㈠ 自动配料系统的作用
提高生产效率,缩短生产周期
㈡ 快速成型的工作原理
RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是分层制造、逐层叠加。这种工艺可以形象地叫做增长法或加法。
每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个积分的过程。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有UV、SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下: Stereo lithography Appearance的缩写,即立体光固化成型法.
用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体.
SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。其工艺过程是,首先通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;激光光束通过 数控装置控制的扫描器,按设计的扫描路径 照射到液态光敏树脂表面 , 使表面特定区域内的一层树脂固化后, 当一层加工完毕后,就生成零件的一个截面;然后 升降台下降一定距离 , 固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型。将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。
SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。
3D Systems 推出的Viper Pro SLA system
SLA 的优势
⒈ 光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验.
⒉ 由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具.
⒊可以加工结构外形复杂或使用传统手段难于成型的原型和模具.
⒋ 使CAD数字模型直观化,降低错误修复的成本.
⒌ 为实验提供试样,可以对计算机仿真计算的结果进行验证与校核.
⒍ 可联机操作,可远程控制,利于生产的自动化.
SLA 的缺憾
⒈ SLA系统造价高昂,使用和维护成本过高.
⒉ SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻.
⒊ 成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存.
⒋ 预处理软件与驱动软件运算量大,与加工效果关联性太高.
⒌ 软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉.
⒍ 立体光固化成型技术被单一公司所垄断.
SLA 的发展趋势与前景
立体光固化成型法的的发展趋势是高速化,节能环保与微型化.
不断提高的加工精度使之有最先可能在生物,医药,微电子等领域大有作为. 选择性激光烧结(以下简称SLS)技术最初是由美国德克萨斯大学奥斯汀分校的Carl ckard于1989年在其硕士论文中提出的。后美国DTM公司于1992年推出了该工艺的商业化生产设备Sinter Sation。几十年来,奥斯汀分校和DTM公司在SLS领域做了大量的研究工作,在设备研制和工艺、材料开发上取得了丰硕成果。德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。
国内也有多家单位进行SLS的相关研究工作,如西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心,华中科技大学、南京航空航天大学、西北工业大学、中北大学和北京隆源自动成型有限公司等,也取得了许多重大成果,如南京航空航天大学研制的RAP-I型激光烧结快速成型系统、北京隆源自动成型有限公司开发的AFS一300激光快速成型的商品化设备。
选择性激光烧结是采用激光有选择地分层烧结固体粉末,并使烧结成型的固化层层层叠加生成所需形状的零件。其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。SLS技术的快速成型系统工作原理见图1。
整个工艺装置由粉末缸和成型缸组成,工作时粉末缸活塞(送粉活塞)上升,由铺粉辊将粉末在成型缸活塞(工作活塞)上均匀铺上一层,计算机根据原型的切片模型控制激光束的二维扫描轨迹,有选择地烧结固体粉末材料以形成零件的一个层面。粉末完成一层后,工作活塞下降一个层厚,铺粉系统铺上新粉.控制激光束再扫描烧结新层。如此循环往复,层层叠加,直到三维零件成型。最后,将未烧结的粉末回收到粉末缸中,并取出成型件。对于金属粉末激光烧结,在烧结之前,整个工作台被加热至一定温度,可减少成型中的热变形,并利于层与层之间的结合。
与其它快速成型(RP)方法相比,SLS最突出的优点在于它所使用的成型材料十分广泛。从理论上说,任何加热后能够形成原子间粘结的粉末材料都可以作为SLS的成型材料。可成功进行SLS成型加工的材料有石蜡、高分子、金属、陶瓷粉末和它们的复合粉末材料。由于SLS成型材料品种多、用料节省、成型件性能分布广泛、适合多种用途以及SLS无需设计和制造复杂的支撑系统,所以SLS的应用越来越广泛。
SLS技术的金属粉末烧结方法
3.1金属粉末和粘结剂混合烧结
首先将金属粉末和某种粘结剂按一定比例混合均匀,用激光束对混合粉末进行选择性扫描,激光的作用使混合粉末中的粘结剂熔化并将金属粉末粘结在一起,形成金属零件的坯体。再将金属零件坯体进行适当的后处理,如进行二次烧结来进一步提高金属零件的强度和其它力学性能。这种工艺方法较为成熟,已经能够制造出金属零件,并在实际中得到使用。南京航空航天大学用金属粉末作基体材料(铁粉),加人适量的枯结剂,烧结成形得到原型件,然后进行后续处理,包括烧失粘结剂、高温焙烧、金属熔渗(如渗铜)等工序,最终制造出电火花加工电极(见图2)。并用此电极在电火花机床上加工出三维模具型腔(见图3)。
3.2金属粉末激光烧结
激光直接烧结金属粉末制造零件工艺还不十分成熟,研究较多的是两种金属粉末混合烧结,其中一种熔点较低,另一种较高。激光烧结将低熔点的粉末熔化,熔化的金属将高熔点金属粉末粘结在一起。由于烧结好的零件强度较低,需要经过后处理才能达到较高的强度。美国Texas大学Austin分校进行了没有聚合物粘结剂的金属粉末如CuSn NiSn青铜镍粉复合粉末的SLS成形研究,并成功地制造出金属零件。他们对单一金属粉末激光烧结成形进行了研究,成功地制造了用于F1战斗机和AIM9导弹的工NCONEL625超合金和Ti6A 14合金的金属零件。美国航空材料公司已成功研究开发了先进的钦合金构件的激光快速成形技术。中国科学院金属所和西安交通大学等单位正致力于高熔点金属的激光快速成形研究,南京航空航天大学也在这方面进行了研究,用Ni基合金混铜粉进行烧结成形的试验,成功地制造出具有较大角度的倒锥形状的金属零件(见图4)。
3.3金属粉末压坯烧结
金属粉末压坯烧结是将高低熔点的两种金属粉末预压成薄片坯料,用适当的工艺参数进行激光烧结,低熔点的金属熔化,流人到高熔点的颗粒孔隙之间,使得高熔点的粉末颗粒重新排列,得到致密度很高的试样。吉林大学郭作兴等用此方法对FeCu,Fe C等合金进行试验研究,发现压坯激光烧结具有与常规烧结完全不同的致密化现象,激光烧结后的组织随冷却方式而异,空冷得到细珠光体,淬火后得到马氏体和粒状。
4 SLS技术金属粉末成型存在的问题
SLS技术是非常年轻的一个制造领域,在许多方面还不够完善,如制造的三维零件普遍存在强度不高、精度较低及表面质量较差等问题。SLS工艺过程中涉及到很多参数(如材料的物理与化学性质、激光参数和烧结工艺参数等),这些参数影响着烧结过程、成型精度和质量。零件在成型过程中,由于各种材料因素、工艺因素等的影响,会使烧结件产生各种冶金缺陷(如裂纹、变形、气孔、组织不均匀等)。
4.1粉末材料的影响
粉末材料的物理特性,如粉末粒度、密度、热膨胀系数以及流动性等对零件中缺陷形成具有重要的影响。粉末粒度和密度不仅影响成型件中缺陷的形成,还对成型件的精度和粗糙度有着显著的影响。粉末的膨胀和凝固机制对烧结过程的影响可导致成型件孔隙增加和抗拉强度降低。
4.2工艺参数的影响
激光和烧结工艺参数,如激光功率、扫描速度和方向及间距、烧结温度、烧结时间以及层厚度等对层与层之间的粘接、烧结体的收缩变形、翘曲变形甚至开裂都会产生影响。上述各种参数在成型过程中往往是相互影响的,如Yong Ak Song等研究表明降低扫描速度和扫描间距或增大激光功率可减小表面粗糙度,但扫描间距的减小会导致翘曲趋向增大。
因此,在进行最优化设计时就需要从总体上考虑各参数的优化,以得到对成型件质量的改善最为有效的参数组。制造出来的零件普遍存在着致密度、强度及精度较低、机械性能和热学性能不能满足使用要求等一些问题。这些成型件不能作为功能性零件直接使用,需要进行后处理(如热等静压HIP、液相烧结LPS、高温烧结及熔浸)后才能投人实际使用。此外,还需注意的是,由于金属粉末的SLS温度较高,为了防止金属粉末氧化,烧结时必须将金属粉末封闭在充有保护气体的容器中。
5 总结与展望
快速成型技术中,金属粉末SLS技术是人们研究的一个热点。实现使用高熔点金属直接烧结成型零件,对用传统切削加工方法难以制造出高强度零件,对快速成型技术更广泛的应用具有特别重要的意义。展望未来,SLS形技术在金属材料领域中研究方向应该是单元体系金属零件烧结成型,多元合金材料零件的烧结成型,先进金属材料如金属纳米材料,非晶态金属合金等的激光烧结成型等,尤其适合于硬质合金材料微型元件的成型。此外,根据零件的具体功能及经济要求来烧结形成具有功能梯度和结构梯度的零件。我们相信,随着人们对激光烧结金属粉末成型机理的掌握,对各种金属材料最佳烧结参数的获得,以及专用的快速成型材料的出现,SLS技术的研究和引用必将进入一个新的境界。 分层实体制造(LOM——Laminated Object Manufacturing)法,LOM又称层叠法成形,它以片材(如纸片、塑料薄膜或复合材料)为原材料,其成形原理如图所示,激光切割系统按照计算机提取的横截面轮廓线数据,将背面涂有热熔胶的纸用激光切割出工件的内外轮廓。切割完一层后,送料机构将新的一层纸叠加上去,利用热粘压装置将已切割层粘合在一起,然后再进行切割,这样一层层地切割、粘合,最终成为三维工件。LOM常用材料是纸、金属箔、塑料膜、陶瓷膜等,此方法除了可以制造模具、模型外,还可以直接制造结构件或功能件。该方法的特点是原材料价格便宜、成本低。
成形材料:涂敷有热敏胶的纤维纸;
制件性能:相当于高级木材;
主要用途:快速制造新产品样件、模型或铸造用木模。 熔积成型(FDM——Fused Deposition Modeling)法,该方法使用丝状材料(石蜡、金属、塑料、低熔点合金丝)为原料,利用电加热方式将丝材加热至略高于熔化温度(约比熔点高 1℃),在计算机的控制下,喷头作x-y平面运动,将熔融的材料涂覆在工作台上,冷却后形成工件的一层截面,一层成形后,喷头上移一层高度,进行下一层涂覆,这样逐层堆积形成三维工件。该方法污染小,材料可以回收,用于中、小型工件的成形。下图为FDM成形原理图。
成形材料:固体丝状工程塑料;
制件性能:相当于工程塑料或蜡模;
主要用途:塑料件、铸造用蜡模、样件或模型。
特点:1、优点:(1)操作环境干净,安全,在办公室课进行;(2)工艺干净、简单、易于操作且不产生垃圾;(3)尺寸精度高,表面质量好,易于装配,可快速构建瓶状或中空零件;(4)原材料以卷轴丝的形式提供,易于搬运和金额快速更换;(5)原料价格便宜;(6)材料利用率高;(7)可选用的材料较多,如染色的ABS、PLA和医用ABD、PC、PPSF、人造橡胶、铸造用蜡。
2、缺点:(1)精度较低,难以构建结构复杂的零件;(2)与截面垂直方向的强度小;(3)成型速度相对较慢,不适合构建大型零件。
㈢ 挤出机都有哪些部分构成
在挤出机中,一般情况下,最基本和最通用的是单螺杆挤出机。其主要包括:传动、加料装置、料筒、螺杆、机头和口模等六个部分。
一、传动部分
传动部分通常由电动机,减速箱和轴承等组成。在挤出的过程中,螺杆转速必须稳定,不能随着螺杆负荷的变化而变化,这样才能保持所得制品的质量均匀一致。但是在不同的场合下又要要求螺杆可以变速,以达到一台设备可以挤出不同塑料或不同制品的要求。因此,本部分一般采用交流整流子电动机、直流电动机等装置,以达到无级变速,一般螺杆转速为10~100转/分。
传动系统的作用是驱动螺杆,供给螺杆在挤出过程中所需要的力矩和转速,通常由电动机、减速器和轴承等组成。而在结构基本相同的前提下,减速机的制造成本大致与其外形尺寸及重量成正比。因为减速机的外形和重量大,意味着制造时消耗的材料多,另所使用的轴承也比较大,使制造成本增加。
同样螺杆直径的挤出机,高速高效的挤出机比常规的挤出机所消耗的能量多,电机功率加大一倍,减速机的机座号相应加大是必须的。但高的螺杆速度,意味着低的减速比。同样大小的减速机,低减速比的与大减速比的相比,齿轮模数增大,减速机承受负荷的能力也增大。因此减速机的体积重量的增大,不是与电机功率的增大成线性比例的。如果用挤出量做分母,除以减速机重量,高速高效的挤出机得数小,普通挤出机得数大。以单位产量计,高速高效挤出机的电机功率小及减速机重量小,意味着高速高效挤出机的单位产量机器制造成本比普通挤出机低。
二、加料装置
供料一般大多采用粒料,但也可以采用带状料或者粉料。装料设备通常都使用锥形加料斗,其容积要求至少能提供一个小时的用量。料斗底部有截断装置,以便调整和切断料流,在料斗的侧面装有视孔和标定计量的装置。有些料斗还可能带有防止原料从空气中吸收水分的减压装置或者加热装置,或者有些料筒还自带搅拌器,能为其自动上料或加料。
1、料斗
料斗一般做成对称形式。在料斗的侧面开有视窗,以观察料位及上料情况,料斗的底部有开合门,以停止和调节加料量。料斗上方加盖子,防止灰尘、湿气及杂质落入。在选择料斗材料时,最好用轻便、耐腐蚀和易加工材料,一般多用铝板和不锈钢板。料斗的容积要视挤出机的规格大小和上料方式而定。一般为挤出机1~1.5h的挤出量。
2、上料
上料方式有人工上料和自动上料两种。自动上料主要有弹簧上料、鼓风上料、真空上料、运输带传送上料等形式。一般情况下,小型挤出机用人工上料,大型挤出机用自动上料。
3、加料方式分类
①重力加料:
原理——物料依靠自身的重量进入料筒,包括人工上料、弹簧上料、鼓风上料。
特点——结构简单,成本低。但容易造成进料不均匀,从而影响制件的质量。它只适用于小规格的挤出机。
②强制加料:
原理——在料斗中装上能对物料施加外压力的装置,强制物料进入挤出机料筒中。
特点——能克服“架桥”现象,使加料均匀。加料螺旋由挤出机螺杆通过传动链驱动,使其转速与螺杆转速相适应。能在加料口堵塞时启动过载保护装置,从而避免了加料装置的损坏。
三、料筒
一般为一个金属料桶,为合金钢或者内衬为合金钢的复合钢管制成。其基本特点为耐温耐压强度较高,坚固耐磨耐腐蚀。一般料筒的长度为其直径的15~30倍,其长度以使物料得到充分加热和塑化均匀为原则。料筒应该有其足够的厚度与刚度。内部应该光滑,但是有些料筒刻有各种沟槽,以增大与塑料的摩擦力。在料筒外部附有电阻、电感以及其他方式加热的电热器、温度自控装置及冷却系统。
1、料筒在结构上存在着三种形式:
(1)整体式料筒
加工方法——在整体材料上加工出来。
优点——容易保证较高的制造精度和装配精度,可以简化装配工作,料筒受热均匀,应用较多。
缺点——由于料筒长度大,加工要求较高,对加工设备的要求也很严格。料筒内表面磨损后难以修复。
(2)组合料简
加工方法——将料筒分几段加工,然后各段用法兰或其他形式连接起来。
优点——加工简单,便于改变长径比,多用于需要改变螺杆长径比的情况。
缺点——对加工精度要求很高,由于分段多,难以保证各段的同轴度,法兰连接处破坏了料筒加热的均匀性,增加了热量损失,加热冷却系统的设置和维修也较困难。
(3)双金属料筒
加工方法——在一般碳素钢或铸钢的基体内部镶或铸一层合金钢材料。它既能满足料筒对材质的要求,又能节省贵重金属材料。
①衬套式料筒:料筒内配上可更换的合金钢衬套。节省贵重金属,衬套可更换,提高了料筒的使用寿命。但其设计、制造和装配都较复杂。
②浇铸式料筒:在料筒内壁上离心浇铸一层大约2mm厚的合金,然后用研磨法得到所需要的料筒内径尺寸。合金层与料筒的基体结合得很好,且沿料筒轴向长度上的结合较均匀,既没有剥落的倾向,又不会开裂,还有极好的滑动性能,耐磨性高,使用寿命长。
(4)IKV料筒
1)料筒加料段内壁开设纵向沟槽
为了提高固体输送率,由固体输送理论知,一种方法就是增加料筒表面的摩擦系数,还有一种方法就是增加加料口处的物料通过垂直于螺杆轴线的横截面的面积。在料筒加料段内壁开设纵向沟槽和将加料段靠近加料口处的一段料筒内壁做成锥形就是这两种方法的具体化。
2)强制冷却加料段料筒
为了提高固体输送量,还有一种方法。就是冷却加料段料筒,目的是使被输送的物料的温度保持在软化点或熔点以下,避免熔膜出现,以保持物料的固体摩擦性质。
采用上述方法后,输送效率由0.3提高到0.6,而且挤出量对机头压力变化的敏感性较小。
四、螺杆
螺杆是挤出机的心脏,是挤出机的关键部件,螺杆的性能好坏,决定了一台挤出机的生产率、塑化质量、填加物的分散性、熔体温度、动力消耗等。是挤出机最重要的部件,它可以直接影响到挤出机的应用范围和生产效率。通过螺杆的转动对塑料产生极压的作用,塑料在料筒中才可以发生移动、增压以及从摩擦中获取部分热量,塑料在料筒的中的移动过程中获得混合和塑化,黏流态的熔体在被挤压而流经口模时,获得所需的形状而成型。与料筒一样,螺杆也是用高强度、耐热和耐腐蚀的合金制备而成。
由于塑料的种类很多,它们的性质也各不相同。因此在实际操作中,为了适应不同的塑料加工需要,所需的螺杆种类不同,结构也有各有差别。以便能最大效率的对塑料产生最大化运输、挤压、混合和塑化作用。图为几种较常见的螺杆。
表示螺杆特征的基本参数包括以下几点:直径、长径比、压缩比、螺距、螺槽深度、螺旋角、螺杆和料筒的间隙等。
最常见的螺杆直径D大约为45~150毫米。螺杆直径增大,挤出机的加工能力也相应提高,挤出机的生产率与螺杆直径D的平方呈正比。螺杆工作部分有效长度与直径之比(简称长径比,表示为L/D)通常为18~25。L/D大,能改善物料温度分布,有利于塑料的混合和塑化,并能减少漏流和逆流。提高挤出机的生产能力,L/D大的螺杆适应性较强,能用于多种塑料的挤出;但L/D过大时,会使塑科受热时间增长而降解,同时因螺杆自重增加,自由端挠曲下垂,容易引起料简与螺杆间擦伤,并使制造加工困难;增大了挤出机的功率消耗。过短的螺杆,容易引起混炼的塑化不良。
料筒内径与螺杆直径差的一半称间隙δ,它能影响挤出机的生产能力,随δ的增大,生产率降低.通常控制δ在0.1一0.6毫米左右为宜。δ小,物料受到的剪切作用较大,有利于塑化,但δ过小,强烈的剪切作用容易引起物料出现热机械降解,同时易使螺杆被抱住或与料筒壁摩擦,而且,δ太小时,物料的漏琉和逆流几乎没有,在一定程度上影响熔体的混合。
螺旋角Φ是螺纹与螺杆横断面的夹角,随Φ增大,挤出机的生产能力提高,但对塑料产生的剪切作用和挤压力减小,通常螺旋角介于10°到30°之间,沿螺杆长度的变化方向而改变,常采用等距螺杆,取螺距等于直径,Φ的值约为17°41′
压缩比越大,塑料收到的挤压比也就越大。螺槽浅时,能对塑料产生较高的剪切速率,有利于料筒壁和物料间的传热,物料混合和塑化效率越高,反而生产率会降低;反之,螺槽深时。情况刚好相反。因此,热敏性材料(如聚氯乙烯)宜用深螺槽螺杆;而熔体粘度低和热稳定性较高的塑料(如聚酰胺),宜用浅螺槽螺杆。
1、螺杆的分段
物料沿螺杆前移时,经历着温度、压力、粘度等的变化,这种变化在螺杆全长范围内是不相同的,根据物料的变化特征可将螺杆分为加(送)料段、压缩段和均化段。
①、塑料及塑料三态
塑料有热固性和热塑性二大类,热固性塑料成型固化后,不能再加热熔融成型。而热塑性塑料成型后的制品可再加热熔融成型其它制品。
热塑性塑料随着温度的改变,产生玻璃态、高弹态和粘流态三态变化,随温度重复变动,三态产生重复变化。
a、三态中聚合物熔体不同的特征:
玻璃态——塑料呈现为刚硬固体;热运动能小,分子间力大,形变主要由键角变形所贡献;除去外力后形变瞬时恢复,属于普弹形变。
高弹态——塑料呈现为类橡胶物质;形变由链段取向引起大分子构象舒展作出的贡献,形变值大;除去外力后形变可恢复但有时间依赖性,属于高弹形变。
粘流态——塑料呈现为高粘性熔体;热能进一步激化了链状分子的相对滑移运动;形变不可逆,属于塑性形变。
b、塑料加工与塑料三态:
塑料玻璃态时可切削加工。高弹态时可拉伸加工,如拉丝纺织、挤管、吹塑和热成型等。粘流态时可涂复、滚塑和注塑等加工。
当温度高于粘流态时,塑料就会产生热分解,当温度低于玻璃态时塑料就会产生脆化。当塑料温度高于粘流态或低于玻璃态趋向时,均使热塑性塑料趋向严重的恶化和破坏,所以在加工或使用塑料制品时要避开这二种温度区域。
②、三段式螺杆
塑料在挤出机中存在三种物理状态——玻璃态、高弹态和粘流态的变化过程,每一状态对螺杆结构要求不同。
c、为适应不同状态的要求,通常将挤出机的螺杆分成三段:
加料段L1(又称固体输送段)
熔融段L2(称压缩段)
均化段L3(称计量段)
这就是通常所说的三段式螺杆。塑料在这三段中的挤出过程是不同的。
加料段的作用是将料斗供给的料送往压缩段,塑料在移动过程中一般保持固体状态,由于受热而部分熔化。加料段的长度随塑料种类不同,可从料斗不远处起至螺杯总长75%止。
大体说,挤出结晶聚合物最长,硬性无定形聚合物次之,软性无定形聚合物最短。由于加料段不一定要产生压缩作用,故其螺槽容积可以保持不变,螺旋角的大小对本段送科能力影响较大,实际影响着挤出机的生产率。通常粉状物料的螺旋角为30度左右,时生产率最高,方块状物料螺旋角宜选择15度左右,因球形物料宜选选择17度左右。
加料段螺杆的主要参数:
螺旋升角ψ一般取17°~20°。
螺槽深度H1,是在确定均化段螺槽深度后,再由螺杆的几何压缩比ε来计算。
加料段长度L1由经验公式确定:
对非结晶型高聚物L1=(10%~20%)L
对于结晶型高聚物L1=(60%~65%)L
压缩段(迁移段)的作用是压实物料,使物料由固体转化为熔融体,并排除物料中的空气;为适应将物料中气体推回至加料段、压实物料和物料熔化时体积减小的特点,本段螺杆应对塑料产生较大的剪切作用和压缩。为此,通常是使螺槽容积逐渐缩减,缩减的程度由塑料的压缩率(制品的比重/塑料的表观比重)决定。压缩比除与塑料的压缩率有关外还与塑料的形态有关,粉料比重小,夹带的空气多,需较大的压缩比(可达4~5),而粒料仅2.5~3。
压缩段的长度主要和塑料的熔点等性能有关。熔化温度范围宽的塑料,如聚氯乙烯150℃以上开始熔化,压缩段最长,可达螺杆全长100%(渐变型),熔化温度范围窄的聚乙烯(低密度聚乙烯105~120℃,高密度聚乙烯125~135℃)等,压缩段为螺杆全长的45~50%;熔化温度范围很窄的大多数聚合物如聚酰胺等,压缩段甚至只有一个螺距的长度。
熔融段螺杆的主要参数:
压缩比ε:一般指几何压缩比,它是螺杆加料段第一个螺槽容积和均化段最后一个螺槽容积之比。
ε=(Ds-H1)H1/(Ds-H3)≈H1/H3
式中,H1——加料段第一个螺槽的深度
H3——均化段最后一个螺槽的深度
熔融段长度L2由经验公式确定:
对非结晶型高聚物L2=55%~65%L
对于结晶型高聚物L2=(1~4)Ds
均化段(计量段)的作用是将熔融物料,定容(定量)定压地送入机头使其在口模中成型。均化段的螺槽容积与加料段一样恒定不变。为避免物料因滞留在螺杆头端面死角处,引起分解,螺杆头部常设计成锥形或半圆形;有些螺汗的均化段是一表面完全平滑的杆体称为鱼雷头,但也有刻上凹槽或铣刻成花纹的。鱼雷头具有搅拌和节制物料、消除流动时脉动(脉冲)现象的作用,并随增大物料的压力,降低料层厚度,改善加热状况,且能进一步提高螺杆塑化效率。本段可为螺杆全长20一25%。
均化段螺杆的重要参数:
螺槽深度H3由经验公式确定H3=(0.02~0.06)Ds
长度L3由下式确定L3=(20%~25%)L
d、根据熔体输送理论,熔体在螺杆均化段的流动有四种形式,熔融物料在螺槽中的流动是这四种流动的组合:
正流——塑料熔体在料筒和螺杆间沿着螺槽方向朝机头方向的流动。
逆流——流动方向与正流相反,由机头、多孔板、过滤板等阻力引起的压力梯度所造成。
横流——熔体沿着垂直于螺纹壁方向的流动,影响挤出过程中熔体的混合和热交换作用。
漏流——由于压力梯度在螺杆与料筒间隙处形成的倒流,沿螺杆轴向方向。
2、普通螺杆的结构
常规全螺纹三段螺杆按其螺纹升程和螺槽深度的变化,可分为三种形式:
(1)等距变深螺杆
等距变深螺杆从螺槽深度变化的快慢可分为两种形式:
①等距渐变螺杆:从加料段开始至均化段的最后一个螺槽的深度是逐渐变浅的螺杆。在较长的熔融段上,螺槽深度是逐渐变浅的。
②等距突变螺杆:即加料段和均化段的螺槽深度不变,在熔融段处的螺槽深度突然变浅的螺杆。
(2)等深变距螺杆
等深变距螺杆是指螺槽深度不变,螺距从加料段第一个螺槽开始至均化段末端是从宽渐变窄的。
等深变距螺杆的特点是由于螺槽等深,在加料口位置上的螺杆截面积较大,有足够的强度,有利于增加转速,从而可提高生产率。但螺杆加工较困难,熔料倒流量较大,均化作用差,较少采用。
(3)变深变距螺杆
变深变距螺杆是指螺槽深度和螺纹升角从加料段开始至均化末端都是逐渐变化的,即螺纹升程从宽逐渐变窄,螺槽深度由深逐渐变浅的螺杆。该螺杆具有前面两种螺杆的特点,但机械加工较困难,较少采用。
3、螺杆材料
螺杆是挤出机的关键部件,作为螺杆的材料必须具备耐高温、耐磨损、耐腐蚀、高强度等特性,同时还应具有切削性能好、热处理后残余应力小、热变形小等特点。
对于挤出机螺杆的材料,具体有如下几点要求:
①力学性能高。要有足够的强度,以适应高温、高压的工作条件,提高螺杆的使用寿命。
②机械加工性能好。要有较好的切削加工性能和热处理性能。
③耐腐蚀和抗磨性能好。
④取材容易。
4、新型螺杆
常规全螺棱三段式螺杆存在的问题:
①熔融段同时有固体床和熔池同居一个螺槽中,熔池不断增宽,固体床逐渐变窄,从而减少了固体床于机筒壁的接触面积,减少了机筒壁直接传给固体床的热量,降低了熔融效率,致使挤出量不高;
②压力波动、温度波动和产量波动大;
③不能很好适应一些特殊塑料的加工进行混炼、着色等工艺。
对此类问题常用的处理方法:
加大长径比;提高螺杆转速;加大均化段的螺槽深度;
为了克服常规螺杆存在的缺点,人们创造了一些新型螺杆,主要包括:
①分离型螺杆
在压缩段增设一条副螺纹,克服了常规螺杆中固体床和熔体共存一个螺槽中所产生的缺点,将熔融物料和未熔物料尽早分离,从而促进了未熔物料的熔融。
这种螺杆塑化效率高,塑化质量好。由于没有固体床解体,产量波动、压力波动和温度波动都比较小,并具有排气性能好、能耗低等优点,应用较广。
②屏障型螺杆
在普通螺杆的某一部位设置屏障段,使未熔的固体不能通过,并促使固体熔融的一种螺杆。
这种螺杆通过剪切作用和涡流的混合作用,将机械能转变为热能并进行热交换,使物料熔融均化,并且径向温差小,产量、质量都比常规螺杆好。
③销钉螺杆
物料流经过销钉时,销钉将固体料或未彻底熔融的料分成许多细小料流,这些料流在两排销钉间较宽位置又汇合,经过多次汇合分离,物料塑化质量得以提高。
销钉设置在熔融区,排列形状有人字形、环形等,销钉形状有圆柱形、菱形、方形等。
由于销钉将熔料多次分割分流,增加了对物料的混炼、均化和添加剂的分散性。另外,由于固体碎片在熔融的过程中不断从熔体中吸收热量,有可能降低熔料温度,故可获得低温挤出。
④组合螺杆
由带加料段的螺杆本体和各种不同职能的螺杆元件如输送元件、混炼元件和剪切元件等组成。改变这些元件的种类、数量、和组合顺序,可以得到各种特性的螺杆,以适应不同物料和不同制件的加工要求,并找出最佳工作条件。
这种螺杆适应性强,易获得最佳工作条件,在一定程度上解决了万能与专用的矛盾,因此得到越来越广泛的应用。但设计复杂,组合元件之间拆装较麻烦,在直径较小的螺杆上实现有困难。
五、机头和口模
机头和口模通常为一整体,习惯上统称机头;但也有机头和口模各自分开的情况。机头的作用是将处于旋转运动的塑料熔体转变为平行直线运动,使塑料进一步塑化均匀,并使熔体均匀而平稳的导入口模,还赋予必要的成型压力,使塑料易于成型和所得制品密实。口模为具有一定截面形状的通道,塑料熔体在口模中流动时取得所需形状,并被口模外的定型装置和冷却系统冷却硬化而成型。机头与口模的组成部件包括过滤网、多孔扳、分流器(有时它与模芯结合成一个部件)、模芯、口模和机颈等部件。
机头中的多孔板能使机头和料筒对中定位,并能支承过滤网(过滤熔体中不熔杂质)和对熔体产生反压等。机头中还有校正和调整装置(定位螺钉),能调正和校正模芯与口模的同心度、尺寸和外形。在生产管子或吹塑薄膜时,通过机颈和模芯可引入压缩空气。按照料流方向与螺杆中心线有无夹角,可以将机头分为直角机头(又称T型机头)、角式机头(直角或其它角度)。直角机头主要用于挤管、片和其它型材,角式机头多用于挤薄膜、线缆包复物及吹塑制品等。
㈣ 自动化生产线的物料传送可用哪些方法传送
自动化生产线的物料传送方法有以下几种:
倍速链生产线
1. 传送带:用于传输小件物料或成品,可以是平面或倾斜的。
2. 磁悬浮传输系统:用磁场吸引和悬浮物料或成品,使其传输,具有高精度和高速度的特点。
3. 链式输送系统:通过链条驱动行走,可以搭载大量物料或成品。
4. AGV(自动引导车):可根据程序指示自主行驶,用于较重或较大物料的传输。
5. 悬挂线式输送系统:利用悬挂的导轨来传送一些比较长而且比较重的物品。
6. 滑道输送系统:利用重力和斜坡的帮助,使得物品沿着滑道向前滑动,节省能源。
7. 机械臂:利用机械臂进行装卸操作,可以在狭小的空间内操作,密度较高。
以上是一些常见的自动化生产线物料传送方法,具体选择什么方法要根据生产情况和需求来决定。