导航:首页 > 装置知识 > 液压传动装置其执行机构

液压传动装置其执行机构

发布时间:2024-07-03 15:26:09

① 液压传动知识

(一)液压传动概述

液压传动是以液体为工作介质来传递动力和运动的一种传动方式。液压泵将外界所输入的机械能转变为工作液体的压力能,经过管道及各种液压控制元件输送到执行机构→油缸或油马达,再将其转变为机械能输出,使执行机构能完成各种需要的运动。

(二)液压传动的工作原理及特点

1.液压传动基本原理

如图2-62所示为一简化的液压传动系统,其工作原理如下:

液压泵由电动机驱动旋转,从油箱经过过滤器吸油。当控制阀的阀心处于图示位置时,压力油经溢流阀、控制阀和管道(图2-62之9)进入液压缸的左腔,推动活塞向右运动。液压缸右腔的油液经管道(图2-62之6)、控制阀和管道(图2-62之10)流回油箱。改变控制阀的阀心的位置,使之处于左端时,液压缸活塞将反向运动。

改变流量控制阀的开口,可以改变进入液压缸的流量,从而控制液压缸活塞的运动速度。液压泵排出的多余油液经限压阀和管道(图2-62之12)流回油箱。液压缸的工作压力取决于负载。液压泵的最大工作压力由溢流阀调定,其调定值应为液压缸的最大工作压力及系统中油液经阀和管道的压力损失之总和。因此,系统的工作压力不会超过溢流阀的调定值,溢流阀对系统还起着过载保护作用。

在图2-62所示液压系统中,各元件以结构符号表示。所构成的系统原理图直观性强,容易理解;但图形复杂,绘制困难。

工程实际中,均采用元件的标准职能符号绘制液压系统原理图。职能符号仅表示元件的功能,而不表示元件的具体结构及参数。

图2-63所示即为采用标准职能符号绘制的液压系统工作原理图,简称液压系统图。

图2-62 液压传动系统结构原理图

1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀

图2-63 液压传动系统工作原理图

1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀

2.液压传动的特点

(1)液压传动的主要优点

1)能够方便地实现无级调速,调速范围大。

2)与机械传动和电气传动相比,在相同功率情况下,液压传动系统的体积较小,质量较轻。

3)工作平稳,换向冲击小,便于实现频繁换向。

4)便于实现过载保护,而且工作油液能使传动零件实现自润滑,因此使用寿命较长。

5)操纵简单,便于实现自动化,特别是与电气控制联合使用时,易于实现复杂的自动工作循环。

6)液压元件实现了系列化、标准化和通用化,易于设计、制造和推广应用。

(2)液压传动的主要缺点

1)液压传动中不可避免地会出现泄漏,液体也不可能绝对不可压缩,故无法保证严格的传动比。

2)液压传动有较多的能量损失(泄漏损失、摩擦损失等),故传动效率不高,不宜作远距离传动。

3)液压传动对油温的变化比较敏感,不宜在很高和很低的温度下工作。

4)液压传动出现故障时不易找出原因。

(三)液压传动系统的组成及图形符号

1.液压传动系统的组成

由上述例子可以看出,液压传动系统除了工作介质外,主要由四大部分组成:

1)动力元件——液压泵。它将机械能转换成压力能,给系统提供压力油。

2)执行元件——液压缸或液压马达。它将压力能转换成机械能,推动负载做功。

3)控制元件——液压阀(流量、压力、方向控制阀等)。它们对系统中油液的压力、流量和流动方向进行控制和调节。

4)辅助元件——系统中除上述三部分以外的其他元件,如油箱、管路、过滤器、蓄能器、管接头、压力表开关等。由这些元件把系统连接起来,以支持系统的正常工作。

液压系统各组成部分及作用如表2-6所示。

表2-6 液压系统组成部分的作用

2.液压元件的图形符号

图2-64是液压千斤顶的结构原理示意图。它直观性强,易于理解,但难于绘制。特别是当液压系统中元件较多时更是如此。

图2-64 液压千斤顶的结构原理图

1—杠杆;2—泵体;3,11—活塞;4,10—油腔;5,7—单向阀;6—油箱;8—放油阀;9—油管;12—缸体

为了简化原理图的绘制,液压系统中的元件可采用符号来表示,并代表元件的职能。使用这些图形符号可使系统图即简单明了又便于绘制,如果有些液压元件职能无法用这些符号表达时,仍可采用它的结构示意图形式。如表27为液压泵的图形符号;表2-8为常用控制方式的图形符号。欲了解更多液压元件的图形符号,可参阅相关书籍。

表2-7 液压泵的图形符号

表2-8 常用控制方式图形符号

(四)液压传动的主要元件

1.液压泵

是一种能量转换装置。它将机械能转换为液压能,为液压系统提供一定流量的压力油液,是系统的动力元件。

液压泵的结构类型有齿轮式、叶片式和柱塞式等。目前钻探设备的液压系统中主要采用前两种形式。

(1)齿轮泵

齿轮泵分为外啮合和内啮合两种形式。外啮合式齿轮泵由于结构简单,价格低廉,体积小质量轻,自吸性能好,工作可靠且对油液污染不敏感,所以应用比较广泛。

1)齿轮泵的工作原理。齿轮泵由泵壳体,两侧端盖及由各齿间形成密封的工作空间组成。齿轮的啮合线把容腔分隔为两个互不相通的吸油腔和排油腔。当齿轮按图示方向旋转时吸油一侧的轮齿逐渐分离,工作空间的容腔逐步增大,形成局部真空。此时油箱中的油液在外界大气压的作用下进入吸油容腔,随着齿轮的旋转,齿间的油液带到排油一侧。由于此侧的轮齿是逐步啮合,工作空间的容腔缩小,油液受挤压获得能量排出油口并输入液压系统。

2)齿轮泵的结构。YBC-45/80齿轮泵是钻探设备常用的一种液压泵,额定流量45L/min,额定泵压8MPa(图2-65)。该泵主要由泵体、泵盖、主动齿轮、被动齿轮及几个轴套等组成。齿轮与轴呈一体,以4只铝合金轴套支撑于泵体内,泵盖与泵体用螺栓紧固,端面及泵轴处均以密封圈密封,两个轴套(图2-65之7与19)在压力油的作用下有一定的轴向游动量,油泵运转时与齿轮端面贴紧,减少轴向间隙同时在轴套和泵盖之间有封严板等,将吸排油腔严格分开,防止窜通以提高泵的容积效率。在轴套靠近齿轮啮合处开有卸荷槽。泵主轴伸出端以半圆键与传动装置连接,接受动力。

图2-65 YBC—45/80齿轮泵

1—卡圈;2—油封;3—螺栓;4—泵盖;5,13,20—O型密封圈;6—封严板;7,10,17,19—轴套;8—润滑油槽;9—主动齿轮;11—进油口;12—泵体;14—油槽;15—排油口;16—定位钢丝;18—被动齿轮;21—油孔;22—压力油腔

3)齿轮泵的流量。齿轮泵的流量可看作是两个齿轮的齿槽容积之和。若齿轮齿数为z,模数为m,节圆直径为D(D=z·m),有效齿高h=2m,齿宽为b时,泵的流量Q为

Q=πDhb=2πzm2b

考虑齿间槽比轮齿的体积稍大一些,通常取π为3.33加以修正,还应考虑泵的容积效率ηv,则齿轮泵每分钟的流量为

地勘钻探工:基础知识

(2)叶片泵

叶片泵与齿轮泵相比较具有结构紧凑,外形尺寸小,流量均匀,工作平稳噪音小,输出压力较高等优点,但结构较复杂,自吸性能差,对油液污染较敏感。在液压钻机中也有采用。

叶片泵分为单作用和双作用两种。前者可作为变量泵,后者只能作定量泵。

2.液压马达

液压马达是将液压能转换为机械能的装置,是液压系统的执行元件。其结构与液压泵基本相同,但由于功能和工作条件不同,一般液压泵和液压马达不具有可逆性。

液压马达按结构特点分为齿轮式、叶片式和柱塞式三类。钻探设备中常用柱塞式液压马达。

如图2-66所示,当压力油经配油盘进入缸体的柱塞时,柱塞受油的作用向外伸出,并紧紧抵在斜盘上,这时斜盘对柱塞产生一法向反作用力F。由于斜盘中心线与缸体轴线倾斜角为δM,所以F可分解为两个分力,其中水平分力Fx与柱塞推力相平衡,而垂直分力Fg则对缸体产生转矩,驱动缸体及马达轴旋转。若从配油盘的另一侧输入压力油,则液压马达朝反方向旋转。

图2-66 轴向柱塞式液压马达工作原理

1—斜盘;2—缸体;3—柱塞;4—配油盘;5—主盘

若液压马达的排量为Q,输入液压马达的液压力为P,机械效率为ηm,则液压马达的输出转矩M为:M=PQηm/2π。

3.液压缸

液压缸是液压系统的执行元件。它的作用是将液压能转变为机械能,使运动部件实现往复直线运动或摆动。液压缸结构简单,使用方便,运动平稳,工作可靠,在钻探设备中应用十分广泛。液压缸的种类很多,按结构类型可分为活塞式、柱塞式和摆动式三种。其中活塞式液压缸最常用。活塞或液压缸可分为单出杆式和双出杆式两种。其固定方式可以是缸体固定或活塞杆固定。

(1)单出杆活塞式液压缸

如图2-67所示为液压式钻机给进油缸的结构。它由活塞、活塞杆、缸筒、上盖、下盖、密封圈和压紧螺母等组成。活塞杆与活塞以螺纹连接成一体。活塞环槽中配装的活塞环及上盖处的密封圈等用以保证缸内具有良好的密封性。在液缸的上下盖上设有输油口,压力油经输油口进入液缸的上、下腔,即推动活塞移动,并通过活塞杆顶端的连接螺母带动立轴上行或下行。由图示结构可知,单出杆液压缸活塞两侧容腔的有效工作面积是不相等的,因此当向两腔分别输入压力和流量相等的油液时,活塞在两个方向的推力和运行速度是不相等的。

图2-67 钻机给进油缸的结构

(2)双活塞杆式液压缸

双活塞杆式液压缸结构,组成件与单活塞杆液压缸基本相同,所不同的是活塞左右两端都有活塞杆伸出,可以连接工作部件,实现往复运动。由图示结构可知,

两侧活塞杆直径相同,当两腔的供油压力和流量都相等时,两个方向的推力和运行速度也相等。

4.液压控制阀

液压控制阀是液压系统中的控制元件,用于控制系统的油液流动方向及压力和流量的大小,以保证各执行机构工作的可靠、协调和安全性。

液压控制阀按其用途和工作特点不同,通常可分为方向控制阀(如单向阀和换向阀等)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这3种阀可根据需要互相组合成为集成式控制阀,如液压式钻机或其他工程机械就是将一个或多个换向阀、调压溢流阀和流量阀等组装在一起成为集中手柄控制的液压操纵阀。

(五)液压传动系统的基本回路简介

1.压力控制回路

主要是利用压力控制阀来控制系统压力,实现增压、减压、卸荷、顺序动作等,以满足工作机构对力或力矩的要求。如图2-68所示为一减压回路,由于油缸G往返时所需的压力比主系统低,所以在支路上设置减压阀,实现分支油路减压。

图2-68 减压回路

2.速度控制回路

主要有定量泵的节流调速、变量泵和节流阀的调速、容积调速等回路,可以实现执行机构不同运动速度(或转速)的要求。在定量泵的节流调速回路中,采用节流阀,调速阀或溢流调速阀来调节进入液压缸(或液压马达)的流量。根据阀在回路中的安装位置,分为进口节流、出口节流和旁路节流3种。

3.换向控制回路

换向控制回路是利用各种换向阀或单向阀组成的控制执行元件的启动、停止或换向的回路。常见的有换向回路、闭锁回路、时间制动的换向回路和行程制动的换向回路等。

如图2-69所示是简化的工作台作往复直线运动的液压系统图。为了控制工作台的往复运动,在这个系统中设置了一个手动换向阀,用来改变液流进入液压缸的方向。当手动换向阀的阀心在最右端时(图2-69a),压力油由P—A,进入液压缸左腔。此时,右腔中的油液由B—O流回油箱,因而推动了活塞连同工作台一起向右运动。

若把手动换向阀的阀心扳到中间位置(图2-69b),压力油的进油口P与回油口O都被阀心封闭,工作台停止运动。

如果把阀心扳到最左端,压力油从P—B进入液压缸右腔(图2-69c),左腔中的油液由A—O回油箱,从而推动活塞连同工作台向左运动,完成换向动作。

图2-69 换向工作原理图

4.同步回路

当液压设备上有两个或两个以上的液压油缸,在运动时要求能保持相同的位移和速度,或要求以一定的速度比运动时,可采用同步回路。

5.顺序动作回路

当用一个液压泵驱动几个要求按照一定顺序依次动作的工作机构时,可采用顺序动作回路。实现顺序动作可以采用压力控制、行程控制和时间控制等方法。

② 液压传动装置由什么4部分组成

由动力源,各种控制阀,执行机构和各种辅助原件组成
在支路上安装溢流阀,溢流阀的设定压力低于主油路压力,也可安装一单向阀防止逆流
液压缸是执行原件
顺序阀可通过压力变化改变油路顺序

③ 挖掘机液压结构及工作原理

挖掘机主要由发动机、传动系统、行驶系统、制动系统、工作装置、液压系统、电气系统等组成,如图2-11所示。

图2-11 挖掘机的结构

(1)发动机

发动机一般为四冲程、水冷(或风冷)、多缸、直喷式柴油机发动机。少数挖掘机采用电控柴油机。

(2)传动系统

传动泵有机械传动式、半液压传动式和全液压传动式3种,其中机械传动式和半液压传动式应用较广。

(3)行驶系统

液压挖掘机行驶系统是整个机器的支撑部分,承受机器的全部质量和工作装置的反力,同时能使挖掘机作短距离行驶。按结构不同,行驶系统可分为履带式和轮胎式两类。

①履带式行驶系统。由履带、支重轮、托链轮、驱动轮、导向轮、张紧装置、行走架、油马达、减速机等组成。

液压挖掘机的行驶系统采用液压驱动。驱动装置主要包括液压马达、减速机和驱动轮,每条履带有各自的液压马达和减速机。由于两个液压马达可独立操作,因此机器的左右履带可以同步前进或后退,也可以通过一条履带制动来实现转弯,还可以通过两条履带朝相反方向驱动来实现原地转向,其操作十分简单、方便、灵活。

②轮胎式行驶系统。通常由车架、转向前桥、后桥、行车机构及支腿等组成。

后桥通过螺栓与机架刚性固定连接。前桥通过悬挂平衡装置与机架铰接连接。悬挂平衡装置的作用是当挖掘机行驶时,利用支承板的摆动和两悬挂油缸的浮动,保证4个车轮充分着地,减轻机体不平均承载、摆跳、道路冲击及机架扭曲,提高挖掘机的越野性能;当挖掘机作业时,将两悬挂油缸闭锁,保证挖掘作业时整机的稳定性。

(4)转向系统

轮胎式挖掘机,其转向系统通常采用全液压、偏转前轮式转向系统,主要由油箱(与工作装置液压系统共用)、转向油泵、转向器、滤油器、流量控制阀、转向油缸、油管和转向盘等组成。

履带式挖掘机,其转向系统比较简单,通过切断驱动链轮动力来实现。其转向装置为湿式、多片弹簧压紧、液压分离、手动液压操作方式转向离合器。

(5)制动系统

脚制动装置的制动器为凸轮张开蹄式制动器。制动传动器机构采用气压式,主要由空气压缩机、气体控制阀、脚制动阀、储气筒、双向逆止阀、快速放气阀、手操纵气开关、制动汽缸及气压表等组成。

手制动装置的制动器为凸轮张开蹄式制动器,传动机构为机械式。制动底板通过螺钉固定在上传动箱盖上;制动鼓用螺栓固定在接盘上,接盘则通过花键和上传动箱的从动轴连接。

当挖掘机作业时,必须解除手制动,否则,将损坏手制动器或回转液压马达。

(6)工作装置

工作装置是液压挖掘机的主要组成部分之一。由于工作性质的不同,工作装置的种类很多,常用的有反铲、正铲、装载和起重等装置,而且一种装置也可以有很多形式。

(7)液压系统

液压挖掘机的主要运动有整机行走、转台回转、动臂升降、斗杆收放、铲斗转动等,根据以上工作要求,把各液压元件用管路有机地连接起来的组合体叫作液压挖掘机的液压系统。液压系统的功能是把发动机的机械能以油液为介质,利用油泵转变为液压能,传送给油缸、油马达等,然后转变为机械能,再传给各种执行机械,实现各种运动。液压挖掘机的液压系统常用的有定量系统、分功率变量系统和总功率变量系统。我国规定,单斗液压挖掘机重8t以下的,采用定量系统;机重32t以上的,采用变量系统;机重8~32t的,定量和变量系统均可用。

全功率变量系统是目前液压挖掘机普遍采用的液压系统,通常选用恒功率变量双泵。液压泵的型号不同,采用的恒功率调节机构也不相同。

液压系统主要由油路系统、先导控制油路系统和控制系统构成。

(8)电气系统

液压挖掘机的电气系统包括启动线路、发电线路、照明、仪表以及由传感器和压力开关、电磁阀组成的控制电路,另外还有附属电路(如空调、收音机等)。启动电机按所配套的主机不同,分12V、24V两种,启动功率分3kW、3.7kW、4.8kW等。

发电线路主要包括交流发电机、电压调节器、充电指示灯及启动开关等。

为了保证安全、高效、节能及正常地工作,根据需要,挖掘机的电气系统都安装了各种信号装置,如机油温度报警、充电指示灯、机油压力报警、转向信号灯等,以警告操作者。为了使操作者随时掌握机器的运转情况,驾驶室中安装了各种仪表,如机油压力表、机油温度表、液压油温度表、水温表。现代进口挖掘机都采用了先进的电控装置,这种设备便于维修人员在挖掘机出现故障时能及时、准确地判断故障位置,及时修复。

④ 液压传动装置由哪些基本部分组成

1.
动力装置:将机械抄能转换为液压能;
2.
执行装置:包括将液压能转换为机械能的液压执行器;
3.
控制装置:控制液体的压力、流量和方向的各种液压阀;
4.
辅助装置:包括储存液体的液压箱,输送液位的管路和接头,保证液体清洁的过滤器等;
5.
工作介质:液压液,是动力传递的载体。

⑤ 液压传动机构不能动作的原因有哪些

(1)液压系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统;
(2) 内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣;
(3) 加油容器或用具不洁;
(4) 制造时因热弯油管而在管内产生锈皮;
(5) 油液储存不当,在加入系统前就不洁或已变质;
(6) 已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。
污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。
过热
造成系统过热可能由以下一种或多种原因造成:
(1) 油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热;
(2) 容器内的油平面过高,油液被强烈搅动,从而引起过热;
(3) 质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热;
(4) 工作时超过了额定工作能力,因而产生热;
(5) 回油阀调整不当,或未及时更换已损零件,有时也会产生热。
过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。
上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。
进入空气
油液中进入空气的原因有下列几种:
(1) 加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中;
(2) 接头松了或油封损坏了,空气被吸入;
(3) 吸油管路被磨穿、擦破或腐蚀,因而空气进入。
空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡沫。而工作液压缸在减压回油时,带泡沫的油液就会形成“海绵”的性质。此外,油中含有许多泡沫会增加总体积,将造成油箱或储油器的溢油现象。
含有空气的工作油,在传递动力时会产生急跳的痉挛现象,使动力传递不均匀,由此产生的压力波动和应力,将会使零部件损坏,严重时会导致整个系统损坏。

⑥ 钻机液压传动系统

(一)功用

1)用以完成主轴的上升、下降、停止,钻机移动,松开卡盘,拧卸钻杆等工作。

图4-63 XY-4型钻机机架

1—挡铁;2—右机腿;3—前机架;4—机座;5—左机腿;6—防护罩;7—移动油缸;8,9,13—压板;10—后机架;11,12—调整垫;14—调整垫

2)可实现钻进过程中的加压、减压钻进和强力起拔等工艺要求。

3)可以控制立轴下降速度。系统中的油压由压力表反映,钻进压力、加减压力值及钻具质量由钻压表反映,如图4-64所示。

(二)液压系统的组成

XY-4型钻机的液压系统由以下四部分组成:

1)动力机构。由齿轮式油泵构成,它是液压系统的“心脏”液压能的动力源。

2)控制机构。控制和调整系统内油液的压力,流量和方向,将液压能分配给各执行机构。由液压操纵阀,可调节流阀等组成。

3)执行机构。将液压能转换为机械能(往复和旋转运动),由油缸,液压马达等组成。

4)辅助装置。由油箱、过滤器、油表、油管、接头等组成。

(三)液压传动系统工作原理

1.钻机前后移动

如图4-65所示,由手动控制弹簧复位三位六通换向阀与钻机前后移动油缸等构成了钻机移动回路。其工作原理是:油液由油箱经过滤器通过油泵获得液压能,压力表反映系统压力,用溢流阀控制系统压力并实现过载保护。换向阀各位置工作状况如下:

图4-64 XY-4型钻机液压传动系统组成图

1—油箱;2—阀门;3—接头螺钉;4—接头体;5—单联齿轮泵;6,7,8—接头螺钉;9—接头体;10—ZFS四联多路换向阀;11—螺帽;12,13—接头螺钉;14—回油接头体;15—给进油缸下油管;16—接头体;17—给进油缸上油管;18—给进控制阀;19—钻压表;20—接头螺钉;21—接头体;22—直通接头;23—液控单向阀;24—D型胶管接头;25—C型胶管接头;26—压力表

图4-65 XY-4型钻机液压系统

1—压力表;2—单向阀;3—油泵;4—过滤器;5—油箱;6—溢流阀;7—钻机前后移动操纵阀(三位六通);8—备用操纵阀(三位六通);9—卡盘松紧操纵阀(三位六通);10—立轴升降操纵阀(四位六通);11—给进控制阀(节流阀);12—三通换向阀(梭阀);13—钻压表;14—立轴油缸;15—液压卡盘;16—单向阀;17—钻机前后移动油缸(单出杆油缸)

1)处于第二位置(零位)时,压力油经常态回油道直接流回油箱,此时钻机处于停止状态。

2)处于第一位置时,常态回油道封闭,压力油进入移动油缸左腔,油缸体左移并带动钻机左移(后退);油缸右腔油液经回油道流回油箱。

3)处于第三位置时,常态回油道封闭,压力油进入移动油缸右腔,油缸体右移并带动钻机右移(前进),油缸左腔油液经回油道流回油箱。

2.松开液压卡盘

由卡盘松紧操纵阀与液压卡盘内油缸等构成液压卡盘松紧回路。由于该钻机液压卡盘采用碟形弹簧卡紧,液压力松开的方式,所以只需一条工作油路,而另一条油路接在液压拧管机的供油路上。换向阀各位置工作状况如下:

1)处于第二位置时,压力油经常态回油道直接流回油箱,此时处于停止状态。

2)处于第一位置时,常态回油道封闭,压力油进入卡盘环形油缸,推动活塞下移,压缩碟形弹簧,卡盘松开。

3)处于第三位置时,压力油进入拧管机供油路,此时拧管机即可工作,同时卡盘油缸内油液卸荷,碟形弹簧复位,卡盘卡紧。

3.立轴的下降、停止、上升与称重

由立轴升降操纵阀、立轴升降油缸(给进油缸)及给进控制阀等构成立轴给进回路。换向阀各位置工作状况如下:

1)处于第二位置时,压力油经常态回油道直接流回油箱,立轴处于停止状态。

2)处于第一位置时,常态回油道封闭,压力油进入给进油缸上腔,推动活塞下移,立轴下降;给进油缸下腔油液与回油道接通,流回油箱。下腔油路上串联着给进控制阀,可以调节油缸下腔回油量,从而控制立轴下降速度,实现加、减压钻进。

3)处于第三位置时,常态回油道封闭,压力油通过给进控制阀之单向阀进入给进油缸下腔,推动活塞上行,立轴上升;油缸上腔油液与回油道接通卸荷。

4)处于第四位置时,常态回油道的油道封闭,油缸上腔开始卸荷,由于油缸下腔处于封闭状态,下腔油压力与钻具质量相平衡,从钻压表上可读出钻具在孔内的质量值,油泵输出的压力油克服溢流阀弹簧压力顶开阀心流回油箱。

(四)主要液压元件的构造

1.油箱

油箱的用途主要是储油、散热、分离油中的空气和沉淀杂物等。

XY-4型钻机油箱为开式,容量为40L。装于钻机前机架的右侧。其构造如图4-66所示。

油箱由钢板焊接制成,中间用带孔的隔板分成回油沉淀和吸油两个工作室,可消除泡沫,沉淀杂物,冷却油液。油箱上端有加油口及过滤网,透气孔等,油箱侧面有圆形油标,用于观察油面高度。

2.油泵

该系统采用外啮式齿轮油泵,型号为CB33/80。其主要技术参数如下:

图4-66 XY-4型钻机油箱

1—接头组件;2—接头;3—盖板;4—胶垫;5—加油口盖;6—加油口;7—过滤板;8—后提手;9—回油管接头;10—箱体;11—观察口;12—镜片;13—胶垫;14—垫圈;15—油标板;16—前提手;17—隔板;18—接头;19—过滤器

工作压力8MPa;最高压力12MPa;转速1500r/min;排量33L/min;容积效率70.95;进油管丝扣尺寸G7/8in;排油管丝扣尺寸G3/4in。

油泵传动装置如图4-67所示。主要由三角皮带轮、轴承、油泵座、传动轴及橡胶油封等组成。传动轴一端以平键连接三角皮带轮,另一端则以两副207轴承装于油泵座内孔。齿轮泵轴的外花键插于传动轴的内花键中,从而避免三角带传动过程中的拉力直接作用在油泵轴上。

图4-67 油泵传动装置

1—B型三角皮带;2,10—弹簧垫圈;3,9—六角头螺栓;4—纸垫;5,6—衬套;7—传动轴;8—207轴承;11—油泵座;12—压注油嘴;13—橡胶油封;14—密封螺塞;15—衬套;16—三角皮带轮;17—平键;18—止退垫圈;19—圆螺母

3.液压操纵阀

液压操纵阀是钻机液压传动系统的控制中枢,属集成式一组多路换向阀。如图4-68所示,主要由调压溢流阀、钻机移动控制阀、卡盘及拧管机控制阀、立轴给进控制阀和回油侧盖五部分组合而成。下面分别介绍各阀的构造及工作原理。

图4-68 XY-4型钻机液压操纵阀

1—微调手轮;2—圆锥销;3—拨环;4—手轮套;5—密封圈;6—调压螺杆;7—防转销;8调压螺母;9—限位套;10—调压套筒;11—限位螺母;12—密封圈;13—调压溢流阀壳体;14—调压弹簧;15—调压阀体;16—阀座;17—螺母;18—弹簧座;19—弹簧;20—弹簧罩;21—弹簧压板;22—密封盖;23—内六角螺钉;24—定位器体;25—内六角螺钉;26—定位套筒;27—定位钢球;28—锁紧弹簧;29—回油后盖;30—连接螺杆;31—连接板;32—垫圈;33—销;34—操纵杆座;35—快速增压手柄;36—拨叉;37—操纵杆;38—立轴给进控制阀杆;39—卡盘及拧管机控制阀杆;40—钻机移动控制阀杆

(1)调压溢流阀

该阀由微调手轮、快速增压手柄、调压螺杆、调压螺母调压弹簧、调压阀体及阀座等组成(图4-68)。阀体与阀的圆锥结合面经相互研磨有良好的密封性能,在调压弹簧张力的作用下,将压力油道P和回油道O隔开。一旦系统压力升高至限定值,即可克服弹簧张力顶开阀体,压力油便经阀座孔油道O2流回油箱。

调压溢流阀压力值是由调整弹簧张力的大小而实现的,既可微调,也可速调。微调手轮及套用圆锥销与调压螺杆连接为一体,螺杆前端左旋螺纹与调压螺母相配合,螺母上固定有防转销,调整弹簧装在阀体与调压螺母之间,正时针旋转微调手轮,调压螺母向前移动压缩弹簧,增强对阀体的压力,则调压阀压力增高;反之压力减小。为使系统压力不超过最大值,在调压筒内装有限位套并用限位螺母限位。这就限制了调压螺母的移动距离,同时也限制了弹簧对阀体的最大压力,从而实现控制系统压力的目的。在钻机操作中,有时需要液压系统快速增压,为此特装有快速增压手柄,并以销轴支撑在调压套面上,其前端拨叉卡在拨环上,拨环又套在手轮上,所以扳动手柄时,通过手轮套、圆锥销、使调压螺杆迅速前移而压缩弹簧,达到快速增压目的。松开手柄后,弹簧复位,恢复到原调压值。

(2)钻机移动控制阀

该阀主要由钻机移动控制阀杆、阀壳和复位弹簧等构成(见图4-68)。阀壳通孔中配装有带四段柱塞的阀杆,阀杆头部装有弹簧,弹簧压板等零件,并用密封盖罩住。阀杆底部的螺旋孔旋入阀杆接头,以锁母锁紧,阀杆接头的销轴连接操纵杆座,此座用连接板铰链连接于密封盖支架上,座孔中插入操纵杆,扳动操纵杆时,阀杆即在阀体中滑动,同时压缩弹簧,扳动力消失后靠弹簧张力使阀杆复位。

液压操纵阀总成内共有5条油道,中间是由压力油道P和回油道O直通连接的常态回油道;P1P2为压力油道;O1O2为卸荷油道;在移动控制阀片中有两个接执行油缸的工作油孔A1B1,其中A1接移动油缸后腔;B1接前腔,滑阀杆移动时,当其中一个工作油孔接通压力油道,另一工作油孔即接通卸荷油道,从而形成钻机前后移动回路。

(3)液压卡盘及拧管机控制阀

该阀构造除定位装置与钻机移动控制阀不同外,其他部分完全相同(图4-68)。定位装置由定位套筒,定位钢球和锁紧弹簧等组成。定位套筒用内六角螺钉拧在阀杆头部,其上有三道环形凹槽。在定位器体上也开有环形凹槽,槽内均布8个小孔,孔中装有定位钢球、其外用锁紧弹簧压住,当定位套筒的凹槽与定位钢球相对时,即被钢球卡住而实现定位。阀内油道A0与液压卡盘的环形油缸接通,B0与液压拧管机的供油路接通。

(4)立轴给进控制阀

该阀的定位装置与液压卡盘及拧管机控制阀相似,只是多了一个阀位(图4-68)。阀中油道A0通给进油缸上腔;油道B0通下腔(油路流通状况见本节液压系统工作原理叙述)。钻具称质量时将滑阀杆下移到极限位置,使柱塞将油道B0封闭,柱塞将常态回油道封闭,A0—O0相通,此时处于油缸上腔卸荷,下腔封闭状态。

4.给进控制阀

给进控制阀为一单向可调节流阀。主要由球阀(单向阀)、针阀(节流阀)、阀体及手轮等组成,其构造如图4-69所示。

图4-69 给进控制阀

1—管接头;2—球阀;3—针阀;4—阀体;5—手轮;6—锥销;7—弹簧;8—螺塞

当给进油缸活塞下移时,油缸下腔油液迫使球阀关闭,油液只能从针阀的环形间隙中流出,回油量的大小可通过转动手轮使针阀轴向移动,从而控制立轴的下降速度。加压钻进时,可使针阀全部开启以降低回油阻力。减压钻进时应根据工艺要求控制针阀开启大小,以保持立轴下降速度均匀。

立轴上升时,油液从右侧油孔进入而顶开单向阀从下油口流出,直接进入给进油缸下腔,活塞快速向上移动,完成倒杆作业。

5.限压切断阀

该阀串联在三通换向阀与钻压表之间(图4-70)。主要由接头、阀体、阀芯、弹簧、调节螺丝等组成。接头接高压油道,上螺孔接钻压表,当液压油超过限定值时,阀芯大端承受的压力超过弹簧张力,于是阀芯压缩弹簧而右移,其锥面将油道封闭,油压不能传递到表内从而保护钻压表不受损害。

图4-70 限压切断阀

1—接头;2—垫片;3—阀体;4—阀芯;5—弹簧座;6—弹簧套;7—弹簧;8—调节座;9—调节螺丝

6.三通换向阀

该阀在液压传动系统中的位置见图4-65,其作用是接通给进油缸上腔或下腔与钻压表之间的高压油道,同时封闭低压道与钻压表的通路。其构造如图4-71所示,主要由阀体、管接头、阀等组成。当给进油缸上腔为压力油,下腔卸荷时,阀右移,b和c接通,a孔封闭,钻压表反映加压钻进读数,反之a和c接通,b孔封闭,钻压表反映减压钻进读数。

图4-71 三通换向阀

1—阀体;2—管接头;3—密封圈;4—管接头;5—阀;6—螺钉;7—管接头;a—给进油缸下腔接口;b—给进油缸上腔接口;c—限压切断阀接口

7.压力表和钻压表

(1)压力表

压力表为1.5级的标准簧管式表,最大压力为16MPa。该表装于油泵与液压操纵阀之间(在液压系统中的位置见图4-65之1),用以观察整个液压系统工作压力,亦可判断各元件在工作过程中的故障,以便及时排除隐患。其构造如图4-72所示。

其工作原理是:当压力油从进油孔进入弹簧管后,在压力油作用下簧管由于变形而使自由端产生位移,此位移通过扇形齿轮及齿杆带动指针旋转,当油压产生的作用力和簧管变形而产生的弹性力相平衡时,指针便停留在某一固定位置。利用静盘及动盘上的刻度,就可以反映出钻进时的加压值、平衡钻具质量值或钻具称重值。此种压力指示器因簧管容易产生永久变形,且抗冲击、震动性能差,故使用寿命较短。

(2)钻压表

钻压表又称孔底压力指示器,在液压系统中的位置见图4-65之13。此表是用外经为100mm最大压力为9.8MPa的1.5级普通簧管式表改制而成的。表的接头处装有缓冲装量。该表并联在给进油缸油路上,反映出给进油缸压力腔的压力,从而测出钻具质量及加压和减压钻进值。

目前国内常用的孔底压力指示器主要有两种类型:簧管式和柱塞式。XY-4型钻机采用的是簧管式孔底压力指示器。钻压表构造如图4-72所示,表盘有静盘、动盘,静盘上有顺时针方向从0~10t(即100kN)的总刻度值。每吨刻度分为5小格,即每小格0.2t(2000N)。静盘上各刻度值是以压力表相应压力乘以两个给进油缸圆面积得出的,动盘有旋钮突出表面,可以旋转记数。动盘上有加压和减压两种刻度,加压刻度为红色,从0~4t(40kN)按顺时针方向增加,其刻度值是以压力表相应压力乘以两个油缸上腔活塞面积减去活塞杆断面后的面积得出的。减压刻度是黑字,从0~7t(70kN)按逆时针方向增加,其刻度原理与静盘相同。

图4-72 钻压表构造

1—进油孔;2—簧管;3—静盘;4—动盘;5—有机玻璃罩;6—指针

钻压表使用方法如下:

称重。将钻具提离孔底,将立轴给进控制阀手柄扳至“称重”位置,指针在静盘上指示的刻度值即是钻具质量。

加压钻进。当钻具质量小于钻进工艺所需要的钻压时,应给钻具附加一定的压力。操作时应首先将钻具质量称出,假设称出的质量为1t(10kN)而钻具压力需要2t(20kN)则需将动盘红圈上1t的刻度值对准静盘的零位,然后将操纵阀手柄扳到“下降”位置,顺时针调节溢流阀微调手轮,增加给进油缸上腔压力,使指针对准动盘红色刻度2t值时,即是钻压值。此时表盘各刻度数据的含义是,动盘加压(红色)刻度1t是钻具质量,2t是钻压,其差值1t是加压数。加压钻进表盘状态见图4-73a。

减压钻进。当钻具质量大于钻进工艺所需的钻压时,就应由给进油缸下腔形成一个向上的作用力以抵消一部分钻具质量。使其差值为钻压值。操作时应先称出钻具质量,若称出钻具质量为3.5t(35kN),而钻压只需要2t,应减去1.5t。此时应将钻压表上动盘黑圈3.5t的刻度值对准静盘上的“零位”并扳动操纵阀手柄至“上升”位置,顺时针凋节溢流阀调压手轮进行“减压”,增加给进油缸下腔油压。直至表针对准动盘黑圈(减压)上2t刻度。此时表盘各数据的含义是:动盘减压钻进刻度值3.5t是钻具质量,刻度2t值是钻进压力,静盘1.5t刻度值是减压差值。减压钻进表盘状态见图4-73b。

图4-73 钻压表加压、减压状态示意图

(五)液压传动系统操作使用注意事项

1)在钻进和提升过程中,不得板动钻机移动操纵阀手柄。

2)液压操纵阀各手柄不能同时板到工作位置,当一个手柄处于工作位置时,其他手柄应置于“停止”位置。

3)板动操纵阀手柄应迅速准确到位。不能用力过猛,避免出现压力冲击、蹩泵、拉坏定位装置和冲坏仪表。

4)松开液压卡盘时,应先将操纵阀扳到“松开”位量,后扳动溢流阀快速调压手柄至极限位置,卡盘卡紧时须放松快速调压手柄。

5)液压操纵阀各阀片之间出厂前已调整密封好并用螺栓紧固成一整体。在机台不准随意拆卸,以免影响正常工作和漏油。

6)各软、硬油管不得挤压、碰伤和发生扭转现象,油管曲率半径应不小于外经尺寸的7倍。

7)应使用规定牌号的液压油,注意保持油液清洁,防止油液中混入杂质污物。野外搬迁钻机,应将拧开的油管接头用干净软布堵死,防止杂质进入系统造成故障。

8)应定期检查油箱中油位高度,使其符合油标刻线。油液工作温度应保持在35~60℃。

⑦ 液压传动系统由哪几部分组成

一个完整的、能够正常工作的液压系统,应该由以下五个主要部分来组成: 1.动力装置:它是供给液压系统压力油,把机械能转换成液压能的装置。最常见的是液压泵。 2.执行装置:它是把液压能转换成机械能的装置。其形式有作直线运动的液压缸,有作回转运动的液压马达,它们又称为液压系统的执行元件。 3.控制调节装置:它是对系统中的压力、流量或流动方向进行控制或调节的装置。如溢流阀、节流阀、换向阀、截止阀等。 4.辅助装置:例如油箱,滤油器,油管等。它们对保证系统正常工作是必不可少的。 5.工作介质:传递能量的流体,即液压油等。 自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。 本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。当前液压技术正向迅速、高压、大功率、高效、低噪声握拍明、经久耐用、高度集成化的方贺改向发展。同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。我国的液压技术最初应用于机床和锻压设备上,后来又用于拖拉机和工程机械。现段告在,我国的液压元件随着从国外引进一些液压元件、生产技术以及进行自行设计,现已形成了系列,并在各种机械设备上得到了广泛的使用。

阅读全文

与液压传动装置其执行机构相关的资料

热点内容
消防控制室应设自动灭火装置 浏览:884
通讯设备的销售怎么做 浏览:647
超声波主要是做什么的图片 浏览:861
鼎升五金制品厂木头衣架 浏览:825
设备检验标准哪个部门出 浏览:662
楼井里的暖气阀门 浏览:64
途锐机械钥匙怎么拔出来 浏览:705
破壁机轴承漏水怎么修理 浏览:85
修前轮轴承要多少钱 浏览:636
哪些设备需要防爆 浏览:86
华硕b360m配什么机械硬盘 浏览:360
新5系阀门怎么开 浏览:43
宝鸡市有几个五金机电市场 浏览:510
西气东输管道关闭阀门间距 浏览:429
机械厂牌及出场时间是什么 浏览:611
中远机械如何 浏览:251
哪里有淘气堡游乐设备 浏览:966
祁东厨房设备回收公司在哪里 浏览:967
买电动工具选什么牌子 浏览:854
海尔洗衣机轴承坏了更换多少钱 浏览:924