1. 物理沉积模拟研究方法与步骤
对湖盆沉积砂体的形成与演变依据一定的科学准则对碎屑沉积砂体的形成与演变进行模拟是碎屑岩沉积学发展的重要边缘分支学科,也是研究碎屑沉积体系分布的一条重要途径。物理模拟研究就是将自然界真实的碎屑沉积体系从空间尺寸及时间尺度上都大大缩小,并抽取控制体系发展的主要因素,建立实验模型与原型之间应满足的对应量的相似关系。这种相似关系建立的基础乃是一些基本的物理定律。如质量、动量和能量守恒定律等。
1.物理模拟研究的基本步骤
现在看来,碎屑沉积模拟一般可分为物理模拟和数值模拟两个方面。物理模拟是数值模拟的基础,可以验证数值模拟的正确性;数值模拟反过来可以有效地指导物理模拟,使物理模拟具有一定的前瞻性。应当说,物理模拟与数值模拟相辅相成,对实际问题的解决可以起到相互促进的作用。
物理模拟是对自然界中的物理过程在室内进行模拟,其发展历史已逾百年,在水文工程及河流地貌学上应用较广,已经初步建立了一套理论基础和实验方法。至于开展碎屑沉积砂体形成过程及演变规律的物理模拟,还是近二十年的事情。应当承认,碎屑砂体沉积过程的物理模拟与水文工程的模拟是两类不同性质的模拟过程。水文工程的物理模拟是在现今条件确定的情况下,预测未来几十年内河道淤积演变对水文工程的影响,所涉及的时间跨度非常短暂;而碎屑砂体形成过程的物理模拟则是在沉积初始条件基本未知,依靠沉积结果反演沉积条件,从而逼近沉积过程的一种模拟。它所涉及的时间跨度是地质时代,一般在几千至几万年甚至几十万年的时段内,因而研究难度比较大。值得指出的是,形成一个碎屑砂体的时间与该砂体形成后所经历的更加漫长的成岩时间是两个概念。碎屑物理模拟所考虑的时间是碎屑沉积体系的形成时间。
物理模拟的关键是要解决模型与原型之间相似性的问题,也就是说,实验模型在多大程度上与原型具有可比性是成败的标准。为此物理模拟实验必须遵从一定的理论,这种理论可称之为相似理论。模型与原型之间必须遵守的相似理论包括几何相似、运动相似及动力相似。
碎屑物理模拟一般都在实验装置内进行,物理模拟的方法步骤可概括为如下步骤:
1)确定地质模型。所涉及的参数包括盆地的边界条件(大小、坡度、水深、构造运动强度、波浪、基准面的变化等)、流速场的条件(流量、流速、含砂量等)、入湖或海河流的规模及分布、沉积体系的类型、碎屑体的粒度组成等。
2)确定物理模型。由于自然界中形成沉积体系的控制因素较多,确定物理模型的关键是抓住主要矛盾,而忽略一些次要因素。好的物理模型应当反映碎屑沉积体系的主要方面。物理模型的主要内容是确定模型与原型的几何比例尺与时间比例尺、流场与粒级的匹配、活动底板运动特征以及模型实验的层次。
3)建立原型与模型之间对比标准。实验开始前应确定每个层次的实验进行到何种程度为止,是否进入下一个层次的模拟,所以确定合适的相似比十分重要。
4)明确所研究问题的性质。应当明确沉积学基础问题的研究可以假设其他因素是恒定的,而重点研究单一因素对沉积结果的影响,但实际问题的解决往往是复杂的。各种因素之间是相互制约的,因此必须综合考虑。一般应从沉积体系的范畴思考问题,而不能仅从某个单砂体着手就事论事。因为单砂体是沉积体系甚至是盆地的一部分。
5)确定实验方案。即在物理模型的基础上,进一步细化实验过程,把影响碎屑沉积的主要条件落实到实验过程的每一步,特别应注意实验过程的连续性和可操作性。因为实验开始后一旦受到某些因素的影响而被迫中断,再重新开始时,该沉积过程是不连续的(除非在形成原型的过程中确实存在这种中断),流场的分布将受到较大影响,因此,实验开始前的充分准备是十分必要的。
6)适时对碎屑搬运沉积过程进行监控。因为沉积模拟研究是对地质历史中沉积作用的重现,是对过程沉积学进行的研究。所以沉积过程的详细记录和精细描述是必需的,只有这样才能深入研究过程与结果的对应性。
7)过程与结果的对应研究。实验完成后对沉积结果的研究一般可采用切剖面的方法,对碎屑沉积体任一方向切片建立三维数据库,并与沉积过程相对应,比较原型与模型的相似程度,从而对原型沉积时的未知砂体进行预测。目前已经做到的对比项目有相分布特征、厚度变化、粒度变化、夹层隔层的连通性及连续性、渗流单元的分布等。
2.物理模拟的实验方法
1)确定模拟区的规模及层位。在对模拟原型进行研究的基础上,根据要求确定模拟的地质层位。若模拟区块较大或模拟层段较厚,一般要进一步细分,才能保证模拟的精度。
2)确定模型的比尺。一般来说应保持x、y、z三个方向为同一比尺,即物理模型为正态模型,这样可保证模拟结果的精度较高;若为变态模型,变率一般应小于5。
3)确定实验装置的有效使用范围。当原型与模型的比尺确定后,实验装置上有效使用范围便随之确定。
4)确定原始底形。按实际资料,将模拟层位以下地层的底形按比例缩至实验装置内。
5)确定加砂组成。按模拟层位的粒度分析资料并加以确定。
6)确定洪水、平水、枯水的流量。一般根据模拟原型沉积时的气候特点,结合现代沉积调查及水文记录,概化出流量过程线,按流量过程施放水流。
7)湖水位控制。根据原型研究,按比例选择合适的初始沉积时的湖水深度,另外,应确定每一阶段的沉积过程是否在高位体系域、低位体系域或是水进水退体系域内进行,最好明确一种体系域变化为另一种体系域的时间长短,即变化速率,因为这关系到实验过程中湖水位的调节。
8)确定加砂量。一般洪水、平水、枯水的加砂量明显不同,加砂量的确定应与流量过程匹配,并考虑水流能够搬运为原则,同时应明确实验过程为饱和输砂还是非饱和输砂。
9)含砂量控制。此参数是储集砂体地质研究中不能获得的参数,一般采用现代沉积调查的结果进行类比,按洪水期、平水期、枯水期分别设计,也可以设计为一个区间,按流量调节。
10)河道类型。国外物理模拟研究在实验开始前,一般在原始底形上塑造模型小河,以使水流首先有一流道。该模型小河对以后的沉积作用不产生太大的影响。随着实验的进行、水流会自动调整。但一般若原型资料较好,在缩制原始底形时,已存在水流的通道不需要设置模型小河。
11)确定河岸组成。在需要设置模型小河时,应考虑河岸的组成,因为这关系到河岸的抗冲性以及河道的迁移和决口。一般应考虑原型的特征来设计。
12)活动底板控制。活动底板运动是地壳运动在实验室内的表现,它从宏观上控制了沉积作用的特征和样式。首先应明确原形沉积时构造运动的类型与性质、构造运动的强度与时期,这涉及活动底板运动的幅度和速率是否造成断层及断距的大小等。
13)过程监控。由于沉积模拟研究是对砂体的形成过程进行研究,所以实验全过程的监控是分析对比过程与结果必不可少的,国内外一般采用与时间同步的电动照相机和对实验过程全程录像的方法,辅以详细的观察描述来对实验过程进行跟踪监控。
14)过程细化。将实验过程细化为若干个沉积期,每一个沉积期对应一个单砂体或一个砂层组,每一期沉积过程结束后,详细测量各种参数、边界形态等。
15)剖面研究。实验完成后,对沉积砂体进行纵、横剖面的切片研究,并与过程相对应,最终与原型砂体进行对比,检验实验结果的准确性。
16)整理各类资料、数据,为数值模拟研究提供必要的信息。
3.物理模拟的标准
碎屑沉积过程物理模拟成功与否的判别标准就是实验模型与原型相似程度的高低。在油气勘探阶段,可以与地震剖面和测井曲线所反映出来的砂体类型和砂岩厚度进行对比。在油气开发阶段,可以与测井曲线和开发动态相比较。目前各类静态参数(粒度、厚度、连续性、连通性、砂体延伸方向和规模、沉积相类型等)的符合率一般为70%,动态方面的对比尚没有深入研究。
4.物理模拟的局限性
(1)尺度的限制
任何物理模拟实验装置由于受到场地及装置大小的限制,不可能无限制地扩大规模。如果原型的几何规模比较大,要想在室内实现模拟,就只有缩小比例,而任何比尺的过度缩小,都将造成实验结果的失真和变形,导致原型与模型之间相似程度的降低。根据目前实验水平,一般x、y方向的比例尺控制在1∶1000之内较合适。z方向的比尺控制在1∶200之内比较理想。实际工作中,一般使x、y、z方向比尺保持一致,即选用正态模型准确性较高。某些情况下,根据原型的形态特点,x、y、z方向的比尺允许不一致,即选用变态模型,但二者相差不宜太大,否则容易造成实验结果的扭曲。
(2)水动力条件及气候条件的限制
自然界碎屑沉积体系形成过程中,水动力条件非常复杂,有些条件在实验室内难以实现,如潮汐作用、沿岸流、水温分层、盐度分异以及沉积过程中突然的雨雪气候变化等影响因素,这些都在一定程度上影响了实验过程的准确性。
(3)模型理论的限制
在物理模拟相似理论中,诸多相似条件有时并不能同时得到满足,而某个条件的不满足就可能导致实验结果在一定程度上失真。例如,要使模型水流与原型水流完全相同,必须同时满足重力相似与阻力相似,但二者是一对矛盾;又如悬浮颗粒的运动,现有模型中关于沉降速度的相似条件有沉降相似和悬浮相似,很显然,二者也不可能同时满足。因此实验方案设计中,提取起主要作用的因素显得十分重要。
尽管碎屑沉积体系的物理模拟存在上述许多局限,但它在促进实验沉积学的发展、研究碎屑体系形成过程及演变规律、预测油气储集砂体的分布方面愈来愈显示出它独特的优势。
2. 水合物渗透率的测定
渗透率是反映多孔介质的渗流能力的参数,是影响天然气水合物分解后的产气速度的重要因素。因此,在天然气水合物的开采利用阶段,含水合物沉积层的渗透率以及初始天然气水合物饱和度、生产压力等都将对天然气水合物的开采效果产生重要影响。
实验装置
实验装置的水合物生成与驱替部分采用同一个容器,即水合物生成后可以立即进行驱替试验,测定该种状态下的渗透率。容器的温度由外部夹套中的冷却水控制,温度范围为-30℃至室温。容器的最高工作压力为30MPa,工作温度范围为-30~30℃,内径为60mm。驱替压差采用高静压差压变送器,同时采用压力传感器测量两端的压力,以便在压差超出差压传感器的测量范围时,可以直接测量两端压力以求出压差。由于压力传感器的精度等级为0.05,所以在30MPa的量程下,其最小分辨率为15kPa,差压传感器的量程应取150kPa。趋替动力采用MOSTB精密平流泵,在双机轮替的工作模式下,可以确保驱替压力波动小于0.01MPa,同时,通过计算机控制系统设定泵的控制参数及取回数据。图75.12为整个装置系统的示意图:
图75.12 水合物渗透率测定装置示意图
实验技术与方法
在实验装置内可模拟低温高压环境下在沉积物中生成天然气水合物,实验过程中使用TDR技术测量沉积物中的含水量,以此确定沉积物中天然气水合物的饱和度,在不同天然气水合物饱和度情况下,测量水的渗透率。水合物与容器内壁间采用导热橡胶套隔开,目的是阻断水合物与容器内壁间可能的流道,以确保驱替液体确实是通过水合物的内部通道。考虑到TDR的测量精度,确定的反应区长度取为150mm,TDR探针同时作为热电阻的载体。在测定的反应区外,考虑到不能产生管道阻塞的现象,两端必须保持有不生成水合物的区域,这两个区域设定为50mm,具体试验中的长度由TDR测试结果实测计算得出。具体实验步骤如下:
1)反应容器内预先装填好沉积物并压实;系统抽真空后,在饱和水容器中,制备指定压力下的饱和水。此时的压力将在整个水合物生成过程中稳定不变。
2)背压阀全开,启动平流泵,使饱和水在系统中循环流动,以便饱和水充分浸润沉积物。
3)关闭平流泵,同时关闭反应容器两端的阀门以稳定容器内压力,启动制冷,开始水合物的生成。同时采集温度及TDR数据。
4)水合物生成结束后,可开始水渗透率的测试。设定驱替压力差,动态控制平流泵出口压力,保持压差恒定。纪录压差、流量,以及温度和TDR数据。
5)通过下列公式计算含水合物样品的水渗透率:
岩石矿物分析第四分册资源与环境调查分析技术
式中:ka为水渗透率,μm2;qw为水的流量,mL/s;μw为测定温度下水的黏度,mPa·s;L为试样的长度,cm;A为试样截面积,cm2;p1为试样进口压力,MPa;p2为试样出口压力,MPa。
6)同时,根据TDR波形,计算多孔介质中水合物的饱和度,由此得出不同水合物饱和度情况下试样的水渗透率,了解水渗透率随水合物饱和度的变化趋势。
3. 海相碳酸盐岩储层损害的室内评价及损害机理
当储层受到损害时,宏观上表现为渗透率下降,有效渗透率的下降包括绝对渗透率的下降(即渗流空间的改变)和相对渗透率的下降。渗透空间的改变包括:外来固相侵入、水敏性损害、酸敏性损害、碱敏性损害、微粒运移、结垢、细菌堵塞和应力敏感损害;相对渗透率的下降包括:水锁、碱敏、润湿反转和乳化堵塞等。从微观上讲,影响储层渗透率的内在因素主要包括:岩石矿物组成、结构、构造、储集空间结构、岩石表面润湿性、流体性质;储层损害的外因主要指:入井流体性质、压差、温度和作业时间等。到目前为止,还没有真正形成一套系统的海相碳酸盐岩储层保护的实验技术和方法,大部分工作都是借鉴碎屑岩储层保护的研究思路和方法。
3.5.1.1 储层损害的室内评价
储层损害评价技术包括室内评价和矿场评价,室内评价的目的是研究油气层敏感性,配合进行机理研究,同时对即将采用的保护技术进行可行性和判定性评价,为现场实施提供依据。图3-167是储层损害室内评价实验流程框图,常规的储层损害室内评价方法主要是通过获取所研究地区储层岩心或采用标准岩心,在模拟储层现场条件的情况下,进行岩心流动试验,在观察和分析所取得试验结果的基础上,研究岩心损害的机理。
中国海相油气勘探理论技术与实践
式中:K为初始渗透率(升高围压曲线起始点),10-3μm2;Kmin为最低渗透率(一般为升围压曲线终止点),10-3μm2;Δσ为有效应力变化值,MPa。评价应力敏感性的定量指标:Rσ为3~2,2~1,1~0时,损害程度分别为弱,中,强。
传统的油层损害的损害度R,只是岩样渗透率降低的百分率,没有考虑有效应力的变化幅度。不能直接反映有效应力的影响。应力敏感性损害度Rσ,则反映了有效应力变化因素,更具科学性和实用性。
(3)工作液对储层的损害评价
主要指借助各种仪器设备,预先在室内评价包括钻井液、完井液、压井液、洗井液、修井液、射孔液、压裂液、酸化液等工作液对油气层的损害程度,达到优选工作液配方和施工参数的目的。
1)工作液的静态损害评价。该方法主要利用各种静态滤失实验装置测定工作液静态滤失系数和工作液滤入岩心前后渗透率的变化,来评价工作液对油气层的损害程度并优选工作液配方。实验时,尽可能模拟储层温度和压力条件。用式来计算工作液的损害程度:
中国海相油气勘探理论技术与实践
式中:Rs为损害程度;Ko为损害后岩心的油相有效渗透率,μm2;Ko为损害前岩心的油相有效渗透率,μm2。
Rs值越大,损害越严重,评价指标同表1。
2)工作液动态损害评价。在尽量模拟地层实际条件下,评价工作液对油气层的综合损害,为优选工作液配方和优化施工工艺参数提供科学依据。动态损害评价与静态损害评价的区别在于:静态评价时,工作液处于静止状态,而动态评价时,工作液处于循环或搅动的运动状态。采用多点渗透率伤害评价仪还可以测定工作液浸入岩心后的损害深度和损害程度。
3.5.1.2 中国海相碳酸盐岩油气层损害机理
由于海相碳酸盐岩和砂岩在成因上的不同,储层在矿物组成、储集空间和储渗性能方面有很大的差别。
●碳酸盐岩储层的裂缝相对砂岩较为发育,使得储集空间体积的总孔隙度一般很低,但局部孔洞缝发育带的孔隙度和渗透率值很高,其孔隙度和渗透率之间的相关关系不如孔隙型储层。
●碳酸岩储层和碎屑岩储层中的敏感性矿物类型、含量和产状有着很大的差别。碎屑岩储层中的敏感性矿物主要是黏土矿物,且通常位于外来流体和储层中本身流体首先与之接触的粒表、粒间暴露处,因而敏感性矿物,特别是黏土矿物,是碎屑岩储层敏感性的主要内因。而碳酸岩储层黏土矿物含量较少,并且主要是沉积成因,与碎屑岩中的黏土矿物相比,在岩石中分布相对均匀,而孔喉的表面和裂缝的缝面通常不具有优势分布,因此由黏土矿物所造成的“外来流体与地层岩石不配伍”伤害比碎屑岩要弱得多,但碳酸岩或白云岩储层有本身特征的敏感性矿物,如铁方解石、铁白云石等,遇酸会释放大量的Ca2+、Mg2+离子,Mg2+离子在碱性条件下比Ca2+离子相对易于沉淀,形成Mg(OH)2沉淀,黄铁矿和铁方解石和铁白云石遇酸后会释放出铁离子,在碱性环境下易形成Fe(OH)3沉淀。因此,储层有潜在的较强酸碱性。
●裂缝作为主要渗流通道的储层,其渗透率大小直接决定着储层的产量。裂缝的平、直、宽特点,使其通常具有较高的流体通过能力,固相颗粒易侵入储层较深部位,而侵入的滤液则在裂缝壁上形成泥膜,使孔喉明显缩小。
●在生产过程中由于孔隙压力不断下降,上覆岩层负荷应力与孔隙压力之间的差值(即有效应力),可使裂缝在高围压下闭合,使渗透通道缩小,造成伤害。
一般认为,碳酸盐岩油气层的损害主要是外来固相侵入、滤液侵入、应力敏感等。固相颗粒及滤饼是造成碳酸盐岩裂缝型油气层损害的主要因素,水相圈闭和滤膜是损害孔隙型碳酸盐岩油气层的主要因素。裂缝-孔洞型碳酸盐岩油气层一般基质渗透率很低,裂缝是主要储集空间和渗流通道,因此工作液对基质的入侵可忽略,应集中考虑裂缝可能受到的损害。从储层保护的角度,根据储层裂缝在油藏条件下的宽度对这些裂缝进行分类:一类是由中—小裂缝组成的储层,所谓中裂缝指宽度介于10~100μm的裂缝;小裂缝指宽度介于1~10μm的裂缝;而微裂缝指宽度小于1μm的裂缝,因其与岩块基质的平均孔隙、直径相近,可列入基质孔隙范畴;另一类为大裂缝储层,指裂缝的宽度大于100μm的裂缝。油气层岩性可分为泥质碳酸盐岩和灰质碳酸盐岩。滤液和固相颗粒堵塞是损害碳酸盐岩油气层的共同因素;但裂缝宽度不同和岩性差异导致的化学组成不同;损害机理不尽相同;较大裂缝主要是固相堵塞造成的损害,液相损害对泥质碳酸盐岩裂缝更为严重。对于碳酸盐岩油气层(特别是气层)中的微裂缝,水锁损害尤为严重,原始含水饱和度、渗透率、储层润湿性和界面张力均有较大影响。
(1)固相颗粒浸入
储层压力条件下,对裂缝宽度大于100μm的储层,在钻井施工中遇到的最大问题是储层漏失,其漏失的原因可能有如下类型:①正压差下的漏失;②重力诱导型漏失;③置换性漏失;④溶洞性漏失;⑤其他漏失(漏失同层、边喷边漏、地下井喷等)。这些漏失造成最严重的地层伤害是固相伤害。由于在钻井液中90%的固相颗粒粒径小于50μm,所以当裂缝的直径大于50μm时,几乎所有的固相可进入裂缝中,造成严重的填充堵塞。
(2)储层流体敏感性
在钻井完井过程中,侵入的滤液与储层中的矿物发生物理化学作用,引起储层渗透率的变化,称之为储层的流体敏感性。敏感性矿物包括黏土矿物和非黏土敏感性矿物。王欣等从微粒的受力分析出发,从理论上讨论了重力、范氏力、双电层力和水动力对微粒的影响,并着重研究了微粒水化分散、运移的临界浓度和临界启动速度等多种影响因素。引起速敏伤害的可运移微粒,既有黏土矿物微粒,也有方解石、钙长石等其他非黏土矿物的地层微粒。
现阶段对储层流体敏感性损害机理的认识主要集中在由于黏土矿物遇水膨胀,或微粒分散运移而导致地层孔隙度和渗透率下降。Land等指出,尽管做了数百块岩心实验,仍未能建立蒙脱石含量与水敏损害程度的关系,即蒙脱石膨胀与引起地层损害没有直接的关系,这意味着不含膨胀性黏土矿物的地层也会受到损害。
(3)应力敏感性
Duan对不经打磨的自然裂缝(储层的自然裂缝和地面露头的自然裂缝以及大量的人造裂缝)表面特性进行了深入分析,并对自然裂缝的应力敏感性进行了数值模拟,建立了裂缝-孔隙型储层应力损害的分析方法和评价方法。
蒋官澄对裂缝型储层的应力敏感性进行了研究,通过对裂缝型储层的渗透率和裂缝宽度与有效应力之间的关系进行回归分析,认为裂缝型碳酸盐岩储层还存在着应力敏感性和滞后效应。景岷雪等通过实验得出,应力变化幅度对岩心最终渗透率损害程度影响不大。孔隙型岩心应力敏感性小于裂缝型岩心,而天然裂缝型岩心应力敏感性小于人造裂缝岩心,且人造裂缝岩心受应力发生渗透率损害后,该损害过程几乎不可逆。
Ayoub研究了有效应力与碳酸盐岩岩样渗透率之间的关系。随着有效应力的增加,渗透率呈现三种变化趋势:①由于实验岩样含有粒间孔,渗透率平缓下降;②岩样含有溶蚀孔时,渗透率先是急剧下降,然后平缓的降低;③由于岩样中黏土矿物反抗净压力而导致渗透率升高。
何健等指出,裂缝-孔隙型碳酸盐岩储层应力敏感中等偏强,孔隙型储层应力敏感程度弱。对于模拟地层温度、地层上覆压力、地层孔隙压力、地层含水饱和度的全直径岩心的渗透率应力敏感性分析和测试实验目前在国内外尚属空白。
(4)气层损害机理
气层与油层相比,有很多不同之处。自然界中存在的气藏大多数是低渗气藏,储层普遍具有低孔、低渗、强亲水、大比表面积、高含束缚水饱和度、高毛细管力和低储层压力特点。这些特点决定了气层易受到损害,并且一旦损害,解除比较困难。因此进行气层损害有关研究也是十分重要的。
与油层损害相比,对气层损害的研究深度远远不够。从历史上看,国内外均长期有“重油不重气”的倾向,所以低渗气藏的研究得不到重视;另一方面从渗流力学的观点分析,气体本身具有可压缩性,在储层中渗流时,因滑脱效应而表现出与液体不同的渗流行为,特别是在低渗储层中,有些学者认为,气体渗流具有非达西特性,这些均增加了渗流行为的复杂性。另外,气层表面绝大多数是水湿的,亲水现象严重,增加了渗流行为的不定性。这些都增加了气层损害研究的难度。近几年来,D.Bennion等人对气层损害机理进行了比较系统的概括性总结,对钻井过程中的气层损害机理总结为:①储层本身质量问题;②水锁效应;③欠平衡钻井中的反向自吸;④钻井液固相侵入;⑤钻具在孔壁磨光和压碎现象;⑥岩石-流体间相互作用;⑦流体-流体间相互作用。
另有研究表明气层由于具有较强的应力敏感性,越是低渗气藏,特别是裂缝-孔隙性流道,应力敏感性越明显。应力敏感性是由于很多扁平或裂缝状的孔隙和毛细管的关闭引起的,在气藏开采过程中,随着储层中天然气的采出,这种由于储层有效应力改变而引起的渗透率的降低是非常严重的,据国内外资料报导,应力敏感性可导致低渗气藏的渗透率下降50%~90%。目前国内外还没有建立起一整套针对低孔低渗气藏损害的评价指标,包括对应力敏感性的评价指标。
水锁效应对低渗气藏渗透率的影响尤为严重。据国内外资料报道,液相在气藏中滞留(即水锁)是气藏的主要损害因素,气藏渗透率越低,影响越严重。
Bennion探讨了水锁形成机理、影响因素和损害消除方法,Bennion等认为水锁是由于储层初始含水饱和度远远小于束缚水饱和度引起的。贺承祖根据毛细管束模型,从理论上分析指出外来流体在油气层中的毛细管力是控制水锁效应的主要因素,而表面张力只是影响毛细管力的一个因素,此外还必须考虑接触角和毛细管的有效半径影响。碳酸盐岩油气藏也存在超低含水饱和度的现象,当气藏初始含水饱和度低于束缚水饱和度或不可动水饱和度时,即处于“亚束缚水状态”,一旦水基工作液接触气层或地层中其他部位的水窜入气层,或凝析水在气井附近集结等过程,导致气井周围含水饱和度增高,甚至超过不可动水饱和度,结果气相的相对渗透率大幅降低,造成水锁损害。水锁是气层第一位也是最基本的损害因素,严重制约碳酸盐岩气藏的发现成功率和经济开采。
张振华等人对来自轮南古潜山裂缝性碳酸盐储层的岩心研究后认为,古潜山储层存在明显的水锁效应。储层的初始含水饱和度越低,岩心的绝对渗透率越小,水锁效应越严重,并认为加入表面活性剂是减小水锁效应的有效途径。