导航:首页 > 装置知识 > 飞轮储能装置设计初探

飞轮储能装置设计初探

发布时间:2021-01-19 15:09:04

⑴ 以下哪些选项属于飞轮储能系统具有的优点

飞轮储能的优点还是很明显的,飞轮储能本身是物理储能,突破了化学电池的局限,内20年超长容使用寿命,符合可持续发展战略;泓慧能源飞轮储能转换效率是达到95%以上,更节能环保;宽温度范围,适应各种恶劣环境等优势,主要价值体现在,节能、储能和电能质量改善~

⑵ 飞轮储能的应用有哪些

飞轮储能根据不同方式有很多应用,应用最广泛的是直接储存动能并应用动能,比如单冲程专柴油机的飞轮属。
目前尖端研究的方向是飞轮储存功能并转化为电能应用。
飞轮储能装置与超级电容,电池等储能装置比较,其能量密度最大,但是功率密度比介于二者之间。超级电容的能量密度最小,功率密度最大。电池的能量密度二者之间,功率密度最小。同时,飞轮是纯物理储能,稳定可靠,对使用环境(温度,压力等)的要求低。最后,他是三者中最昂贵的储能方式。
根据这个比较,他比较适合于恶劣环境,价格不敏感,功率需求一般,同时轻量化储能装置的需要。
目前这种应用主要在太空飞行器上,比容国际空间站的飞轮电池,我国有储能,陀螺定位二用飞轮。还有美国设计了飞轮储能UPS和应急供电车。

⑶ 飞轮储能装置未得到广泛应用的原因是什么

(1)飞轮本身的能耗主要来自轴承摩擦和空气阻力。

(2)常规的飞轮是由钢(或铸铁)制成的

⑷ 清洁能源的飞轮储能

飞轮储能是一种利用高速旋转的飞轮存储能量的技术。在储能阶段,通过版电动机拖动飞轮,权使飞轮加速到一定的转速,将电能转化为动能;在能量释放阶段,飞轮减速带动电动机作发电机运行,将动能转化为电能。典型的飞轮储能装置,一般包括高速旋转的飞轮、封闭壳体和轴承系统、电源转换和控制系统等。
飞轮储能具有储能密度较高、充放电次数与充放电深度无关、能量转换效率高、可靠性高、易维护、使用环境条件要求低、无污染等优点。但大规模的飞轮储能系统的研制在高速低损耗轴承、发电/电动机、散热和真空等技术上还有难度。
目前飞轮储能技术主要有两个分支,一是以接触式机械轴承为代表的大容量飞轮储能技术,其主要特点是储存动能、释放功率大,一般用于短时大功率放电和电力调峰场合。二是以磁悬浮轴承为代表的中小容量飞轮储能技术,其主要特点是结构紧凑、效率更高,一般用作飞轮电池、不间断电源等。

⑸ 航母用的飞轮储能装置经过模拟船舶摇摆试验吗

电磁弹射器的结构美军研发的电磁弹射器由三大主要部件构成,分别是线性同步电动机、盘式交流发电机和大功率数字循环变频器。线性同步电动机是电磁弹射器的主体,它是20世纪80年代末期研究的电磁线圈炮的放大版。20世纪80年代,美国太空总署(NASA)桑地亚中心一直在进行电磁线圈炮的概念性研发工作,他们曾尝试修建一个长700米、仰角30度、口径500毫米、采用12级、每级3000个电磁线圈的巨炮,可以将2吨重的火箭加速到4000~5000米/秒,推送到200千米以上的高度。NASA预计使用这个系统发射小型卫星或者为未来兴建大型近地空间站提供廉价的物资运送方式,其发射成本只有火箭的1/2000。在早期概念性研究阶段,NASA发展了一系列解决瞬间能源的技术方案,这些都成为电磁弹射的技术基础。美国EMALS中的线性同步电动机采用了单机驱动的方式,只是用一台直线电机直接驱动,和以前的双气缸蒸汽弹射并联输出不同。线性电动机长95.36米,末段有7.6米的减速缓冲区,整个弹射器长103米。弹射器中心的动子滑动组,由190块环形的第三代超级稀土钕铁硼永磁体构成,每一块永磁体间有细密的钛合金制造的承力骨架和散热器管路,中心布置有强力散热器。虽然滑组在工作中其本身只有电感涡流和磁涡流效益产生不多的热量,但是其位置处于中心地带,散热条件不好,且永磁体对温度敏感,高过一定温度就会失效。滑组和定子线圈间保持均匀的6.35毫米间隙,相互间不发生摩擦,依靠滑车和滑车轨道之间的滑轮保持这个间隙不变。滑动组上因为没有需要使用电的装置,所以结构比较简单,且无摩擦设备,需要检修和维修的工作量极少。弹射中,每一块定子磁体将只承受2.7千克/平方厘米的应力。由于滑动组采用了固定的高磁永磁体,所以定子被设计成电磁,形状为马鞍形,左右将滑动组包围,上部有和标准蒸汽弹射器相同大小的35.6毫米的开缝。定子采用模块化设计,共有298个模块,分为左右两组,每个模块由宽640毫米、高686毫米、厚76毫米的片状子模块构成。一个模块上有24个槽,每个槽用3相6线圈重叠绕制而成,这样每一个模块就有8个极,磁极距为80毫米。槽间采用高绝缘的G10材料制成,每个槽都用环氧树脂浇铸,将其粘接成一个无槽的整体模块。通过数字化定位的霍尔元件,定子模块感应滑车上的磁强度信号,当滑车接近时,模块被充电,离开后断开,这样不需要对整个路径上的线圈充电,可以大大节省能源。每一个模块的阻抗很小,只有0.67毫欧,它的设计效率为70%,一次弹射中消耗在定子中的能量有13.3兆瓦,铜线圈的温度会被迅速加热到118.2℃,加之受环境温度影响,这一温度可能会高达155℃。这将超过滑车永磁体的极限推辞温度,因此需要强制冷却,目前的冷却方案是定子模块间采用铝制冷却板,板上有细小的不锈钢冷却管,可以在弹射器循环弹射的45秒重复时间内将线圈温度从155℃降低到75℃。新设计的盘式交流发电机重约8.7吨,如果不算附加的安全壳体设备,其重量只有6.9吨。盘式交流发电机的转子绕水平轴旋转,重约5177千克,使用镍铬铁的铸件经热处理而成,上面用镍镉钛合金箍固定2对扇形轴心磁场的钕铁硼永磁体。镍镉钛合金箍具有很大的弹性预应力,可确保固定高速旋转中的磁体。转子旋转速度为6400转/分,一个转子可存储121兆焦的能量,储能密度比蒸汽弹射器的储气罐高一倍多。一部弹射器由4台盘式交流发电机供电,安装时一般采用成对布置,转子反向旋转,可减少因高速旋转飞轮带来的陀螺效应和单项扭矩。弹射一次仅使用每台发电机所储备能量的22.5%,飞轮转盘的转动速度从6400转/分下降到5200转/分,能量消耗可以在弹射循环的45秒间歇中从主动力输出中获得补充。四蓄能发电机结构允许弹射器在其中一台发电机没有工作的情况下正常使用。由于航母装备4部弹射器,每两部弹射器的动力组会安装到一起,集中管理并允许其动力交联,因而出现6台以上发动机故障而影响弹射的事故每300年才会重复一次。盘式交流发电机采用双定子设计,分别处于盘的两侧,每一个定子由280个线圈绕组的放射性槽构成,槽间是支撑结构和液体冷却板。采用双定子结构,每台发电机的输出电源是6相的,最大输出电压1700伏,峰值电流高达6400安,输出的匹配载荷为8.16万千瓦,输出为2133~1735赫兹的变频交流电。盘式储能交流发电机的设计效率为89.3%,这已经通过缩比模型进行了验证,也就是说每一次弹射将会有127千瓦的能量以热量形式消耗掉。发电机定子线圈的电阻仅有8.6毫欧,这么大的功率会迅速将定子线圈加温数网络,所以设计了定子强制冷却。冷却板布置在定子的外侧,铸铝板上安装不锈钢管,内充WEG混和液,采用流量为151升/分的泵强制散热。根据1/2模型测试可知,上述设计可以保证45秒循环内铜芯温度稳定在84℃,冷却板表面温度61℃。真正最为关键、技术难度最大的部件是高功率循环变频器。这个技术是电磁弹射器的真正技术瓶颈。EMALS现在正处于关键性部件工程验证阶段,循环变频器仅仅是完成了计算机模拟,还没有开始发展工程样机。从设计上看,循环变频器是通过串联或者并联多路桥式电路来获得叠加和控制功率输出的,它不使用开关和串联电容器,省略了电流分享电抗器,实现了完全数字化管理的无电弧电能源变频管理输出。其每一相的输出能力为0~1520伏,峰值电流6400安,可变化频率为0~4.644赫兹。循环变频器设计非常复杂,它不仅需要将4台交流发电机的24相输入电能准确地将正确的相位输入到正确的模块端口,还必须准确的管理298个直线电机的电磁模块,在滑块组运行到来前0.35秒内让电磁体充电,而在滑组经过后0.2秒之内停止送电并将电能输送到下一个模块。循环变频器工作时间虽然不长,每次弹射仅需工作10~15秒,但热耗散非常大,一组循环变频器需要528千瓦的冷却功率,冷却剂是去离子水,流量高达1363升/分,注入温度35℃的情况下可确保系统温度低于84℃。目前,美国对这一核心部件的保密工作非常重视,除了基本原理外,几乎没有任何的模型结构、工程图片披露。2003年,美国海军和通用电气公司签订合同,要求花费7年时间完成这一部件的实体工作。到目前为止,美国在海军航母电磁弹射器上花费了28年的时间和32亿美金的经费,预计将在2014年服役的CVN-78航母上正式使用这一设备。从设计和工程实现的关键性部件的性能来看,成功地按时间表投入使用的可能性非常大。目前的主要技术问题出在线形同步电机上,18米所必模型所显示的效率仅为58%,而50米1/2模型显示的效率仅有63.2%,这证明能量利用率还不足,功率也成倍增加,以目前的设计是不能完成散热需求的。另外一个问题在于军用系统的防火要求,永磁体对温度比较敏感,存在退磁临界温度,一般在100~200℃之间,航母的火工品较多,火灾事故并不罕见,如何保证磁体的磁强度不受大的影响还是一个很棘手的问题。电磁弹射器功率巨大,其磁场强度也非常可怕,现代战斗机上复杂的电磁设备都非常敏感,容易受到干扰,因此需要特别加强电磁弹射系统的磁屏蔽工作。由于弹射器的磁体是开槽形的,和蒸汽弹射器的蒸汽泄露一样会有很强的磁泄露,所以目前设计了复杂的磁封闭条,在离飞行甲板15厘米的高度就能将磁场强度降低到正常环境的水准。相关的电磁干扰和兼容性问题将在2012年进行专门的适应性试验。美国预期电磁弹射器达到如下指标:起飞速度:28~103米/秒;最大牵引力和平均牵引力之比:1.07;最大弹射能量:122兆焦;最短起飞循环时间:45秒;重量:225吨;体积:425立方米;补充能源需求:6350千瓦。

⑹ 飞轮储能系统

超导磁悬浮飞轮储能的基本原理和发展现状
詹三一,唐跃进,李敬东,程时杰,潘垣
普通的飞轮储能由于机械轴承的摩擦 ,难以实现高效、长时间储能。利用超导体可以实现低损耗磁悬浮飞轮储能。文中在介绍飞轮储能和超导磁悬浮轴承原理的基础上 ,分析了超导磁悬浮飞轮储能的基本特性和发展现状 ,同时阐述了超导磁悬浮飞轮储能的主要技术课题。
【作者单位】:华中科技大学超导电力科学技术研究与发展中心!武汉430074(詹三一;唐跃进;李敬东;程时杰);华中科技大学超导电力科学技术研究与发展(潘垣)
【关键词】:超导磁悬浮轴承;飞轮储能;迈斯纳效应
【分类号】:TM917
【DOI】:cnki:ISSN:1000-1026.0.2001-16-016
【正文快照】:
0引言超导技术的进步为电能储藏开辟了一条新的技术途径。超导储能装置具有储能密度大、效率高、响应快的优点 ,而且也可以以小型化、分散储能的形式应用 ,正在受到人们越来越大的关注[1,2 ] 。超导储能技术有超导磁储能 [3 ]和磁悬浮飞轮储能 [4 ]两种 ,前者将电能以磁场的形式储藏 ,后者将电能以机械能的形式储藏。与超导磁储能装置相比较 ,超导磁悬浮飞轮储能密度更高、泄漏磁场较小。而且 ,超导磁储能的效率、单位容量成本与储存能量大小密切相关 ,储存能量太小则经济效益较差。在这方面 ,超导磁悬浮飞轮储能的效率、单位容量成本与储…

http://www.cnki.com.cn/Article/CJFD2001-DLXT200116016.htm
请付费

⑺ 飞轮怎么储能,工作原理是什么

当机器转速增高时,飞轮的动能增加,把能量贮蓄起来;当机器转速降低时,飞轮动能减少,把能量释放出来。飞轮可以用来减少机械运转过程的速度波动。

⑻ 飞轮储能是一种利用高速旋转的飞轮存储能量的技术。在储

能阶来段,通过电动机拖源动飞轮,使飞轮加速到一定的转速,将电能转化为动能;在能量释放阶段,飞轮减速带动电动机作发电机运行,将动能转化为电能。典型的飞轮储能装置,一般包括高速旋转的飞轮、封闭壳体和轴承系统、电源转换和控制系统等

⑼ 飞轮储能的组成结构

飞轮储抄能根据不同方式有很袭多应用,应用最广泛的是直接储存动能并应用动能,比如单冲程柴油机的飞轮。
目前尖端研究的方向是飞轮储存功能并转化为电能应用。
飞轮储能装置与超级电容,电池等储能装置比较,其能量密度最大,但是功率密度比介于二者之间。超级电容的能量密度最小,功率密度最大。电池的能量密度二者之间,功率密度最小。同时,飞轮是纯物理储能,稳定可靠,对使用环境(温度,压力等)的要求低。最后,他是三者中最昂贵的储能方式。
根据这个比较,他比较适合于恶劣环境,价格不敏感,功率需求一般,同时轻量化储能装置的需要。
目前这种应用主要在太空飞行器上,比容国际空间站的飞轮电池,我国有储能,陀螺定位二用飞轮。还有美国设计了飞轮储能ups和应急供电车。

阅读全文

与飞轮储能装置设计初探相关的资料

热点内容
暖气管道的阀门的安装方法 浏览:907
网络安全设备怎么工作总结 浏览:42
上海良工阀门厂南京销售 浏览:578
轴承钻头怎么做 浏览:983
铸造暖气片堵了怎么办 浏览:51
天然气阀门打开方向 浏览:760
爱奇艺怎么解除登录设备登录 浏览:965
初中物理实验工具箱 浏览:175
超声波不稳定怎么回事 浏览:271
源泉工具箱命令丢失 浏览:475
综合单价中的机械费用包含什么 浏览:28
冷藏车用什么制冷液 浏览:903
燃气阀门井巡检周期 浏览:931
主轴轴承温度一般多少度 浏览:581
现代灭蚊材料和灭蚊器材有哪些 浏览:674
自动旋转装置炉石 浏览:91
工具箱标准 浏览:289
怎么查看家用云视通设备号 浏览:808
霸州市瀚洁五金制品厂 浏览:419
化工厂设备员是干什么的 浏览:465