导航:首页 > 装置知识 > 带式运输机传动装置的设计nw

带式运输机传动装置的设计nw

发布时间:2024-07-20 01:44:22

1. 带式运输机用同轴式二级圆柱齿轮减速器课程设计

一种单级圆柱齿轮减速器,主要由主、从动变位齿轮、轴承、挡圈、端盖、主、副壳体、花键轴、内花键套法兰、压盖、轴承座组成。
其特点是主动变位齿轮是台阶式的,一端部齿轮与从动变位齿轮联接,另一端部与轴承、挡圈固定联接,轴承的外套与轴承座联接,轴承座与副壳体表面联接固定。
此减速器由于主、从齿轮采用变位齿轮,主动变位齿轮的另一端部增加轴承、轴承座,改变过去的悬臂状态,加强齿轮的工作强度,提高了减速器的寿命。

下面是设计说明书:
修改参数:输送带工作拉力:2300N
输送带工作速度:1.5m/s
滚筒直径:400mm
每日工作时数:24h
传动工作年限:3年

机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录
设计任务书……………………………………………………1
传动方案的拟定及说明………………………………………4
电动机的选择…………………………………………………4
计算传动装置的运动和动力参数……………………………5
传动件的设计计算……………………………………………5
轴的设计计算…………………………………………………8
滚动轴承的选择及计算………………………………………14
键联接的选择及校核计算……………………………………16
连轴器的选择…………………………………………………16
减速器附件的选择……………………………………………17
润滑与密封……………………………………………………18
设计小结………………………………………………………18
参考资料目录…………………………………………………18
机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N•m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’•i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%<5%,所以可行。
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N•m) 39.8 39.4 191 925.2 888.4
传动比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97

传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6
(2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = =67.85
(2) 计算圆周速度
v= = =0.68m/s
(3) 计算齿宽b及模数mnt
b=φdd1t=1×67.85mm=67.85mm
mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm
b/h=67.85/7.63=8.89
(4) 计算纵向重合度εβ
εβ= =0.318×1×tan14 =1.59
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故载荷系数
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得
d1= = mm=73.6mm
(7) 计算模数mn
mn = mm=3.74
3.按齿根弯曲强度设计
由式(10—17 mn≥
1) 确定计算参数
(1) 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96
(2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88

(3) 计算当量齿数
z1=z1/cos β=20/cos 14 =21.89
z2=z2/cos β=100/cos 14 =109.47
(4) 查取齿型系数
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取应力校正系数
由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 计算[σF]
σF1=500Mpa
σF2=380MPa
KFN1=0.95
KFN2=0.98
[σF1]=339.29Mpa
[σF2]=266MPa
(7) 计算大、小齿轮的 并加以比较
= =0.0126
= =0.01468
大齿轮的数值大。
2) 设计计算
mn≥ =2.4
mn=2.5
4.几何尺寸计算
1) 计算中心距
z1 =32.9,取z1=33
z2=165
a =255.07mm
a圆整后取255mm
2) 按圆整后的中心距修正螺旋角
β=arcos =13 55’50”
3) 计算大、小齿轮的分度圆直径
d1 =85.00mm
d2 =425mm
4) 计算齿轮宽度
b=φdd1
b=85mm
B1=90mm,B2=85mm
5) 结构设计
以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。
轴的设计计算
拟定输入轴齿轮为右旋
II轴:
1.初步确定轴的最小直径
d≥ = =34.2mm
2.求作用在齿轮上的受力
Ft1= =899N
Fr1=Ft =337N
Fa1=Fttanβ=223N;
Ft2=4494N
Fr2=1685N
Fa2=1115N
3.轴的结构设计
1) 拟定轴上零件的装配方案
i. I-II段轴用于安装轴承30307,故取直径为35mm。
ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。
iii. III-IV段为小齿轮,外径90mm。
iv. IV-V段分隔两齿轮,直径为55mm。
v. V-VI段安装大齿轮,直径为40mm。
vi. VI-VIII段安装套筒和轴承,直径为35mm。
2) 根据轴向定位的要求确定轴的各段直径和长度
1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。
4. IV-V段用于隔开两个齿轮,长度为120mm。
5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。
6. VI-VIII长度为44mm。
4. 求轴上的载荷
66 207.5 63.5
Fr1=1418.5N
Fr2=603.5N
查得轴承30307的Y值为1.6
Fd1=443N
Fd2=189N
因为两个齿轮旋向都是左旋。
故:Fa1=638N
Fa2=189N
5.精确校核轴的疲劳强度
1) 判断危险截面
由于截面IV处受的载荷较大,直径较小,所以判断为危险截面
2) 截面IV右侧的

截面上的转切应力为
由于轴选用40cr,调质处理,所以
([2]P355表15-1)
a) 综合系数的计算
由 , 经直线插入,知道因轴肩而形成的理论应力集中为 , ,
([2]P38附表3-2经直线插入)
轴的材料敏感系数为 , ,
([2]P37附图3-1)
故有效应力集中系数为
查得尺寸系数为 ,扭转尺寸系数为 ,
([2]P37附图3-2)([2]P39附图3-3)
轴采用磨削加工,表面质量系数为 ,
([2]P40附图3-4)
轴表面未经强化处理,即 ,则综合系数值为
b) 碳钢系数的确定
碳钢的特性系数取为 ,
c) 安全系数的计算
轴的疲劳安全系数为
故轴的选用安全。
I轴:
1.作用在齿轮上的力
FH1=FH2=337/2=168.5
Fv1=Fv2=889/2=444.5
2.初步确定轴的最小直径

3.轴的结构设计
1) 确定轴上零件的装配方案
2)根据轴向定位的要求确定轴的各段直径和长度
d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。
g) 该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。
h) 为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。
i) 轴肩固定轴承,直径为42mm。
j) 该段轴要安装轴承,直径定为35mm。
2) 各段长度的确定
各段长度的确定从左到右分述如下:
a) 该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。
b) 该段为轴环,宽度不小于7mm,定为11mm。
c) 该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。
d) 该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
e) 该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。
f) 该段由联轴器孔长决定为42mm
4.按弯扭合成应力校核轴的强度
W=62748N.mm
T=39400N.mm
45钢的强度极限为 ,又由于轴受的载荷为脉动的,所以 。

III轴
1.作用在齿轮上的力
FH1=FH2=4494/2=2247N
Fv1=Fv2=1685/2=842.5N
2.初步确定轴的最小直径
3.轴的结构设计
1) 轴上零件的装配方案
2) 据轴向定位的要求确定轴的各段直径和长度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直径 60 70 75 87 79 70
长度 105 113.75 83 9 9.5 33.25

5.求轴上的载荷
Mm=316767N.mm
T=925200N.mm
6. 弯扭校合
滚动轴承的选择及计算
I轴:
1.求两轴承受到的径向载荷
5、 轴承30206的校核
1) 径向力
2) 派生力
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
II轴:
6、 轴承30307的校核
1) 径向力
2) 派生力

3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
III轴:
7、 轴承32214的校核
1) 径向力
2) 派生力
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
键连接的选择及校核计算

代号 直径
(mm) 工作长度
(mm) 工作高度
(mm) 转矩
(N•m) 极限应力
(MPa)
高速轴 8×7×60(单头) 25 35 3.5 39.8 26.0
12×8×80(单头) 40 68 4 39.8 7.32
中间轴 12×8×70(单头) 40 58 4 191 41.2
低速轴 20×12×80(单头) 75 60 6 925.2 68.5
18×11×110(单头) 60 107 5.5 925.2 52.4
由于键采用静联接,冲击轻微,所以许用挤压应力为 ,所以上述键皆安全。
连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)
其主要参数如下:
材料HT200
公称转矩
轴孔直径 ,
轴孔长 ,
装配尺寸
半联轴器厚
([1]P163表17-3)(GB4323-84
三、第二个联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以选用弹性柱销联轴器TL10(GB4323-84)
其主要参数如下:
材料HT200
公称转矩
轴孔直径
轴孔长 ,
装配尺寸
半联轴器厚
([1]P163表17-3)(GB4323-84
减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M16
起吊装置
采用箱盖吊耳、箱座吊耳
放油螺塞
选用外六角油塞及垫片M16×1.5
润滑与密封
一、齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
二、滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
三、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
四、密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。
密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。
轴承盖结构尺寸按用其定位的轴承的外径决定。
设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的。

2. 设计题目:设计带式运输机传动装置已知数据f=2500v=1.5d=450

计—用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350 N,运输带的速度V=1.6 m/s卷筒直径D=260 mm,两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96

一.传动方案分析:
如图所示减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级具有缓冲吸振能力和过载保护作用,带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势

二.选择电动机:
(1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。
(2)电动机容量:
①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②电动机输出功率Pd=Pw/η
传动系统的总效率:η=
式中……为从电动机至卷筒之间的各传动机构和轴承的效率。
由表查得V带传动=0.96,滚动轴承=0.99,圆柱齿轮传动
=0.97,弹性连轴器=0.99,卷筒轴滑动轴承=0.96
于是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 电动机额定功率由表取得=3 kw
(3)电动机的转速:由已知条件计算卷筒的转速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4
于是转速可选范围为 ==118×(2~4)×(2~4)
=472~1888 r/min
可见同步转速为 500 r/min和2000 r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960 ×r/min的电动机
传动系统总传动比i= =≈2.04
根据V带传动的常用范围=2-4取=4
于是单级圆柱齿轮减速器传动比 ==≈2.04
把数字改一下就可以了

3. 带式输送机传动装置设计!!!感激不尽

题目:传动装置,减速机设计及相关零件加工。
一.总体布置简图
1—电动机;2—带式运输机;3—齿轮减速器;4—联轴器;5—滚筒
二.工作情况:
载荷平稳、单向工作
三.原始数据
滚筒的扭矩T(Nm):520
滚筒的直径D(mm):260
运输带速度V(m/s):1.2
带速允许偏差(%):5
使用年限(年):8
工作制度(班/日):2
四.设计内容
传动方案的拟定及说明
一个好的传动方案,除了满足机器的功能要求外,还应当工作可靠,结构简单,尺寸紧凑,传动效率高,成本低廉以及使用维护方便。对比材料中2-1所示带式输送机的四种方案,再经由题目所知传动机由于工作载荷平稳,工作环境有轻尘,布局尺寸没有严格限制,将带传动放在高速级,即可缓冲吸振又能减小传动的尺寸。具体方案见图1-1。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y系列的三相异步电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=2.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.895
Pd=2.682kW
3.电动机转速的选择
nd=(i1’ i2’…in’)nw
则V带传动η1=0.96
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-2查出电动机型号为Y132S-6,其额定功率为3kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=88.19
i=10.89
2.合理分配各级传动比
取V带传动的传动比i1,取i1=2.7,则单级圆柱齿轮减速器的传动比为i2=i/i1= =4.03,
取i2=4
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 低速轴II 滚筒W轴
转速(r/min) 960 384 88.19 88.19
功率(kW) 2.682 2.575 2.471 2.422
转矩(N?m) 26.68 64.04 245.813 262.276
传动比 4 4.356 4.356 1
效率 0.96 0.97 0.99 0.99

传动件设计计算
(1)材料选择以斜齿圆柱齿轮传动方式
小齿轮:材料45钢,调质处理HBS1=230
大齿轮:材料45钢(或者ZG310~570)正火处理,HBS2=190
(2)参数选择
1)齿数,取Z1=22,则Z2=I Z=4.356×22=95.832 取Z2=96
2)齿宽系数, 查表6-6 取

4. 设计带式运输机传动装置

目 录一、 传动方案拟定-------------------------二、 电动机的选择-------------------------三、 各轴运动的总传动比并分配各级传动比---四、 运动参数及动力参数计算----------------五、 V带传动设计---------------------------六、 齿轮传动设计-------------------------七、 轴的设计-----------------------------八、 滚动轴承的选择及校核计算-------------九、 键的校核计算--------------------- 十、 联轴器的选择--------------------------十一、 润滑与密封 ---------------------------十二、 减速器附件的选择及简要说明----------------十三、 箱体主要结构尺寸的计算--------------------十四 参考文献一、传动方案拟定第四个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器1、 工作条件:使用年限5年,每年按300天计算,两班制工作,单向运转,载荷平稳。2、 原始数据:滚筒圆周力F=2.5KN;带速V=1.5m/s;滚筒直径D=300mm。 运动简图 二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.98×0.96=0.859(2)电机所需的工作功率:Pd=FV/1000η总=2500×1.5/(1000×0.859) =4.37KW(3)选用电动机查JB/T9616 1999选用Y132M2-6三相异步电动机,主要参数如下表1-2: 型 号额定功率KW转速r/min电流A效率%功率因数堵转电流额定电流堵转扭矩额定转矩最大转矩额定转矩Y132M2-6 5.5 960 12.6 85.3 0.78 6.5 2.0 2.2三、各轴运动的总传动比并分配各级传动比1、总传动比:工作机的转速 n筒=60×1000V/(πD)=60×1000×1.5/(4.14×300)=95.49r/mini总=n电动/n筒=960/95.49=10.052、分配各级传动比(1) 取i带=2.5(2) ∵i总=i齿×i 带∴i齿=i总/i带=10.05/2.5=4.02 四、运动参数及动力参数计算1、计算各轴转速(r/min)n电=960(r/min) nI=n电/i带=960/2.5=384(r/min)nII=nI/i齿=384/4.02=95.52(r/min)n筒=nII=95.52 (r/min)2、 计算各轴的功率(KW) P电= Pd=4.37KWPI=Pd×η带=4.73×0.96=4.20KW PII=PI×η轴承×η齿轮=4.2×0.99×0.97=4.03KWP筒=PI×η轴承×η联轴器=4.03×0.99×0.98=3.91KW3、 计算各轴转矩T电=9.55Pd/nm=9550×4.73/960=43.47N·mTI=9.55 PI /n1 =9550×4.2/384=104.45N·mTII =9.55 PII /n2=9550×4.03/95.52=402.92N·m T筒=9.55 P筒/n筒=9550×3.91/95.52=390.92 N·m将上述数据列表如下: 轴名参数 电动机I轴II轴滚筒轴转速n(r/min)96038495.5295.52功率p(kw)4.374.204.033.91转矩T(N·m)43.47104.45402.92390.92传动比i2.54.021.00效率η0.960.960.98 五、V带传动设计1、 选择普通V带截型由课本[1]表15-8得:kA=1.2 P电=4.37KWPC=KAP电=1.2×4.37=5.24KW据PC=5.24KW和n电=960r/min由[1]图15-8得:选用A型V带2、 确定小带轮基准直径由课本[1]表15-8,表15-4,表15-6,取dd1=112mm3、 确定大带轮基准直径 dd2=i带=2.5×112=280 mm4、验算带速带速V:V=πdd1n1/(60×1000)=π×112×960/(60×1000) =5.63m/s在5~25m/s范围内,带速合适5、初定中心距a0 0.7(dd1+ dd2)≤ a0 ≤ 2(dd1+ dd2)得 274.4≤a0≤784取a0=530 mm6、确定带的基准长L0=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×530+3.14(112+280)+(280-112)2/(4×530)=1689mm根据课本[1]表15-2选取相近的Ld=1800mm7、确定实际中心距aa≈a0+(Ld-Ld0)/2=530+(1800-1689)/2=585.5mm8、验算小带轮包角α1=180°-57.3° ×(dd2-dd1)/a=180°-57.3°×(280-112)/585.5=163.33°>120°(适用)9、确定带的根数单根V带传递的额定功率.据dd1和n1,查课本[1]表15-7得 P0=1.16KWi≠1时单根V带的额定功率增量.据带型及i查[1]表15-9得 △P0=0.11KW查[1]表15-10,得Kα=0.957;查[1]表15-12得 KL=1.01Z=PC/[(P1+△P1)KαKL]=5.24/[(1.16+0.11) ×0.957×1.01]=4.27 取Z=5根10、计算轴上压力由课本[1]表15-1查得q=0.11kg/m,单根V带的初拉力:F0=500PC/ZV(2.5/Kα-1)+qV2=500x5.24/5x5.63(2.5/0.957-1)+0.11x5.632 =153.55kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×5×153.55sin(163.55°/2)=1519.7N11、计算带轮的宽度BB=(Z-1)e+2f=(5-1)×15+2×10=80 mm六、齿轮传动设计(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度229-286HBW;大齿轮材料也为45钢,正火处理,硬度为169-217HBW;精度等级:运输机是一般机器,速度不高,故选8级精度(2)按齿面接触疲劳强度设计该传动为闭式软齿面,主要失效形式为疲劳点蚀,故按齿面接触疲劳强度设计,再按齿根弯曲疲劳强度校核。设计公式为:d1≥ [(2k TI (u+1)(ZhZe)2/(φ[σH]2)]1/3①载荷系数K 查课本[1]表13-8 K=1.2 ②转矩TI TI=104450N·mm ③解除疲劳许用应力[σH] =σHlim ZN/SH按齿面硬度中间值查[1]图13-32 σHlim1=600Mpa σHlim2=550Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×384×5×300×16=5.53x108N2=N1/i齿=5.53x109 /4.02=1.38×108查[1]课本图13-34中曲线1,得 ZN1=1.05 ZN2=1.1按一般可靠度要求选取安全系数SH=1.0[σH]1=σHlim1ZN1/Shmin=600x1.05/1=630 Mpa[σH]2=σHlim2ZN2/Shmin=550x1.1/1=605Mpa故得:[σH]= 605Mpa④计算小齿轮分度圆直径d1由[1]课本表13-9 按齿轮相对轴承对称布置,取 φd=1.0 ZH=2.5由[1]课本表13-10得ZE=189.8(N/mm2)1/2将上述参数代入下式d1≥ [(2k TI (u+1)(ZHZE)2/φ[σH]2)]1/3=[(2×1.2×104450 × (4.02+1)×(2.5×189.8)2/(1×4.02×6052)]1/3=57.5mm 取d1=60 mm⑤计算圆周速度V= nIπd1/(60×1000)=384×3.14×60/(60×1000)=1.21m/sV<6m/s 故取8级精度合适(3)确定主要参数①齿数 取Z1=24 Z2=Z1×i齿=24×4.02≈96.48=97②模数 m=d1/Z1=60/24=2.5 符合标准模数第一系列③分度圆直径d2=Z2 m=24×2.5=60mm d2=Z2 m=97×2.5=242.5 mm④中心距a=(d1+ d2)/2=(60+242.5)/2=151.25mm⑤齿宽 b=φdd1=1.0×60=60mm 取b2=60mm b1=b2+5 mm=65 mm(4)校核齿根弯曲疲劳强度①齿形因数Yfs 查[1]课本图13-30 Yfs1=4.26 Yfs2=3.97 ②许用弯曲应力[σF] [σF]=σFlim YN/SF 由课本[1]图13-31 按齿面硬度中间值得σFlim1=240Mpa σFlim2 =220Mpa 由课本[1]图13-33 得弯曲疲劳寿命系数YN:YN1=1 YN2=1 按一般可靠性要求,取弯曲疲劳安全系数SF=1 计算得弯曲疲劳许用应力为[σF1]=σFlim1 YN1/SF=240×1/1=240Mpa[σF2]= σFlim2 YN2/SF =220×1/1=220Mpa校核计算 σF1=2kT1YFS1/ (b1md1)=2×1.2×104450×4.26/(60×2.5×60)=118.66Mpa< [σF1]σF2=2kT1YFS2/ (b2md1)=118.66×3.97/4.26=110.58Mpa< [σF2]故轮齿齿根弯曲疲劳强度足够(5)齿轮的几何尺寸计算 齿顶圆直径dada1 =d1+2ha=60+5=65mmda2=d2+ ha=242.5+5=247.5mm 齿全高h h=(2 ha*+c*)m=(2+0.25)×2.5=5.625 mm 齿根高hf=(ha*+c*)m=1.25×2.5=3.125mm 齿顶高ha= ha*m = 1×2.5=2.5mm 齿根圆直径dfdf1=d1-2hf=60-6.25=53.75mmdf2=d2-2hf=242.5-6.25=236.25mm (6)齿轮的结构设计小齿轮采用齿轮轴结构,大齿轮采用锻造毛坯的腹板式结构。大齿轮的有关尺寸计算如下:轴孔直径d=60mm轮毂直径D1=1.6d=60×1.6=96mm轮毂长度L=1.2d=1.2×60=72mm轮缘厚度δ0=(3-4)m=7.5-10mm 取δ0=10mm轮缘内径D2=da2-2h-2δ0=247.5-2×5.625-20=216.25 mm 取D2 =216mm腹板厚度C=(0.2-0.3)b=12-18mm取C=18mm腹板中心孔直径D0=0.5(D1+D2)=0.5(96+216)=156mm腹板孔直径d0=15-25mm 取d0=20mm齿轮倒角取C2七、轴的设计 从动轴设计 1、选择轴的材料 确定许用应力 选轴的材料为45号钢,调质处理。查[1]表19-14可知:σb=600Mpa,查[1]表19-17可知:[σb] -1=55Mpa 2、按扭矩估算轴的最小直径 单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为: d≥A(PⅡ/nⅡ)1/3 查[1]表19-16 A=115 则d≥115×(4.03/95.52)1/3mm=40mm 考虑键槽的影响,故应将轴径增大5%即d=40×1.05=42mm 要选联轴器的转矩Tc Tc=KTⅡ=1.5×402920=6.0438×105N·mm (查[1]表20-1 工况系数K=1.5) 查[2]附录6 选用连轴器型号为YLD10考虑联轴器孔径系列标准 故取d=45mm 3、轴的结构设计 轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。 1)联轴器的选择 联轴器的型号为YLD10联轴器:45×112 (2)确定轴上零件的位置与固定方式 单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置。在齿轮两边。轴外伸端安装联轴器,齿轮靠轴环和挡油环实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠挡油环和端轴承盖实现轴向定位,靠过盈配合实现周向固定,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位。 (3)确定各段轴的直径将估算轴d=45mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=50mm,齿轮和右端轴承从右侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=55mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=60mm。齿轮左端用轴环固定,右端用挡油环定位,轴环直径d5满足齿轮定位的同时,还应满足左侧轴承的安装要求,d5=68mm,根据选定轴承型号确定.左端轴承型号与左端轴承相同,取d6=55mm. (4)选择轴承型号由[2]附表5-1初选深沟球轴承,代号为6211,轴承宽度B=21。 (5)确定轴各段直径和长度由草绘图得Ⅰ段:d1=45mm 长度L1=110mmII段:d2=50mm 长度L2=60mmIII段:d3=55mm 长度L3=43mmⅣ段:d4=60mm 长度L4=70mmⅤ段:d5=68mm 长度L5=6mmⅦ段:d4=55mm 长度L6=35mm由上述轴各段长度可算得轴支承跨距L=133mm4、按弯矩复合强度校核(1)齿轮上作用力的计算 齿轮所受的转矩:T=TⅡ=402.92N·m 齿轮作用力: 圆周力:Ft=2000T/d=2000×402.92/242.5=3323.1N 径向力:Fr=Fttan200=3323.1×tan200=1209.5N(2)因为该轴两轴承对称,所以:LA=LB=66.5mm(3)绘制轴受力简图(如图a)(4)计算支承反力 FHA=FHB=Fr/2=1209.5/2=604.8NFVA=FVB=Ft/2=3323.1/2=1661.5N (5)绘制弯矩图由两边对称,知截面C的弯矩也对称。截面C在水平面弯矩(如图b)为MHC=FHAL/2=604.8×133÷2000=40.22N?m截面C在竖直面上弯矩(如图c)为:MVC=FVAL/2=1661.5×133÷2000=110.49N?m(6)绘制合弯矩图(如图d)MC=(MHC 2+ MVC 2)1/2=(40.222+110.492)1/2=117.58N?m(7)绘制扭矩图(如图e)转矩:T=TⅡ=402.92N·m(8)校核轴的强度转矩产生的扭剪可认为按脉动循环变化,取α=0.6,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[117.582+(0.6×402.92)2]1/2=268.8N·m(9)校核危险截面C所需的直径de=[Me /(0.1[σb] -1)]1/3=[268.8 /(0.1×55)]1/3=36.6mm考虑键槽的影响,故应将轴径增大5%de=36.6×1.05=38.4mm<60mm结论:该轴强度足够。

5. 甯﹀紡杩愯緭鏈虹殑浜岀骇鍦嗘煴榻胯疆鍑忛熷櫒鏄濡備綍璁捐$殑锛

鎽樿
榻胯疆浼犲姩鏄鐜颁唬鏈烘颁腑搴旂敤鏈骞跨殑涓绉嶄紶鍔ㄥ舰寮忋傚畠鏄鐢卞啿杩熼娇杞銆佽酱銆佽酱鎵垮強绠变綋缁勬垚鐨勫噺閫熻呯疆锛岀敤浜庡師鍔ㄦ満鍜屽伐浣滄満鎴栨墽琛屾満鐕冩灒鏋勪箣闂达紝璧峰尮閰嶈浆閫熷拰浼犻掓壄鐭╃殑浣滅敤銆傞娇杞鍑忛熷櫒鐨勭壒鐐规槸鏁堢巼楂樸佸垮懡闀裤佺淮鎶ゆ柟渚匡紝鍥犳ゅ簲鐢ㄥ箍娉涖
鏈璁捐¤茶堪浜嗗甫寮忚繍杈撴満鐨勪紶鍔ㄨ呯疆鈥斺斾簩绾у渾鏌遍娇杞鍑忛熷櫒鐨勮捐¤繃绋嬨傞栧厛杩涜屼簡浼犲姩鏂规堢殑鎷熷畾閫夋嫨V甯﹀拰鍚屾暎娈垫潕杞村紡浜岀骇鍦嗘煴榻胯疆鍑忛熷櫒涓轰紶鍔ㄨ呯疆锛岀劧鍚庤繘琛屽噺閫熷櫒鍜寁甯︾殑璁捐¤$畻锛堢數鍔ㄦ満鐨勯夋嫨銆乂甯﹁捐°侀娇杞浼犲姩璁捐°佽酱鐨勭粨鏋勮捐°侀夋嫨骞堕獙绠楄仈杞村櫒銆侀敭鐨勯夋嫨鍜屾牎鏍稿拰杞存壙鐨勬鼎婊戙佸ぇ榻胯疆鍔犲伐宸ヨ壓缂栧埗绛夊唴瀹癸級杩愮敤AutoCAD杞浠惰繘琛岄娇杞鍑忛熷櫒鐨勪簩缁村钩闈㈣捐★紝瀹屾垚榻胯疆鍑忛熷櫒鐨勪簩缁撮浂浠跺浘缁樺埗鍜岃呴厤鍥剧殑缁樺埗銆
鍏抽敭璇嶏細榻胯疆鍟鍚 杞翠紶鍔 浼犲姩姣 浼犲姩鏁堢巼

6. 机械设计课程设计带式运输机传动装置

机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图

1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器

二. 工作情况:
载荷平稳、单向旋转

三. 原始数据
鼓轮的扭矩T(N·m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2

四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写

五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份

六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写

传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。

电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。

2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW

3.电动机转速的选择
nd=(i1’·i2’…in’)nw
初选为同步转速为1000r/min的电动机

4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求。

计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14

7. 带式输送机传动装置设计

【传动方案拟定】

  1. 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。

  2. 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;

  3. 滚筒直径D=220mm。

【电动机的选择】

  1. 电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。

  2. 确定电动机的功率:
    传动装置的总效率:
    η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
    =0.96×0.992×0.97×0.99×0.95
    =0.86
    电机所需的工作功率:
    Pd=FV/1000η总
    =1700×1.4/1000×0.86
    =2.76KW

  3. 确定电动机转速:
    滚筒轴的工作转速:
    Nw=60×1000V/πD
    =60×1000×1.4/π×220
    =121.5r/min

阅读全文

与带式运输机传动装置的设计nw相关的资料

热点内容
单向阀外面加个方框是什么阀门 浏览:518
机械表怎么认时间教学视频 浏览:728
水管的阀门坏了怎么办 浏览:332
立乾五金制品有限公司招聘信息 浏览:14
临沂五金建筑市场 浏览:254
怒江生活垃圾清洁焚烧设备哪里有 浏览:701
90机械师怎么提升面板 浏览:116
快拆配的什么轴承 浏览:430
滁州市五金批发水泥支撑市场 浏览:343
山东腾飞轴承怎么样 浏览:192
高中实验冷却装置 浏览:639
plum机械键盘如何 浏览:25
天然气阀门吸进去怎么回事 浏览:781
浙江温州那些阀门厂有名 浏览:439
怎么判断制冷剂充注多了 浏览:661
STM什么设备 浏览:630
南京友声称重仪表怎么样 浏览:394
办机械加工厂需要买哪些 浏览:889
浙江正规轴承一般多少钱 浏览:81
机械化农业生产机器多少钱 浏览:716