① 机械工程领域中,有哪些测量位移的传感器,各有何特点
1、优点:
(1)接触式测量。
(2)精度高。
(3)抗干扰能力强 。
(4)成本专低.
2、位置传感器用来测量属机器人自身位置的传感器。位置传感器可分为两种,直线位移传感器和角位移传感器。其中直线位移传感器常用的有直线位移定位器等,具有工作原理简单、测量精度高、可靠性强的特点;角位移传感器则可选旋转式电位器,具有可靠性高、成本低的优点。角位移器还可使用光电编码器,有增量式与绝对式两种形式。其中增量式码盘在机器人控制系统中得到了广泛的应用。
② 利用加速度传感器如何测定位移
先划分一个取样周期,比如50ms,在这个时间段内测量一次加速度,然后根据以前累积下来的速度(包括速率和方向)和位置,计算前50ms的总位移和终点速度。如此反复计算就可以得到结果。
加速度传感器用于示功仪中测量位移的原理和计算方法,用这种算法可实现加速度的动态零点校正和确定积分边界条件,并对影响位移测量精度的各种因素作了定量分析,试验结果表明,这种测量方法是有效的!
(2)机械装置测位移扩展阅读:
加速度传感器的选择与安装
现有技术中的高压断路器机械特性测试仪大多采用直线位移传感器来测量动触头与静触头之间的距离,判断断路器的分、合状态,计算出动触头的速度和位移。而直线位移传感器对安装精度要求非常高,角度容许误差和平行度容许误差越小越好。利用专用支架将直线位移传感器的本体可靠的固定在断路器的本体上,直线位移传感器滑杆头部与动触头部分连接,直线位移传感器滑动应与动触头同步并与动触头的运动保持平行。
如果滑杆与断路器本体装成歪斜,就会造成测量数据不准,故必须定制一整套复杂的安装工具,并且不同等级的断路器的安装工具大小不一。另外,还需要知道断路器机械结构的一些联动变比值,提前输入到测试仪器中,才能正确计算出来结果。
面对每个厂家每种断路器来说,将这些数据录入到测试仪器中是一个很大的工作量。如果录入数据稍有不慎,就将直接造成测量的不准确。
现将加速度测量技术应用到断路器测速中,解决了断路器现场直线位移传感器安装难、配合难、测试难的技术难题。将加速度传感器直接紧固安装于断路器的主轴或动触头连接杆上,而安装加速度传感器应该根据动触头或动触头连接杆粗细不同选用相应半径的卡件,使传感器很牢固的卡在动触头或动触头连接杆上,不能晃动。
断路器动作时,传感器应紧随动触头或动触头连接杆一起运动,不可与动触头或动触头连接杆之间有相对晃动,否则可致测试数据不准。测量得到动触头的加速度曲线,即可间接测量得到动触头的直线位移曲线,这种测量方式对多种型号的断路器均适用。
③ 常用的机器人位移测量传感器有哪些基本原理是
首先要看被测物与被测类型,如果被测物可以被放置在某个载体提上,可以用球栅专尺。以一个工作台面做载属体,工作台一个部件连接到球栅尺上。如果被测物必须独立,只能用雷达,还需要增加一个程序,物体速度不为零时开始计时并计算路程。测质量的相对容易实现
④ 机器人位移测量传感器基本原理是
光谱共焦测量原理
混色光是由众多不同波长光线组成的,我们称之为光谱。所有不同波长的可见光重叠在一起,形成白光。人类肉眼可见光的波长范围从400nm (蓝光)到700nm (红光)。通过透镜,不同颜色的光不会聚焦到同一个点上。这种现象称为色差透镜错误或者叫色差透镜偏差。众所周知,自然界的日光属白光一种,白光不是最纯洁的光,而是许多单色光组成的。光在不同介质中传播可能会有角度偏差的现象产生,而实际的白光照射下不同介质将有很多单线光的折射。光学材料(透镜)对于不同单色光的折射率是不同的,也就是折射角度不同波长愈短折射率愈大,波长愈长折射率愈小(这也是不同望远镜所谓的色差不同的原因),同一薄透镜对不同单色光,每一种单色光都有不同的焦距,按色光的波长由短到长,它们的像点离开透镜由近到远地排列在光轴上(不同的单色光的波长是不同的)这样成像就产生了所谓色差透镜错误。色差透镜错误使成像产生色斑或晕环。在摄影器材中,应通过特殊处理,尽量消减色差透镜错误导致的成像问题。常用的消除方法有双胶合系统与双分离系统。
一面单透镜的色差造成对不同波长的色光产生了不同的焦距
对于消色差双合透镜而言,可见光的波长近似具有相等的焦距
具有抵消色散属性的衍射光学器件可以用来矫正色差
而光谱共焦测量方法恰恰利用这种物理现象的特点。通过使用特殊透镜,延长不同颜色光的焦点光晕范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射光的波长,就可以得到被测物体到透镜的精确距离。这一过程与摄影器材通过各种方法消减色差的过程正好相反。为了得到上述特殊的色差,需要在传感器探头内使用若干特殊透镜,用来根据所需量程将光线分解。最后使用一个凸透镜,将传感器探头射出的光线聚拢在一条轴线上,形成所谓的焦点轴线。如果不使用凸透镜,传感器探头射出的光将分散开来,测量也就无法进行了。
白色光通过一个半透镜面到达凸透镜。上述特殊色差就在这里产生。光线照射到被测物体后发生反射,透过凸透镜,返回到传感器探头内的半透镜上。半透镜将反射光折射到一个穿孔盖板上,小孔只允许聚焦最好的反射光通过。透过穿孔盖板的光是一组模糊光谱,也就是说若干不同波长的光都有可能穿过小孔照在CCD感光矩阵单元上。但是只有在被测物体上聚焦的反射光拥有足够光强,在CCD感光矩阵上产生一个明显的波峰。在穿孔盖板后面,需要一个分光器测量反射光的颜色信息。分光器类似一个特制光栅,可以根据反射光的波长,增强或减弱折射率。因此,CCD矩阵上的每一个位置,对应一个测量物体到探头的距离。在整个量程上,共可以得到超过30,000个测量点。这里只计算光线波长,用以产生测量信号。反射光产生的信号波峰振幅并不在信号测量依据之内。也就是说反射光的光强不会影响测量结果。 这意味着,无论有多少反射光从被测物体反射回来,测量的距离结果可能是不变的。因为反射光的光强仅仅取决于反射物体的反光程度。因此,采用德国米铱公司的光谱共焦传感器,即使被测物体是强吸光材料,如黑色橡胶;或者是透明材料,如玻璃或者液体,都可以进行正常可靠的测量。
使用光谱共焦测量技术,可以得到超高分辨率。纳米级分辨率源于上述经过特殊处理得到的加长光谱范围。由于采用检测焦点的颜色,得到距离信息,光谱共焦传感器可以采用非常小的测量光斑,从而允许测量非常小的被测物体。这也意味着,即使被测表面有非常轻微的划痕,也逃不过光谱共焦传感器的眼睛。由于光谱共焦传感器的光路非常紧凑和集中,使其非常适合测量钻孔结构。而其他测量方式,如激光三角反射式测量,对于小孔往往无能为力,因为小孔形成的阴影会遮挡反射光的光路,无法进行测量。针对这种小孔测量任务,德国米铱公司推出了optoNCDT2402微型光谱共焦传感器探头。这种探头拥有仅4mm的探头直径,可以探入小孔内部进行测量。另一种非常适合光谱共焦传感器的应用是测量多层透明材料的厚度。与其他测量方法不同,光谱共焦传感器在测量这种物体时,仅需要一支探头就可以完成测量。测量被测物体前端面和后端面的反射光,从而得到层厚信息。由于测量只使用白光,无需额外附加激光安全措施。由于探头本身不含有任何电路,传感器探头还可以被用于有防爆要求的环境或者有电磁干扰要求的环境。而控制器可以被放置于安全距离以外。允许最长50m的光纤连接探头和控制器。但是,需要禁止在光路上存在遮挡物或小颗粒,这会影响测量精度,甚至使测量变得不可完成。由于采用的是光学测量方法,探头到被测物体的距离也有一定限制。
⑤ 直线位移传感器怎么测位移
直线位移传感器是通过电阻元件、磁敏元件等将机械位移量转换为相应的电版信号的电子元器件,方便实现权工业控制系统自动化作业。
以常规的电阻式直线位移传感器为例,传感器利用电刷与碳膜线路板(可变电阻)相对位置的不同,输出相应的直流电压信号。电刷与碳膜线路板始端的电压,与电刷移动的相对位移成正比。通过检测传感器输出的电压信号大小,可实现位移量精度测量。
⑥ 关于位移的测量装置
测位移的装置有多种,不同原理的测量装置精度和价格以及适用范围不专同。有电阻式,电容式,电感属式,光电式,超声波式等等。要测运动时间1S,但物体运动距离或范围为多少呢?没有说明白。
普通CCD测量装置可在几十分之一秒内完成一次测量。高速CCD和在几千分之一秒甚至更高速度完成一次测量。至于物体运动速度为多少才行,与测量精度要求有关。
若精度要求是0.1毫米,对于普通CCD检测装置,当扫描速度为30帧/秒,则物体的运动速度应小于
S<0.1毫米/(1/30秒)=3毫米/秒
⑦ 机械加工装置位移传感器的有哪些
光栅,激光的位移传感器建议去找找。机械式的很难做到纳米级别似乎没有,最多就是微位移传感器。纳米是一种单位,你是要精确度能达到纳米级别吧,电涡流,有也不会叫做纳米传感器
⑧ 测控技术仪器设计:机械式微位移机构及位移检测
机械式微位移机构及位移检测
大图有上传!
⑨ 机械式微位移机构及位移检测
翻开你的《机械原理》课本,找到螺纹章节,里面有专门讲到差动螺纹的,那个就是专门用于微位移的机构,至于位移检测,现在的光纤传感器这么发达了,很多传感器都可以起到这方面检测作用的啊
⑩ 机械式定位器详细调试步骤
阀门定位器(一般是气动阀门定位器)是调节阀的主要附件,通常与气动调节阀配套使用,专它接受调属节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。
阀门定位器是控制阀的主要附件,它将阀杆位移信号作为输入的反馈测量信号,以控制器输出信号作为设定信号,进行比较,当两者有偏差时,改变其到执行机构的输出信号,使执行机构动作,建立了阀杆位移倍与控制器输出信号之间的一一对应关系。因此,阀门定位器组成以阀杆位移为测量信号,以控制器输出为设定信号的反馈控制系统。该控制系统的操纵变量是阀门定位器去执行机构的输出信号。