度增大,不利于施工,同时树脂中加入大量添加型阻燃剂时,会影响树脂固化成型后的机械强度和电性能。
目前,国外很多专利报导了采用磷系阻燃剂生产低毒、低烟阻燃树脂的技术。磷系阻燃剂的阻燃效果相当大,燃烧时生成的偏磷酸可聚合成稳定的多聚态,形成保护层,覆盖在燃烧物表面,隔离氧气,促进树脂表面脱水碳化,形成碳化保护膜从而阻止燃烧。同时磷系阻燃剂还可与卤素阻燃剂配合使用,有非常明显的协同作用。
当然,将来阻燃树脂的研究方向是低烟、低毒、低成本。理想的树脂是无烟、低毒、低成本、不影响树脂固有的物理性能、不需加入添加材料,能够在树脂生产厂直接生产制造的阻燃树脂。
3)增韧树脂。与最初的不饱和聚酯树脂品种相比,现在的树脂韧性已经有了大幅度的提高。但随着不饱和聚酯树脂下游行业的发展,对不饱和树脂的性能提出了更多新的要求,尤其是韧性方面。不饱和树脂固化后的脆性,几乎成了限制不饱和树脂发展的重要问题。不论是从浇铸成型的工艺品产品还是模压成型或缠绕成型的产品,断裂延伸率成为考核树脂产品质量的重要指标。
目前国外一些厂商采用加入饱和树脂的方法来提高韧性。如添加饱和聚酯、丁苯橡胶和端羧基丁苯橡胶等,这种方法属于物理增韧法。还可采用向不饱和聚酯的主链中引入嵌段聚合物,例如不饱和聚酯树脂与环氧树脂和聚氨酯树脂形成的互穿网络结构,极大地提高了树脂的拉伸强度和冲击强,这种增韧方法属于化学增韧法。还可采用物理增韧与化学增韧相结合的方法如把活性较高的不饱和聚酯与活性较低的材料相混就能达到所需的柔韧性能。目前SMC板材由于其轻质、高强、耐腐蚀性、设计灵活性在汽车行业得到了广泛的应用,对于汽车而板、车后门、外面板等重要部位,要求有较好的韧性,例如汽车外护板可在稍受碰后有限度地向后弯曲并恢复原状。
提高树脂的韧性,往往会损失树脂的其它性能,如硬度、弯曲强度耐热性能以及在施工时的固化速度等。提高树脂的韧性又不损失树脂的其它固有性能成了不饱和聚酯树脂科研开发的重要课题。
4)低苯乙烯挥发树脂。在加工不饱和聚酯树脂的过程中,挥发性的有毒苯乙烯会对施工人员的健康产生很大的危害。同时苯乙烯散发到空气中,也会造成严重的空气污染。因此,很多国家的职能机关限制苯乙烯在生产车间空气中允许的浓度。例如在美国其允许PEL值(permissibleexposurelevel)是50ppm,而在瑞士,其PEL值为25ppm,这样低的含量是不太容易达到的。依靠强力的通风作用也很有限。同时,强力的通风还会导致苯乙烯从制品的表层散失以及大量苯乙烯挥发到空气中。因此寻找减少苯乙烯挥发的方法,从根源上来说,还是要在树脂生产厂完成这项工作。这就要求开发不污染或少污染空气的低苯乙烯挥发(LSE)树脂或无苯乙烯单体的不饱和聚酯树脂。
减少挥发性单体含量,在近几年来一直是国外不饱和聚酯树脂行业开发的课题,目前采用的方法有很多种:1)加入低挥发抑制剂的方法。2)不含苯乙烯单体的不饱和聚酯树脂配方有用二乙烯基体、乙烯基甲基苯、α-甲基苯乙烯来取代含苯乙烯单体的乙烯基单体3)低苯乙烯单体的不饱和聚酯树脂配方是并用上述单体与苯乙烯单体,比如使用邻苯二甲酸二烯丙酯、丙烯酸共聚物等高沸点乙烯基单体与苯乙烯单体其用4)另一种减少苯乙烯挥发的方法是把双环戊二烯及其衍生物等其它单元引入不饱和聚酯树脂骨架,实现低粘度化,最终使苯乙烯单体含量降低。
在寻求解决苯乙烯挥发问题的途径上,必须综合考虑树脂对现有的成型方法如表面喷涂、层压工艺、SMC成型工艺的适用性,工业化生产的原料成本问题,与树脂体系的相容性,树脂的反应活性、粘度,成型后树脂的机械性能等问题。在我国在限制苯乙烯挥发方面还没有明确立法,但随着人民生活水平的提高,人们对自身健康认识以及环保意识的提高,对于我们这样的不饱和消费大国,相关的立法是只是迟早的问题。
5)耐腐蚀树脂。不饱和聚酯树脂的一个较大的用途是其对有机溶剂、酸、碱、盐等化学品的耐腐蚀性。目前耐腐蚀树脂分为以下几类:1)邻苯型、2)间苯型、3)对苯型、4)双酚A型、5)乙烯基酯型,以及其它如二甲苯型、含卤素化合物型等,经过几十年来几代科学家的不断探索,对于树脂的腐蚀以及抗腐蚀机理已经研究的比较透彻了。
通过各种方法对树脂进行改性,如向不饱和聚酯树脂中引入难于耐腐蚀的分子骨架或采用不饱和聚酯与乙烯基酯及异氰酸酯形成互穿网络结构,对于提高树脂的耐腐蚀性是很有效的,加外采用酸树脂混配的方法制造的树脂也能达到较好的耐腐蚀效果。与环氧树脂相比,不饱和聚酯树脂的低成本、加工方便成为极大的优势,但不饱和聚酯树脂的耐腐蚀性尤其是耐碱性却远不如环氧树脂,很长一段时期来,尤其是在腐蚀严重的场合,不饱和聚酯树脂还不能取代环氧树脂。目前防腐蚀地坪的兴起,更是对不饱和聚酯树脂形成机遇与挑战。因此,开发专用耐腐蚀树脂具有广阔的前景。
6)胶衣树脂。胶衣在复合材料中起着重要的作用,它不仅起着对玻璃钢制品表面的装饰作用,而且起着耐磨、耐老化、耐化学腐蚀的作用。胶衣树脂的发展方向是研制低苯乙烯挥发、空气干燥性好、耐腐蚀性强的胶衣树脂。胶衣树脂中耐热水胶衣有很大的市场,玻璃钢材料如果长期浸入热水中,表面就会出现水泡,同时由于水逐渐浸透到复合材料内部而使得表面水泡逐渐膨胀,水泡不仅会影响胶衣的外观,而且会逐渐降低制品的各项强度性能。美国堪萨斯州厨房用具公司(CookCompositesandPolymersCo.)采用环氧树脂和缩水甘油醚封端的方法制造一种胶衣树脂,具有低粘度和优异的耐水性、和耐溶剂性。另外,该公司还采用经过聚醚多元醇改性和环氧树脂封端的树脂A(柔性树脂)与双环戊二烯(DCPD)改性的树脂B(刚性树脂)复配,这两种均具有耐水性能的树脂经过复配,除具的好的耐水性外,还具有好的韧性和强度,可作为胶衣树脂或胶衣树脂与普通树脂之间的隔离层树脂使用,可有效地阻止水或溶剂或其它低分子物质穿过胶衣层渗入到玻璃钢材料体系中,成为综合性能优异的耐水树脂。
7)光固化不饱和聚酯树脂。不饱和聚酯树脂的光固化特点是适用期长、固化速度快。不饱和聚酯树脂通过光固化可满足对苯乙烯挥发量限制的要求。由于光敏剂及光照装置的进步,为光固化树脂的发展打下基础。各种紫外光固化的不饱和聚酯树脂已研制成功并已大量投入生产。提高了材料性能、工艺性能以及表面耐磨性,同时采用这种工艺也提高了生产效率。
8)特殊性能的低价树脂。这种树脂包括发泡树脂与含水树脂――目前,木材能源的缺乏在世界范围内有一个上升的趋势。同样也缺乏从事木材加工业的熟练的操作工人,而这些工人的薪金也越来越高。这种条件下就为工程塑料进入木材市场创造了条件。不饱和发泡树脂和含水树脂作为人造木材在家具行业里将以其低成本、高强度的特性而得到发展。应用一开始将是缓慢的,以后随着加工技术的不断提高,这种应用必将得到迅速的发展。
不饱和聚酯树脂可以发泡,制成发泡树脂,可用作墙板、预成型的浴室隔板等。以不饱和聚酯树脂作为基体的泡沫塑料可的韧性、强度比发泡PS好;加工比泡沫PVC容易;成本比泡沫聚氨酯塑料低,添加阻燃剂等也可使其阻燃和耐老化。虽然树脂的应用技术已全面发展,但发泡不饱和聚酯树脂在家具中的应用还没有被重视,经过调查,一些树脂制造商对于开发这种新型的材料有很大的性趣。一些主要的问题(结皮、蜂窝结构、胶凝-成泡的时间关系、放热曲线控制)在工业化生产以前还没有完全解决。在没有得到答案前,这种树脂由于它的低成本只能应用于家具行业。一旦这些问题得到解决,这种树脂将会广泛地应用于泡沫阻燃材料等领域而不仅仅是利用其经济性。
含水不饱和聚酯树脂可分为水溶型和乳液型两种。国外早在60年代就开始就有这方面的专利和文献报导。含水树脂是将水作为不饱和聚酯树脂的一种填料在树脂凝胶前加入树脂中,含水量最高可达50%,这样的树脂称为WEP树脂。该树脂具有低成本、固化后质量轻、阻燃性好、低收缩率低等特点。我国对于含水树脂的开发和研究始于80年代,已经有很长一段时期,在应用方面,已见用于锚固剂。含水不饱和聚酯树脂是UPR的一个新品种。实验室的技术日趋成熟,但应用方面的工作研究较少,需要进一步解决的问题是乳液稳定性问题和固化成型过程中的一些问题以及客户的认可问题。一般一个万吨级不饱和聚酯树脂每年可产生约600吨废水,如果利用不饱和聚酯树脂生产过程中产生的缩水循环利用生产含水树脂,即降低了树脂成本又解决了生产环保问题。
9)采用新的原材料和新的工艺合成的高性能树脂。双环戊二烯改性不饱和聚酯树脂是最近几年在我国迅速发展的树脂品种。据江苏亚邦涂料公司和天津合材有限公司提供测试数据表明,DCPD改性树脂其浇铸体和玻璃钢性能的技术指标与普通邻苯型树脂不相上下。目前双环戊二烯树脂以其较低的价格和良好的性能迅速被市场所接受。各企业纷纷开发此类产品,产品技术逐渐成熟。其中天津合材树脂有限公司开发的"低温催化法合成双环戊二烯不饱和聚酯树脂"于2004年通过天津市科委的科技成果鉴定,并于2005年获得天津市优秀项目二等奖。
用回收的废聚对苯二甲酸乙二醇酯(PEF)或回收废对苯二甲酸(PTA)可生产不饱和聚酯树脂,既解决了环保问题,又降低了合成高性能树脂的成本,合成的树脂具有优异的韧性、弹性、和强度,一些性能甚至优于用间苯二甲酸制备的树脂,且成本可与邻苯二甲酸树脂相比。由于对苯型树脂在耐腐蚀、耐热性能方面优于邻苯型及间苯型树脂,也大大拓展该树脂在化工防腐领域中应用。我国天津合成材料厂(天津合材树脂有限公司)利用这项技术生产的199A树脂曾获天津市科技进步奖。江浙地区窨井盖用BMC树脂和广东地区缠绕树脂已部分采用了下脚对苯型树脂。下脚对苯型树脂产区在温州、富阳、武进、泉州、番禺等地有较大的市场。厦门汇大化工公司为综合利用厦门翔鹭石化公司的PTA下脚料,正在进行扩建成10万吨树脂生产能力进行配套。随着国家提出"循环经济"的发展方针,这两大类树脂会加速增产。
近几年,一些专利报导用双环戊二烯与废PET联合使用,作为生产不饱和聚酯树脂的原材料,可以产生优势互补的效果。即解决PET树脂与苯乙烯相溶性差的缺陷,又解决了双环戊二烯改性树脂韧性较差缺陷,还可进一步降低树脂成本。
2-甲基1,3-丙二醇(MPD)是近年来市场上常见的品种,它具有较高的沸点,具有两个羟基可快速缩合反应,由此制备的树脂具有较高的反应活性以及优异的机械性能和耐腐蚀性能。可以和对苯二甲酸配合使用,起到优势互补的作用,制造的树脂可用于强腐蚀环境如玻璃钢槽、罐等场合。
采用甲基丙烯酸缩水甘油酯(GMA)作为合成树脂的原材料。GMA含有一个活性的环氧基团,可以与聚酯链中的羧基反应,起到封端的效果。这种树脂在分子链的端基产生一个甲基丙烯酰组份,可以与苯乙烯单体发生聚合反应,分子链中间是柔性链节,可使固化后的树脂具有很好的韧性和回弹性。
10)用于不饱和聚酯树脂辅料的开发。与不饱和聚酯树脂相关的辅料包括:各种催化剂、分散剂、消泡剂、抗氧剂、紫外线吸收剂、促进剂、固化剂、色浆、胶衣、脱模剂、添加剂等材料。国内各种辅料的开发已比较完善,尤其是复合促进剂的开发,为树脂的快速固化提供了良好的条件。目前,国产的促进剂质量已有大幅度的提高,在固化速度、固化后对制品的色泽影响方面都优于进口材料。但国产固化剂的质量(主要是过氧化甲乙酮)却有所下降,存在着固化剂中低分子物过高、含水量过高等缺点,且固化剂生产厂时有爆炸现象发生,这主要是由于我国的固化剂生产技术还不过关,还需要进一步巩固和提高。其它辅料方面,高档助剂(如分散剂、消泡剂、抗氧剂等)仍以进口为主,我国专业研究和生产不饱和聚酯树脂相关助剂的厂家很少,说明我国的不饱和辅料技术还有一个很大的缺口。
总之,如果一种材料具有低成本,那么在工业上一定会找到它的用途和价值;如果一种材料具有满足市场所需求的性能,就一定会有生命力,而这些材料在制造过程中的一些技术问题,也终将会被攻克。很简单,例如如果能够制造出一种普通价位的阻燃树脂,我们将会看到市场上所有的树脂材料都将是阻燃的。
环氧树脂是指分子中含有两个或两个以上环氧基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征。这使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,并由此特性成为先进复合材料中应用最广泛的树脂体系,可适用于多种成型工艺配制成不同配方,可调节粘度范围大;以适应于不同的生产工艺。近年来橡胶弹性体增韧、树脂合金化改性以及环氧树脂增韧改性新技术等增韧技术的日益成熟,环氧树脂得到了更好更广泛的应用。目前环氧树脂统治着高性能复合材料的市场,因此对环氧树脂市场的研究有着广泛的意义。
根据最新统计,我国2005年全年环氧树脂产量为44万吨、进口量为25万吨、出口量为6万吨、消费总量为63万吨,产量继续保持较大增长,进口量在总消费量中的比较进一步下降,消费量已趋于稳定合理。
纵观近年来国际环氧树脂市场,1993年,世界环氧树脂生产能力为130万吨,1996年递增到143.5万吨,1999年为159.5万吨,2002年为 186万吨,2005年为201万吨,预计2010年可达到250万吨左右。尤其是欧美、日本环氧树脂公司兼并及投资建设较为活跃。国际大鳄经过一系列重组整合,全球环氧树脂行业三甲已轮流坐庄,由20世纪末的Shell、DOW、Ciba-Geigy,变成Hexion、DOW、南亚。市场新三强生产能力分别达到38、36、30万吨/年!并且Hexion、DOW、南亚三甲目前在中国都设有生产基地,中国在数量上已成为全球环氧树脂最大生产国和重要消费国,但从消费结构以及企业个体角度来看,作为经济组织国内企业还有待做大做强。
一、产业历史 我国环氧树脂产业起步于 1958年,但是计划经济的束缚、加上文革的影响,使我国的发展步子明显慢于国外。上世纪80年代情况有所好转,年增长率达到了7%左右,但从总量上看每年计划安排的环氧树脂用量始终在万吨以下。90年代初,我国经济发展逐渐与国际市场、国际经济接轨,环氧树脂行业出现了众多外资企业、中外合资企业,加上大量乡镇企业、私营企业的进入,我国环氧树脂生产企业如雨后春笋,一下子由原来的几十家扩大到近200家,出现了多种经济成份相互竞争、共同发展的局面。但当时的单套装置规模均在5000吨/年以下,与国外相比差距甚远,工艺技术上同样具有很大距离。
经过上世纪90年代的大力发展,我国环氧树脂行业进入了又一个发展期。1998年环氧树脂消费量达到12万吨。技术引进在此过程中发挥了重要作用,使我国环氧树脂生产从技术水平到生产规模都有了一个很大的提高,他们生产的环氧树脂已经能够与进口货抗衡。在这一发展期间,我国环氧树脂行业出现了聚集发展的格局,龙头企业充分发挥了对整个行业的牵幅射作用,形成了我国环氧树脂的核心产业带;安徽黄山地区异军突起,他们独辟蹊径发展粉末涂料专用的固体树脂,凭借专业化的优势,构成了环氧树脂和环氧树脂粉末涂料联合生产基地;华南地区成为我国环氧树脂应用的一个高地,该地区凭借毗邻港的地域优势在大力发展电子工业的同时,带动了环氧树脂在电子领域的应用,是电子领域成为我国环氧树脂主要消费方向之一的重要推动力量。
进入21世纪,电子电气、交通运输、石油化工、建筑工程等与环氧树脂相关的行业发展尤其迅猛,经济建设对环氧树脂的需求量急剧增加。在这一“发展”的大背景,我国环氧树脂迎来了黄金发展阶段。生产和消费的平均增长达到30%左右,远远高于同期全球3%的增长水平,成为全球环氧树脂增长的主要拉动力量。主要的发展特点表现为以下几个方面。
二、产业特点
一是外资带动。美国以及台资等纷纷在大陆建厂生产,这些外资工厂具有相当生产规模,几乎占了目前中国大陆环氧树脂生产能力的一半。同时采用的工艺技术都是国际最先进的,使我国环氧树脂产业不仅生产能力大幅提升,而且技术素质有了飞跃,特别是从国外到国内的技术“领先”刺激,促使国内原有的环氧树脂企业奋发创新,从而实现了良好的整体带动战略。
二是行业内部通过结构调整,产业链与区域经济整体发展、同步提升,企业素质有了质的提高。规模化成为当前内资环氧树脂企业的最大特点,目前企业数量已从高峰时的200多家调整到100家左右,企业生产规模则有了极大提高,技术水平同样快速提高,而且其发展不再是孤立的而是具有带动或呼应整个产业链同步提升的能力,产生的聚集效应值得充分肯定,已经把我国环氧树脂产业水平推进到了一个新的高度。
三是技术创新能力大为提高,技术水平进入世界较先进行列。当今环氧树脂产业领域的竞争,除了人才、管理、资本等因素外更重要的是技术的比较,目前中国环氧树脂业随着资本结构的多元化,同时也成为中外各种先进工艺技术的比拼舞台,在这一决定竞争成败的竞技场上,中国本土的企业在依靠自有知识产权的同时不断推进技术进步,在竞争中逐步发展壮大。
四是整个行业呈现分工较为明确的格局。生产能力在2万吨/年左右的大型企业,无论内资、外资均以大宗的基础树脂为主,在这些领域没有规模就没有优势,小企业难以有所作为;内资企业的一些传统大厂也是新产品研发的中心,不断培育新的品种,不断形成新的大宗品种;而在粉末涂料重镇黄山,单一优势明显,产品大量出口;特种、专用产品和技术全面开花,一些小型企业“内精外王”,为业界瞩目。
五是环氧树脂应用领域迅速打开。应用的力度和深度是产品生产规模的基础,材料制造行业为应用行业提供先进的材料、满足其生产出更好产品的要求,而应用行业又反过来要求材料制造行业提供更加先进的材料、促进其不断发展。其中许多以前依赖进口的产品,实现了国内部分或全部替代。
六是信息化建设进展神速、与行业的现代化发展相辅相成。信息化促进产业化、产业化带动现代化已成该行业的真实写照,该行业先进企业大都有着信息化手段的有力支撑。通过ERP系统等全面的信息化建设,在流程上实现效率、在应用中实现了降耗的目标。
三、应用分析
目前我国环氧树脂应用主要领域有:电子信息,其中彩电、音响、电话机产量跃居世界第一,目前正在聚焦信息家电、移动计算、数字电视、无线局域网、汽车电子等领域的新兴市场,环氧树脂在其中的应用主要形式是敷铜板、塑封料、浇注料、包封料、贴片胶、模具胶等;交通设备,交通运输设备制造业中大量使用环氧电泳涂料、重防腐涂料、模具胶、工具胶等各类粘接剂、复合材料等;能源工业,环氧树脂在该行业中的应用主要是作为绝缘材料,应用形式主要有层压板、浇注料、塑封料、绝缘漆、粘接剂;汽车制造,高速发展的汽车产业将大力促使环氧树脂生产,目前每辆汽车平均需耗环氧树脂5公斤,随着我国汽车产业的腾飞,内需拉动下环氧树脂在该领域大有可为;建筑、水利行业,环氧树脂在该领域中的使用形式主要包括地坪、防腐涂料、其它建筑涂料、复合材料混凝土、环氧沥青、建筑补强和堵漏材料、大坝防腐材料等;石油石化,环氧树脂在石油石化的应用以防腐为核心,应用形式主要有海上石油平台、油罐、输油管道防腐材料。环氧树脂消费与经济发展存在着高度正相关联系,经济越发达、生活水平越高则环氧树脂消费量越高,目前发达国家人均消费环氧树脂水平达到1公斤/年左右。而我国人均消费环氧树脂 2000年仅0.1公斤,而2005年已达到0.3公斤,增长了2倍,由于我国人口基数的庞大因此在今后几年的产业震荡中行业规模的扩张还是非常可观的。
我国环氧树脂需求量的急速增加,引起国际业界高度关注。环氧树脂跨国公司几乎全部前来或正在前来我国投资兴建大型生产厂,国内企业也纷纷新建扩建环氧树脂装置。据公开披露的信息,目前拟新增环氧树脂生产能力达到55万吨/吨左右,加上现有生产能力40万吨/吨,预计2010年前后我国环氧树脂生产能力将达到 130万吨/吨,接近全球的一半,成为世界环氧树脂大国。我国环氧树脂事业目前正进入一个新的关键发展期。
四、市场建议
但我国环氧树脂产业如何实现大国梦,并进而成为强国,还有很多课题要解决。首先要走专和特的道路。我国环氧树脂市场大,国产环氧树脂市场占有率一直持续上升并逐渐占据优势,同时开始走向国际市场,成绩可喜;但是进一步扩大优势就要从环氧树脂市场面大量广、用户产品更新换代快、工艺技术进步迅速这个特点出发,根据应用行业发展特点大力发展特种或专用环氧树脂,学习黄山的产业结构,中小企业力争单一优势,以专以特作市场。
其次积极瞄准国外高档产品进行攻关,早日实现替代。我国短缺的、需要依赖进口的环氧树脂产品,价格都相当高甚至高得离谱,这些产品开发难度大、成本高,有些目前需求不大,但决不能因此放弃发展,有条件的厂应积极组织开发。一来可以为下游行业压缩过高成本,二来可以为自身赢得未来的市场。
再次,要开发绿色产品,实现清洁生产。环氧树脂废水的治理是环氧树脂行业的一大难题,这主要是由于环氧废水中含有大量老化树脂和较高浓度的碱盐,采用传统的废水治理方法难以奏效。尤其电气、电子、建材方面对环保产品的要求呼声很高,目前大量使用非环保的溴化环氧树脂的覆铜板、阻燃电器浇注料已受到一定的限制,发展非卤化阻燃环氧树脂要立即行动。环保水溶性环氧树脂、无溶剂型环氧树脂、高固体份环氧树脂目前产量还很低、品种也不多,要大力推动发展。
最后,必须加快发展原料、辅料的配套发展。目前我国双酚A、环氧氯丙烷、固化剂的生产远远跟不上环氧光固化涂料用环氧树脂的研究。
你对比下吧,其实不管是哪个行业,只要是你去研究了你会发现他们都是海有很多空间去开发的,我就是研究环氧树脂的
❽ 关于溶剂型丙烯酸酯压敏胶
根据目的和要求的不同,压敏胶粘制品剥离强度可以有多种测试方法。最常用的有下述几种。
① 180°剥离和90°剥离试验主要用于测定胶粘制品对于较硬或较厚的被粘物的粘接力。180°剥离测试所得到的数据比90°剥离测试分散性小,操作上简便,故用得非常普遍,90°剥离则使用得较少。
② T型剥离试验主要用于测定胶粘制品对于较软或较薄的被粘物的粘接力或两胶粘制品之间的粘接力。
③ 圆筒型剥离试验与用于蜂窝夹芯板的爬鼓剥离试验类似,主要是用于测定胶粘带的快速解卷力。
由于绝大多数压敏胶粘制品都是用于各种金属、塑料、水泥制品、纸制品等硬或厚的被粘物上,所以180°剥离强度已成为压敏胶粘剂及其制品最重要的性能之一。习惯上已经将此强度看作压敏胶粘接力大小的标志,180°剥离强度的测试方法在许多国家已经标准化。我国也已参考其他国家的标准,并根据国内有关企业的现有测试标准制订了压敏胶粘带180°剥离强度测试方法的国家标准。
国家GB/T 2792-1998测定压敏胶粘带180°剥离强度的方法如下。
(1) 试验装置
压辊是橡胶包覆的直径(不包括橡胶层)约84mm、宽度约45mm的钢轮子;包覆橡胶硬度为80°±5°,厚度约6mm;压辊的质量为2000g±50g。
(2) 试验机
拉力试验机应使试样的破坏负载在满标负荷的15%-85%之间。力值示值误差不应大于1%。试验机以下降速度300mm/min±10mm/min连续剥离。
拉力试验机应附有能自动记录剥离负荷的绘图装置。
(3) 试样
① 胶粘带 胶粘带宽度有20mm±1mm、25±1mm两种,长度约200mm。
② 试验板 试验板长度为125mm±1mm,宽度为50mm±1mm,厚度1.5-2.0mm。试验板材质为GB/T 3280规定的0Cr18Ni9或1Cr18Ni9Ti。试验板表面用JB/T 7499-1994规定的粒度为P280的耐水砂纸,先沿横向轻轻打磨,在整个板面上磨出轻度痕迹,再沿纵向均匀打磨,除去这些痕迹。试验板使用次数频繁及长期没有使用后,应再打磨使用。试验板表面有永久性污染或伤痕时,应及时更换。
4)状态调节和试验环境
状态调节:制备试样前,试样卷(片)、试验板应在温度为23℃±2℃,相对湿度为65%±5%条件下放置2h以上。
试验室温度为23℃±2℃,相对湿度为65%±5%。
(5)试验步骤
① 用擦拭材料沾清洗剂擦洗试验板,然后用干净的脱脂纱布将其擦干,如此反复清晰三次以上,直至板的工作面经目视检查达到清洁为止。清洗后,不得用手和其他物体接触板的工作面。
② 用精度不低于0.05mm的工具测量胶带的宽度。
③ 在制备试样前,先撕去外面3—5层胶粘带,然后再取200mm以上的胶粘带(胶粘带合面不能接触手或其他物质)。并把胶粘带与清洗后的试验板粘接。在试验板的另一端下面放置一条长约200mm、宽400mm的涤纶膜或其他材料,然后用压辊在自重下以约300mm/min的速度在试样上来回滚压三次。
④ 试样制备后应在试验环境下停放20—40min后进行试验。
⑤ 将试样自由端对折180°,并从试验板上剥开粘接面25mm。把试样自由端和试验板分别在上、下夹持器上。应使剥离面与试验机力线保持一致。试验机以300mm/min±10mm/min下降速度连续剥离,并有自动记录仪绘出剥离曲线。
⑥ 双面压敏胶粘带与不锈钢板或其他材料粘接时,先撕去双面胶粘带外面3—5层,然后再取200mm以上胶粘带粘贴在聚酯薄膜上,然后再剥去另一面的隔离纸,按规定进行试验。
⑦ 测定单面压敏胶粘带或栓面压敏胶粘带与薄片、薄膜等材料剥离强度时,先将薄片、薄膜等粘贴在钢板上,然后按规定进行试验。
(6)试验结果
压敏胶粘带180°剥离强度σ(kN/m)按下式计算:
σ=S/Lb×C
式中 S—记录曲线中取值范围内的面积,mm2
L—记录曲线中取值范围内的长度,mm
b—胶粘带实际宽度,mm
C—记录纸单位高度的负荷,kN/m。
在剥离的取值范围内,每隔20mm读一个数,共读4个数,求其平均值。每一组试样个数不少于3个,试验结果以剥离强度的算术平均值表示。
对于压敏胶粘剂的初粘性能,至今学术界还没有形成一个统一的定义。一般认为,压敏胶粘剂的初粘性能是指粘剂与被粘物轻轻地快速接触时所表现出的对被粘物表面的粘接能力,也就是通常所谓的手感粘性,即人们用手轻轻地接触压敏胶粘剂并迅速离开时所感觉到的胶粘剂的粘性。虽然手感粘性的判别标准可以因人而异但这种初粘性能确实是人们公认的一种压敏胶粘剂的重要而又特殊的粘接性能。
上述初粘性能的定义中包含有诸多模糊的词语,因而为了科学的研究和评判压敏胶粘剂的初粘性能,人们曾提出并应用过各种各样的测试方法。这些这是方法大致可归纳并划分为触粘法、滚动摩擦法和剥离法三类,这些方法各有优缺点。这里只简单介绍其中最重要的几种初粘性能的测试方法。
(1) 球滚打摩擦法
此法简称滚球法,是滚动摩擦法中最广泛应用的一种方法,也是最早提出的测试压敏胶初粘性能的方法之一,至今至少已有50多年的历史了。
① 滚球平面停止法 此法早已为美国压敏胶粘带协会制定为初粘性能的标准测试方法之一,即PSTC-6法,也已作为美国的一种国家测试标准方法。测试时,将直径D为1.11cm的钢球从高度h为6.51cm、与水平线呈ɑ角度(ɑ=21°30ˊ)的倾斜板顶端滚下,经过压敏胶粘带的粘性阻滞而停下。测量钢球过胶粘带的距离L即为该胶粘带初粘性能的量度,单位为mm。显然,L越小,初粘性能越好。此法在欧美各国用得很多。有人曾经对此法进行过深入的力学分析,从理论上研究了球的相对密度g、直径D、高度h等与长度L的定量关系。
② 滚球斜坡停止法 此法又称J.Dow法。测试时,将直径不同的一系列钢球从大到小依次从与水平面呈30°角的倾斜板上滚下,经过放置在倾斜板下端的压敏胶粘带,找出其中能完全停止在胶粘面上的最大钢球。用该钢球的号数N来量度压敏胶粘带的初粘性能。显然,N越大,初粘性能越好。此法在我国和日本用得很多。日本已将此法制订为国家标准,称为JISZ0237.我国最近也已对此法制订了相应的国家标准。
滚球法测试压敏胶初粘性能的优点是设备简单,操作方便。但试验结果往往不易重复,数据的分散性较大。因此,每个试样往往需要经过反复多次的试验才能得到比较可靠的结果。对于天然橡胶型压敏胶粘剂,用滚球法测得的初粘性能与用指触法测得的手感粘性之间一般都很一致。但对合成橡胶和丙烯酸纸类的压敏胶来说,两者之间常常缺乏一致性。有些手感粘性很好或用其他方法测定的初粘性能很好的丙烯酸酯压敏胶粘剂,用滚球法却得不到好的结果。
(2) 快速剥离法
此法亦称Chang试验法、快粘试验法或Kreck试验法。美国压敏胶粘带协会已将它制定为初粘性能的另一种标准试验方法,称为PSTC-5。测试时,将压敏胶粘带除自己的质量外不加任何压力地粘贴在不锈钢试验板上,然后马上(60s之内)在试验机上以0.5cm·s-1的速度进行90°剥离试验将胶带揭去,所测得的剥离强度值即为胶带初粘性能的量度,单位为N/m。
此法在欧美用得较多。其优点是能比较好地反映压敏胶的初粘性能或手感粘性。主要缺点是测试数据受基材的影响很大:同种压敏胶,刚性基材比柔性基材数值偏高;基材越厚数值越高。
(3)圆柱体触粘法
这是一种直接模仿手感粘性的测试方法。用一个固定在试验机测试头上的不锈钢针形小圆柱体(接触端面直径为5mm),以很小的压力(一般为9.8kPa)与固定在另一测试头上的胶粘带胶接触很短的时间(一般为1s)然后以很快的速度(一般为1.0cm·s-1)拉开,测定所需的最大分离力作为该胶粘带初粘性能的量度,单位为N。
显然,这种方法能更好地反映压敏胶的手感粘性,测试精度和重复性皆比较好。因而除用作初粘性能的常规测试外,此法还可以用来研究接触压力、接触时间和分离速度等因素的影响。已用此法对压敏胶粘剂的初粘性能进行了许多比较定量的研究工作。该法的主要缺点是需要复杂而昂贵的专用试验设备,称为polyken触粘法初粘试验机。现在已对该试验的方法和设备进行了改进,使得操作简单,且设备价格也便宜。
下面以GB 4852—84测定压敏胶粘带初粘性能的方法加以介绍。
① 原理 将以钢球滚过平放在倾斜板上的粘性面。根据规定长度的粘性面能够粘住的最大钢球尺寸,评价其出粘性大小。
② 测试设备 本装置主要由倾斜板、放球器、支架底座及接球盒等部分组成。
倾斜板:以厚约2mm的玻璃板覆在厚约7mm的钢板上资格倾斜板,两板间可衬入毫米坐标纸,作为安放试样、调节钢球起始位置的标记。
放球器:放球器应能调节倾斜板上的钢球起始位置,释放钢球时,对球应无任何附加力。
支架:支架用于支持倾斜,并可在0°~6°范围内调节板的倾角。
底座:底座应能调节并保持装置的水平状态。
接球盒:接球盒用于承接板上滚落的钢球,其内壁衬有软质材料。
③ 钢球 以GCr15轴承钢制造、精度不低于GB 308-77《钢球》规定的0级、直径为0.039~25.4mm的33种钢球,可作为测试用钢球。
钢球按其英制直径的32倍值编排球号。测试时应使用球号连续的一组钢球。
钢球应存放在防锈油中。有锈迹、伤痕的球须及时更换。
④ 聚酯薄膜 采用复合JB 1256—77《6020聚酯薄膜》规定的厚度为0.025mm的薄膜。其长度约为110mm,宽度比试样约宽20mm。
⑤ 测试条件 试验室温度(23±2)℃,相对湿度为(65±5)%。制备试样前,胶粘带应除去包装材料,互不重叠地在规定的条件下放置2h以上。
⑥ 试样 试样宽度为10~80mm,长度约250mm,除去最外层3~5圈胶粘带后,以约300mm、min的速度解开卷状胶粘带,每隔200mm左右裁取一个试样,取4个以上。
试样拉伸变形较大时,允许有不大于3min的停放时间,使其复原。
取样时不允许手或其他物体接触试样测试段。
⑦测试步骤
a. 准备工作 将蘸有清洗剂的脱脂纱布,擦洗玻璃表面和聚酯薄膜的两面,再用纱布擦干净。
将擦去防锈油的钢球,放入盛有清洗剂的容器内浸泡数分钟,取出后,用清洁的清洗剂和纱布反复清晰擦拭,然后再用干净纱布擦拭干净,清洗后的钢球,应用干净的竹(木、骨)制镊子等工具夹取。
将胶粘带试样粘性面向上地放置在倾斜板上。在规定部位覆上聚酯薄膜作为助滚段。助滚段应平整,无气泡、皱折等缺陷。助滚段以下100mm范围内为测试段。
用胶粘带将助滚段两侧及试样下端固定在倾斜板上。必要时,也可以用胶粘带沿测试段两侧边缘加以固定,使试样平整地贴合在板上。
用镊子把钢球夹入放球器内,调节放球器的前后位置,使钢球中心位于助滚段起始线上,在正式测试前,一个试样允许作多次试测,但应调节放球器的左右位置,使钢球每次滚动的轨迹不重和。
试样宽度大于25mm时,以试样中央25mm宽的区域为有效测试区域。
预选最大钢球:轻轻打开放球器,观察滚下的钢球是否在测试段内被粘住(停止移动逾5s以上),从大至小,取不同球号的钢球进行适当次数的测试,直至找到测试段能粘住的最大球号的钢球。
取上述最大球号钢球和球号与之衔接的大小两个球,在同一试样上各进行一次测试,以确认最大球好的钢球。
b. 正式测试 取3个试样,用最大球号钢球各进行一次滚球测试。若某试样不能粘住此钢球,可换用球号仅小于它的钢球进行一次测试,若仍不能粘住,则须重新测试。
⑧测试结果 测试结果以钢球球号表示。
在3个试样各自粘住的钢球中,如果3个都为最大球号钢球,或者两个为最大球号钢球,而另一个的球号仅小于最大球号,则测试结果以最大球号表示;如果一个为最大球号钢球,而另两个钢球球号仅小于最大球号,则测试结果以仅小于最大球号的钢球球号表示。
内聚力或内聚强度是压敏胶粘剂除粘接力和初粘力之外的又一个重要性能。任何材料在受到外力作用时都会产生形变甚至破坏。所谓材料的内聚力,就是指材料本身抵抗外力作用的能力,外力对于粘接接头的作用不外乎采取正拉、剪切和剥离三种加载方式。一个好的压敏胶粘制品在受到剥离外力(尤其是快速的剥离外力)作用时一般发生粘接界面破坏,而受到正拉或剪切外力时则主要发生胶层内聚破坏。因此,压敏胶粘剂的拉伸强度或剪切强度都可以用来表征它的内聚强度的大小,但在绝大多数压敏胶粘制品的应用场合,都是受到慢速的或持久性的剪切外力的作用。例如,像包装箱胶粘带用双面压敏胶带将物体固定在墙板上时受到物体重力的长期作用,等等。这时,压敏胶粘带的这种滑移是由于在持久性的剪切外力作用下压敏胶粘剂发生蠕变破坏。由于这种破坏主要也都是发生在胶粘剂层,所以人们更经常用压敏胶粘剂抵抗持久性剪切外力所引起的蠕变破坏的能力,即剪切蠕变保持力(亦称持粘力),来表征它们内聚力的大小。此外,也有人提议用正拉蠕变保持力以及T剥离蠕变保持力来表征压敏胶粘剂的内聚力。但皆因不如剪切蠕变保持力更接近实际使用情况,更能反映压敏胶内聚力的性质,而且正拉蠕变保持力的测试方法又比较繁琐,因而没有经常被人们使用。
许多国家都已制定了持粘力的标准测试方法,如美国的ASTM D-3653和PSTC-7,日本的JISZ2037和JISZ1528等。其具体方法都是将胶粘带以一定的面积(长l0×宽b)粘贴在标准被粘物(一般为不锈钢)试验片上,在垂直吊挂的胶粘带末端挂上一定质量(W)的重物使受力方向与粘接面完全平行(成180°),并保持在一定的温度下,记录胶粘带滑移直至脱落的时间t0或读取在一定时间内胶粘带下移的距离L,作为该胶粘带的剪切蠕变保持力(持粘力)的量度,由于测试结果与被粘物的性质、粘贴接头的尺寸、重物的质量以及测试温度等有关,故记录持粘力时必须标明这些测试条件。
GB/T 4851-1998关于压敏胶残带持粘性的试验方法如下。
(1) 定义
持粘性:沿粘贴在被粘物上的压敏胶带长度方向垂直方向垂直悬挂一规定质量的砝码时,胶粘带抵抗位移的能力。用试片移动一定距离的时间或一定时间内移动距离表示。
(2) 试验装置
① 试验架 由可调水平的底座和悬挂、固定试验板用的支架组成。试验架应使悬挂在支架上的试验板的工作面保持竖直方向。
② 试验板 试验板厚1.5—2.0mm,宽为40—50mm,长为60—125mm。试验板材质为GB/T 3280—1992规定的0Cr18Ni9Ti或1Cr18Ni9Ti。试验板表面用JB/T 7499—1994规定的粒度为P280的耐水砂纸,先沿横向轻轻打磨,在整个板面上磨出轻度痕迹,再沿纵向均匀打磨,除去这些痕迹。使用次数频繁及长期没有使用后,应再打磨后使用。试验板表面有永久性污染或伤痕时,应及时更换。
③ 压辊 压辊是用橡胶包覆的直径约84mm,宽度约45mm的钢轮子。包覆橡胶硬度为80±5,厚度约6mm。压辊的质量为2000g50g。
④ 清洗剂和擦拭材料 清洗剂:环己烷、汽油、乙醇、异丙酮、甲苯等使用的试剂级或没有残留物的工业级以上溶剂。 擦拭材料:脱脂纱布、漂布、无纺布等擦拭时既没有短纤维掉落也没有短纤维拉断的柔软的织物,并且不含有可溶于上述溶剂的物质。
⑤ 加载板。连接销和砝码 加载板:材质、尺寸、工作面表面要求同试验板;
除非另有规定,加载板、砝码及两者的连接销的总质量为1000g±10g。
(3)试样
除去胶粘带试卷最外层的3~5圈胶粘带后,以约300mm/min的速率解开试样卷,每隔离200mm左右,在胶粘带中部裁取宽25mm、长约100mm的试样。除非另有规定,每组试样的数量不少于3个。
试样解卷后,除拉伸变形较大时,允许有不大于3min的停放时间外,一般应立即裁取试样,进行测试。试样的粘贴部位不允许接触手或其他物体。
(4) 状态调节和试验环境
状态调节:制备试样前,试样卷(片)应除去包装材料,互不重叠地在温度为23℃±2℃,相对湿度为65%±5%的条件下放置2h以上。
试验环境:按有关产品标准的规定执行。
(5) 试验步骤
① 用擦拭材料蘸清洗剂擦洗试验板和加载板,然后用干净的纱布将其仔细擦干,如此反复清洗三次以上,直至板的工作面经目视检查达到清洁为止。清洗以后,不得用手或其他物体接触板的工作面。
②在温度23℃±2℃,相对湿度为65%±5%的条件下,按规定的尺寸,将试样平行于板的纵向粘贴在紧挨着的试验板和加载板的中部。用压辊以约300mm/min的速度在试样上滚压。注意滚压时,只能用产生于压辊质量的力,施加于试样上,滚压的次数可根据具体产品情况加以规定,如无规定,则往复滚压三次。
③试样在板上粘贴后,应在温度23℃±2℃,相对湿度为65%±5%的条件下放置20min。然后将试验板垂直固定在试验架上,轻轻用销子连接加载板和砝码。整个试验架置于已调整到所要求的试验环境下的试验箱内。记录测试起始的时间。
④ 到达规定时间后,卸去重物。用带分度的放大镜测出试样下滑的位移量,精确至0.1mm;或者记录试样从试验板上脱落的时间。时间数大于等于1h,以min为单位,小于1h的以s为单位。
(6)试验结果
试验结果以一组试样的位移量或脱落时间的算术平均值表示。
影响因素有测试温度、胶粘剂分子量和分子量分布、交联等。
❾ 无局部放电耐压试验成套装置主要是哪些单位用啊
无局部放电耐压试验成套装置主要是哪些单位用啊
产品用途
适用于各类电压等级的变压器、互感器、电缆、GIS、套管及电机等高压电气设备的局部放电(电脉冲法)测量与分析。
功能特性
◆ 技术水平
整体性能达到世界领先水平,能与国际上任一款最先进的同类产品竞争。
◆ 测量功能
可检测局部放电幅值、极性、相位、次数、放电起始电压、熄灭电压等局部放电的相关参数。
◆ 抗干扰
频谱处理基于超高速DSP芯片组和FFT算法实现的频谱分析与频点滤波功能,对非放电性干扰,可滤除90%以上;对综合性干扰,可降低干扰60%以上。实施上述抗干扰措施的频谱损失率≤3%。
同步消隐在相关检测单元的支持下,可实现对来自空中、地网、试验电源的强干扰同步滤除。
相位开窗与消隐可在任意指定相位多次开窗、消隐(开反窗),屏蔽掉指定相位的干扰,或针对指定相域测量。
◆ 时域视窗(图谱)
提供椭圆、直线、正弦及二维、三维等局放图谱,可直观、总揽地观察、分析试验过程的各种放电频率、相位、强度与试验电压的关联度等特性。
◆ 频域视窗(图谱)
提供实时频域图谱,能清晰观察局放信号和干扰信号的频域特性。可为局放与干扰的甄别,局放起始和熄灭电压的确定,滤波措施对局放信号影响的评估提供有效的手段。
◆ 静态分析
可以截取任意周波、时段的局放图谱,可对任意单个放电脉冲进行详细测量、分析,确定放电性质及放电强度。
◆ 同步与监测
具有零标指示及相位分辨功能;内、外同步方式可任意选择;可与任意频率的外部试验电源自动同步;可监测外部试验电源电压。
◆ 通信接口
支持USB口、U盘和局域网络等Windows支持的各种模式与外界交流、传输测试数据、测试报告和测试图形。
◆ 数据记录
可记录全过程的局部放电图谱及相关参数,具有事后自由回放、重现、分析、打印等功能。
◆ 低噪音设计
整体无噪化设计,仪器本机噪音可控制在0.1PC以下。
◆ 多通道特性
每个通道都有自已独立的信号调制、A/D转换、DSP算法处理、以太网接口和TCP/IP协议。通道扩展不影响其他通道及PC机处理速度,支持远程实时通信和远程实时专家会诊。
◆ 直流局放
连续记录放电脉冲的时刻、间隔;提供放电脉冲数、放电量、时间分布等图谱及数据。(本功能限直流局放仪ED2102DE型)。
产品分类
技术指标
◆ 测量通道: 2/4/6;检测灵敏度: 0.1pc;
◆ 测量频带: 10~1000kHz;
◆ 量程线性度误差<5%;
◆ 本机噪音:<0.1pc;
产品成套性
◆XC系列高压试验变压器操作箱
◆TC系列高压试验变压器操作台
◆ZDTC系列高压试验变压器电动操作台
◆GTU系列高电压大容量充气式无局放高压组合电器试验设备
◆JY系列绝缘筒式无局放全绝缘试验变压器
◆YDQW系列充气无晕超轻型试验变压器
◆EDTCD-2008型局部放电检测仪
◆ED2102系列数字式局部放电检测仪
◆TPCB-W系列纯净变频综合试验电源
◆60KV-1000PF无局部放电耦合电容
◆60-300KV-1000PF无局部放电耦合电容器
◆JZF—10校正脉冲发生器
◆JZF—9校正脉冲发生器
◆EDGLB系列倍频发电机电源隔离滤波器
◆EDLB系列电源隔离滤波器
◆EDKLB系列滤波控制电源