导航:首页 > 装置知识 > 深冷处理试验装置设计

深冷处理试验装置设计

发布时间:2024-10-18 06:52:22

⑴ 陈鉴远的人物生平

陈鉴远在完成学业后,婉辞了导师留他继续在美国搞科研的盛情,冲破当时美国政府对华人返回解放后的中国大陆所设置的重重阻碍,于1950年9月启程经香港回国。他满怀热情回到祖国,以人民的需要为自己的最高理想,一切听从组织的安排,被分配到上海华东工业部化工处设计室任副主任,并负责南京一个新建保险粉工厂的设计。没有技术资料,他与交通大学合作进行了锌粉还原法制保险粉的试验研究,于1954年初完成了工艺设计。这年2月,该设计室与中央重工业部化工设计公司合并,陈鉴远随调北京,任化工设计公司基本化学工业科科长(后机构几经调整,先后为化工部基本化学工业设计院、化工部北京化工设计院),领导磷肥与硫酸专业的工艺设计。在与有关专业人员的密切合作下,相继完成了我国第1批大型过磷酸钙肥料厂及配套的大型硫酸生产装置的设计,以及万吨级钙镁磷肥厂的通用设计。1958年,根据上级决定,北京化工设计院专设七室,综合配备工艺、设备、土建等各专业人员,负责国防尖端配套化工新材料生产装置的开发、设计。陈鉴远任院副总工程师(1964年任总工程师)兼七室主任。1965年,七室发展为化工部第六设计院,陈鉴远任院长兼总工程师,直到1978年。在这20年间,他领导有关各专业设计人员先后完成了包括重水等18种国防化工专用产品的开发和40多项工程的设计,及时满足了原子弹、氢弹、导弹、飞机及其他国防军工的需要。
1978年3月,陈鉴远调任化工部二局副局长,主管化工新材料科技工作。通过调查研究,他发现我国的化工新材料工业,包括为国防军工配套发展起来的军民通用的化学产品,与发达国家有很大差距:主要是生产规模很小,产品质量不稳定,成品率很低,生产成本很高。这些问题,很不利于保证国防军工发展的要求,更不能适应迅速发展的民用工业对化工新材料的迫切需要。为此,陈鉴远提出了发展化工新材料大型化、促进军转民的建议,积极倡导开发化工新材料大型化技术,组织制订了化工新材料研究开发规划,并亲自组织、协调、指导千吨级有机氟、万吨级有机硅、异丁醛制有机玻璃等重点项目的技术开发工作。通过各有关单位广大职工的努力,化工新材料大型化不断获得进展,许多产品的质量和成品率逐渐提高,生产成本不断降低,军转民工作取得了显著效果。从1978年到1982年,化工新材料总用量中,用作民品的比重,从15%提高到了85%。 1982年,陈鉴远调任北京化工学院院长。他倡导教学与科研相结合,以科研带动和提高教学水平;推动开展了超临界萃取、激光化学、碳纤维等高新技术领域的研究工作;大力邀聘了一批有为的青年科技人员来校执教;积极培养学术带头人;努力开展与外国有关高等院校和科研单位间的学术交流与合作;开始招收和培养博士研究生。陈鉴远还亲自指导研究生进行碳纤维结构与性能研究,并争取到联合国开发署资助建立了碳纤维研究室。通过这些工作,显著提高了这个学校的科研与教学水平,对更好培养化工科技人才起了重要作用。1985年3月,陈鉴远调到化工部技术委员会任副主任委员,参与化工科技发展规划和重大科技问题的研究,并负责一些重点科研开发项目的组织协调和指导工作,其中包括继续组织那些化工新材料大型化技术开发重点项目。在他的组织协调和指导下,通过有关单位广大职工的努力,千吨级聚四氟乙烯已开发成功,并建成3套装置陆续投产。异丁醛制有机玻璃已完成中间试验;一步法三聚氯氰中试已投料试车一次成功,得到合格产品。两者都具备了建设大型工业装置的条件。万吨级有机硅装置也已投料试车。
除本职工作外,陈鉴远还兼任了许多职务,承担了许多社会工作。其中重要的有:国家科委化工组成员及其新型化工材料专业组副组长;国家自然科学基金会委员会化学工程学科评审组成员;国务院学位委员会第1届学科评议组成员;国家科学技术进步奖评审委员会委员;北京化工学院名誉教授;中国自然科学名词审定委员会委员兼化工编委会主任委员;中国化工学会理事、名誉理事,兼教育与科普委员会主任委员;《中国科技专家传略》工程技术编委会委员和化工卷编委会主编。 中华人民共和国成立之初,全国除台湾外,没有磷肥生产。为发展农业,迫切需要生产供应磷肥。1953年,国家决定重点建设江苏锦屏磷矿,开展磷肥试验研究,筹建磷肥厂。
陈鉴远刚到化工设计公司基本化学工业科,就承担了生产规模分别为40万吨和20万吨过磷酸钙、配套硫酸8万吨和4万吨的两个大型磷肥厂的工艺设计任务。当时,全公司和全科除一位前苏联顾问专家外,都没有搞磷肥的经验,也没有设计大型工程的经验;全科90%以上的设计人员都是刚参加工作的大中专毕业生;没有磷肥工业的系统技术资料,各种设计基础资料也极其缺乏;建厂需要的专业设备,以至许多通用设备、机械和管阀件,都没有现成产品,也没有制造图纸,全得从头设计。陈鉴远在同前苏联专家及项目设计总负责人密切合作的基础上,从组织设计人员学习设计方法、查阅文献、参加科研与中试、整理资料做起。他亲自主持、参加研究决定重要技术方案,逐一核查工艺数据、计算,以及对各辅助专业提出的设计条件,审阅每张设计图纸,处理设计、施工、试车中出现的各种问题、做了大量艰苦细致的工作。这两个厂的设计,采用了先进的配酸、混料系统,立式搅拌,回转化成,旋窑干燥,尾气处理与回收,硫铁矿沸腾焙烧,电除尘除雾,固体物料机械化装卸运输和投料,机械化翻堆等新工艺技术,都倾注了他的心血。对于解决工艺介质强腐蚀问题,庞大的专用设备、塔器、大型机械以及高料仓、带行车的大跨度厂房和熟化仓等重型建筑物和构筑物的设计、制造和施工中的许多困难问题,他也出了许多好主意,付出了辛勤劳动。1958年5月和6月,两厂相继在南京和太原建成投产,生产规模和技术先进性都达到了当时的国际水平。
在此期间,陈鉴远和设计人员还在总结国内广泛开展的钙镁磷肥研制工作经验的基础上,选用高炉法熔炼技术于1958年4月编制出年产1万吨钙镁磷肥装置的通用设计,当年就在北京化工实验厂、昆阳磷肥厂和九江磷肥厂分别建成钙镁磷肥车间投人生产。随后,在各地推广建设了许多钙镁磷肥厂。
大型过磷酸钙肥料厂和万吨级高炉法钙镁磷肥装置的设计和投产,有效地培养锻炼了年轻的设计队伍,有力地促进了我国磷肥工业的发展。我国的磷肥工业在50年代初期的处女地上发展到1965年,产量跃居到了世界第4位。 重水,即氧化氘,是核反应堆的中子慢化剂与冷却剂,也是氢弹中的核炸药氘化锂的原料。它在天然水中含量仅为七千分之一。制取高浓度重水,难度很大,直到现在也只有少数发达国家能够生产,而其技术则绝对保密,产品也长期对我国严密封锁。1959年初,陈鉴远接受了设计水电解交换法制取重水中试装置的任务。他在七室组成一个包括工艺、设备、自控、土建、电气等各专业年轻技术员的设计组,共20多人,到现场参加模型试验,边学习,边做中试装置设计。之后又参加中试施工、调试。对这项中试,陈鉴远先后提出了不少重要意见和建议。1963年5月,打通了流程。年底,得到了含量为99.8%的重水,并取得了建大厂所需的重要数据和经验。
1963年4月,为了加快核工业的发展,有关部组团出国考察,化工部派陈鉴远参加,试控引进比投资较省、成本较低的重水成套装置,或者关键技术,或者进口重水产品。外国公司在邀请函中原有安排参观重水装置的内容,但在考察过程中,对方却推说:试验已停了装置已拆了,研究人员出国了,甚至说他们用的重水也是从美国买来的。结果,考察团既未能参观,也未能商谈引进装置,进口重水产品也不可能。为了不虚此行,经陈鉴远提出建议,在瑞士找外国商人洽购一些重水工厂需要而国内短期还不能生产的机、泵、仪表和器材,为自力开发重水技术创造条件。
考察团回国汇报后,国家下定决心自力开发建设重水工厂。当时,对于建设大型重水装置采用什么工艺技术方法这个重要决策性问题,有多种不同意见。在化工部确定的先解决产品的有无问题,再解决技术上的先进落后问题这一原则指导下,陈鉴远组织设计人员广泛收集资料,并主持对各种生产方法作了技术经济分析,结合国情提出:水电解交换法虽然比投资大,成本高,但工艺技术已经掌握,设备材料较易解决,是有把握在1965年拿到产品、满足试制氢弹要求的唯一方法,应首先建成投产;硫化氢双温交换法工艺流程复杂,介质剧毒并有腐蚀性,高温、低温、高压及流量控制要求严,工艺及设备材料尚待研究解决,但比投资省、成本低,应积极开发建设,以满足重水型核电站的大量需要。1963年8月,国家批准了自行开发并分别建设这两种方法生产重水的装置。陈鉴远首先抓住水电解交换法,会同有关单位集中力量,尽快完成中间试验,并组织设计人员正式开展工厂设计。之后,又亲自参加设备订货、施工安装和试车。在水电解交换法重水工厂设计中,陈鉴远选择了独特的工艺,使氧化氘浓度由0.0145%浓缩到3%,再富集到80%,最后制得99.8%的重水产品;支持并组织采取措施缩短从投料到出料所需的系统平衡时间;组织研究解决了电槽选型、阳极镀镍质量、交换塔的结构选型和贫氘水交换回收氢中氘等重要技术问题。陈鉴远还建议重要设备材料采取国内试制和国外选购两手准备。对电解槽镀镍阳极板的试制,提出了严格的质量要求。在安装电槽时,他要求设计人员和施工人员一起对每张石棉隔膜进行对光检查,选用合格品。由于有关领导正确指挥,各单位通力合作,电解交换法重水厂于1965年11月生产出合格重水,比计划提前了1年,保证了研制氢弹的需要;系统平衡时间仅4个月,比外国同类装置缩短一半以上时间。
硫化氢双温交换法生产重水,我国科研单位1959年开始研究不久,陈鉴远就派设计人员参加了小试和模试。1962年他组织进行了几种方法的多方案比较和预设计。上级决定建厂后,初期,陈鉴远任设计总负责人(他调任第六设计院院长后改由梅宁远负责)。他在增派人员到现场参加模试和着手中试设计的同时,又在院内组织力量整理模试数据和广泛收集的文献资料,加上合理的设想,编制双温法重水工厂的模拟技术方案,进行技术经济分析比较,由此选定工艺流程,提出需要补充试验的课题,需要中试验证的内容,需要试制的以及需要进口的设备与器材等等。这些工作,全面系统地弄清了这项工程需要解决的各种问题,对有关各方面下一步的工作安排起了重要指导作用。在此基础上提出的中试方案,使中试内容大为压缩,集中到主要验证同位素交换过程和主要生产控制两个重点问题上。对于精馏过程,他决定不进行中试,只补充测定有关物性数据、气液平衡数据和塔板效率数据,补充进行防腐蚀试验和塔体材料试制。1964年,双温交换法中试取得初步成果,逐步开展大厂设计。设计中,通过计算确定交换塔和精馏塔;通过调查运输途中容许通过能力对高大重型设备的限制,单套装置的生产能力和单个设备的最大尺寸与重量。塔板计算工作量很大,陈鉴远积极争取优先应用北京化工设计院刚拿到的电子计算机来较快完成计算,并大力支持有关设计人员发展计算机辅助设计及开发各种软件。对于需要试验研究的问题和需要试制的设备、器材,陈鉴远作了细致安排,获得了冶金、机械、化工等部门和中国科学院、军事医学科学院等所属单位以及许多高等院校大力支持,密切配合协作。对于需要进口的设备、器材,陈鉴远决定分别从几个国家进口,并组织设计人员配合有关部门出国找外商洽谈选购。1968年,大厂施工安装完成,但在试车中却陆续暴露出很多问题,相继发生多起泄漏、着火、中毒事故。事后他分析,设计中的技术抉择基本上是正确的,但也有一些问题和不足,如异种钢的焊接,某些填料和密封的选材等。在化工部工作组的领导下,在各单位广大职工临危不惧、奋力拼搏、配合协同下,陆续排除了故障,逐个解决了存在问题。1970年6月,生产出了合格产品,建成了具有当代世界先进水平的重水装置。
1966年,在双温交换法重水工厂动工不久,根据发展核工业的需要,决定着手再设计建设第二个双温交换法的工厂。1976年11月,该厂顺利投产,我国重水生产技术又提高到了新的水平。这项工程设计,1981年被国家建委评为优秀设计,1985年获国家科技进步一等奖。
为了联产液氢,以及结合氮肥厂成批建设重水生产装置,陈鉴远还组织设计人员与有关部门合作,先后开发成功液氢精馏法和液氨精馏法生产重水的技术,陆续建成多套装置投入了生产。重水的开发和生产,及时满足了核工业和航天工业发展的需要,保证了发射核弹、氢弹的要求。通过重水工程,我国较全面地熟练掌握了重水生产技术,培养了一支勇于创新、作风严谨细致、能攀登科技高峰的队伍,也积累了化工技术开发的丰富经验。 高能燃料是比燃烧能量很大、比冲很高的特种化学品,有液体和固体两大类,都有易燃易爆的特性。燃烧能量愈高,危险性愈大,生产技术难度也愈大。高能燃料主要用作导弹、火箭发射的动力源。在火箭中其用量约占火箭总重量的80%左右。
1964年初,国家决定建设偏二甲肼的生产装置。这是我国的第1项高能液体燃料工程。设计工作由陈鉴远主持。偏二甲肼的生产方法有两种:一是锌粉(或氢气)还原法,国内曾进行过研制,已掌握了生产技术,能少量生产;另一种是氯胺法,当时国内外都在研究中,还没有人掌握生产技术。采用何种方法建厂,上下左右都有不同看法。陈鉴远组织技术人员进行深入的调查研究和技术经济分析后,推荐采用氯胺法,指出:锌粉还原法技术虽较成熟,但反应中有致癌物质;收率低,原料消耗很大,个别原料还需进口,生产成本太高。氯胺法生产过程没有剧毒物质;原材料消耗少,成本只有锌粉法的1/4;生产技术虽然有待研究开发,但其难度和复杂程度并不太高。经化工部研究,同意采用氯胺法。对于氯胺法的技术路线,有气相法和液相法两种,气相法试验在先。陈鉴远认为,它虽有优点,但在制取氯胺过程中,有大量氯化铵结晶析出,集结在器壁上,影响反应热移出,温度无法控制,副反应剧增,并造成管道堵塞,不能连续运转,这样的问题在工程上很难解决,很难实现工业化生产。他积极支持采用液相氯胺法,指出:液相法虽然反应生成物浓度偏低,但可以设法提浓和精制。对于中试方案,陈鉴远决定不做全流程试验,只做反应试验;提浓和精馏只在试验室补测气液平衡数据和塔板效率。在工业装置设计中,他指导设计人员解决了保持等温反应,及时移出反应热的问题;他与有关部门合作制定了污水处理方案;组织制定了一套比较简单而又能保证产品质量的提浓、精馏流程等等。1967年,工程完成了施工安装。但是,由于文化大革命,试车中困难重重,暴露出跑冒滴漏、仪表不灵不准等许多问题。在化工部领导亲临现场主持下,陈鉴远组织设计人员对个别工序设计进行了修改,增设了塔间缓冲贮罐,加强了保温措施等等,并配合生产施工单位一起对工程缺陷进行精心修整,更换了一些有缺陷的设备、材料、仪表。1968年初,试车成功,偏二甲肼投入生产。这一首创的新工艺,长期保持了世界先进水平。10年以后,美国才搞成同样工艺生产偏二甲肼的装置。用这一工艺生产出来的产品,为我国东风系列导弹和长征系列火箭的成功发射提供了基本保障。1981年,这个工厂还出口数百吨产品用作火箭的燃料。
液氢,是当代已使用的高能液体燃料中比燃烧能量较大、比冲最高的一种。由于氢的液化温度很低,在常压下为零下253℃,不管哪种生产方法都需解决深冷技术问题,需要一些特殊设备、材料。1964年,我国在这些方面还十分薄弱,上级决定采取液氢精馏生产重水的方法联产液氢。当时,对于原料气路线,有两种不同意见:一是以氨合成用的原料气;二是用水电解制得的氢气。陈鉴远提出:前者虽有丰富的原料来源,能耗和成本低,但其中杂质多,高度净化技术国内还掌握得不够,风险较大;后者虽然能耗和生产建设费用较高,但有充分把握直接得到高纯氢。他强调:建设第一套工业装置应把技术上稳妥可靠摆在首位,因此积极建议优先开发电解氢路线。对一些重要技术问题,如微量氧的清除、正仲氢转化、液氢的贮存运输等等,他都组织设计人员和科研单位共同努力试验研究,求得满意的成果。1969年,这套装置顺利建成投产。1972年,以合成氨原料气为原料的液氢生产装置,也经陈鉴远主持开发设计,建成投产。生产出来的液氢,至今还用作运载火箭第三级发动机的高能燃料。
除偏二甲肼和液氢外,陈鉴远还参与了固体燃料聚硫橡胶、液体燃料胺类化合物,以及过氧化物、硼化物和硝酸酯类化合物等的规划工作和一些研究开发工作,并作出了贡献。 40多年来,陈鉴远领导设计了40多项化工工程,其中有20多项是我国首次建成投产的示范性工程(或称风险工程),是在他参与下经过科研、中间试验、设计、施工安装、调试投产的。通过这些工程开发设计的反复实践、认识、再实践、再认识,陈鉴远逐渐掌握了科学技术转化为现实生产力这一技术开发过程的规律,创立了一套科学有效的化工技术开发程序。1979年,中国化工学会在南京举行的一次报告会上,陈鉴远作了论化工技术开发的报告,首次完整、系统地阐述了化工技术开发的任务、方法、现状、问题和建议。之后,应化工部秦仲达部长等有关领导约请,他先后在化工部和北京市化工局等单位举行的一些研究进修班和多次专场报告会上作了报告。《化工进展》、《化工设计》等刊物也相继发表他的专文,向机关干部和广大科技人员介绍技术开发的有关知识。
在这些报告和文章中,陈鉴远指出:技术开发,是从概念的形成,经过科研、设计、建设,使一项新的技术或新的工艺付诸实施的整个过程,它是使科学技术转化为生产力的重要环节。技术开发的内容主要包括选题、小型试验、模型试验、中间试验、示范工厂,以及各个阶段的技术经济评价、市场研究和开发、概念设计、基础设计、建设及试车投产。这些活动可按顺序进行,也可以根据需要只做其中几项工作。
陈鉴远在他的报告和文章中,详细阐述了技术开发中各项工作的目的、意义、指导思想、做法和经验教训,而且针对长时期化工部门在科学技术转化为现实生产力方面存在的问题,提出了许多振聋发聩的见解。例如,关于试验研究,他指出:在技术开发中,试验研究是必要过程;在化学工业中,将一个新品种或新技术(除极个别情况外)不经试验研究直接投人工业化的生产,是十分危险的尝试。同时,他指出:小试主要探索化学问题,解决化学反应的可行性;研究产生的是科学知识而不是产品和工艺过程;利用研究成果,经过工业化的开发和创造,才能产生新的产品和新的工艺过程,由此才能获得效益,才能使科学技术转变为生产力。
关于技术经济评价,陈鉴远强调在技术开发的各阶段要进行多次技术经济评价来决定下一步工作是否值得继续进行或立即停止,以减少工作中的盲目性,使浪费减少到最低限度,工作效率也能尽量提高。
陈鉴远很重视概念设计,即根据小试验或模型试验的结果、文献中的数据、现有类似装置的操作数据、设计者的合理假设与他们的创造性设想,进行工业规模生产装置的系统设计。这种概念设计不同于一般工程设计,不能作为施工的依据。主要用以解决以下问题:一是对开发的新工艺进行深入的分析和讨论;探讨放大技术;提出工业化中可能出现的问题,并分析其中哪些技术是可靠的,还缺哪些数据和需要验证的技术。二是用系统工程的观点,吸收、组合有关技术成果,研讨改进技术方案,争取转化率、收率、能耗、设备投资等的最佳化。三是做出认真的技术经济分析和市场预测,哪些技术和设备由自己开发,哪些用已有的,哪些需要进口。四是提出中试和补充小试的课题及需要验证的数学模型、假设及推测,以便集中力量解决最关键的问题,增强中间试验的目的性,大量节省开发费用和时间,并使开发工作做到有把握。
关于中间试验,陈鉴远特别强调它是工艺过程开发中的关键一步,是开发过程中允许在技术上犯有错误的最后一步。中间试验不是小型试验或模型试验的放大,而是工业装置的缩小。由于实验技术、测试技术的发展,以及电子计算技术与数学模型的应用,已有可能使大部分试验只须在实验室或模型试验中进行,中试的目的可由求取数据为主逐步转变为验证设想、推测及计算的结果为主。为了节省开支和缩短试验时间,中试应集中解决少数几个对工程有重要影响的必须验证的问题,不一定做全流程中试;规模应在满足放大技术要求下尽量小些;一般的设备器材应求成熟、可靠为主。
关于设计,陈鉴远指出:用新开发成功的技术,建设第一个工业化生产装置时,是存在一定风险的。最可能出现的风险是试车期延长,从而加重了经济负担。因此,必须精心设计。要尽量采用成熟可靠的通用设备和适用的材质……要充分吸收、消化和正确应用试验室的成果,引进的先进技术,类似工程的数据和经验,以及已被证实的概念设计的设想;对重要的问题要进行多方案比较;要解决好工程放大问题;对生产控制和安全要予以足够重视;三废处理设施要同时建设。
陈鉴远提出的这些问题,在广大干部和科技人员中引起了强烈的共鸣。他提出的化工技术开发程序和做法受到了高度重视和热烈欢迎。这种结合国情的化工新技术开发方法在应用化工新工艺、新技术的建设工程中,对于加快科研到工业化的速度,提高投资的经济效益,具有重要作用和深远意义。

⑵ 天然气液化装置中,三级制冷过程跟二级制冷过程的区别在哪里请详细描述!

一、液化天然气(LiquifiedNaturalGas,简称LNG)
主要成分是甲烷,被公认是地球上最干净的能源。无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,液化天然气的重量仅为同体积水的45%左右。其制造过程是先将气田生产的天然气净化处理,经一连串超低温液化后,利用液化天然气船运送。燃烧后对空气污染非常小,而且放出热量大,所以液化天然气好。
它是天然气经压缩、冷却,在-160度下液化而成。其主要成分为甲烷,用专用船或油罐车运输,使用时重新气化。20世纪70年代以来,世界液化天然气产量和贸易量迅速增加,2005年LNG国际贸易量达1888.1亿立方米,最大出口国是印度尼西亚,出口314.6亿立方米;最大进口国是日本763.2亿立方米。
二、国内外概况及发展趋势
1941 年在美国克利夫兰建成了世界第一套工业规模的 LNG 装置,液化能力为 8500 m3 /d 。从 60 年代开始, LNG 工业得到了迅猛发展,规模越来越大,基本负荷型液化能力在 2. 5 × 104 m3 /d 。据资料[3]介绍,目前各国投产的 LNG 装置已达 160 多套, LNG 出口总量已超过 46.1 8 × 106 t/a 。
天然气的主要成分是甲烷,甲烷的常压沸点是 -16 1 ℃ ,临界温度为 -84 ℃ ,临界压力为 4.1MPa 。 LNG 是液化天然气的简称,它是天然气经过净化(脱水、脱烃、脱酸性气体)后[4],采用节流、膨胀和外加冷源制冷的工艺使甲烷变成液体而形成的[5]。
2.1 国外研究现状
国外的液化装置规模大、工艺复杂、设备多、投资高,基本都采用阶式制冷和混合冷剂制冷工艺,目前两种类型的装置都在运行,新投产设计的主要是混合冷剂制冷工艺,研究的主要目的在于降低液化能耗。制冷工艺从阶式制冷改进到混合冷剂制冷循环,目前有报道又有 C Ⅱ -2 新工艺[6],该工艺既具有纯组分循环的优点,如简单、无相分离和易于控制,又有混合冷剂制冷循环的优点,如天然气和制冷剂制冷温位配合较好、功效高、设备少等优点。
法国 Axens 公司与法国石油研究所 (IFP) 合作,共同开发的一种先进的天然气液化新工艺—— Liquefin 首次工业化,该工艺为 LNG 市场奠定了基础。其生产能力较通用的方法高 15%-20% ,生产成本低 25% 。使用 Liquefin 法之后,每单元液化装置产量可达 600 × 104 t/y 以上。采用 Liquefin 工艺生产 LNG 的费用每吨可降低 25% [7] 。该工艺的主要优点是使用了翅片式换热器和热力学优化后的工艺,可建设超大容量的液化装置。 Axens 已经给美国、欧洲、亚洲等几个主要地区提出使用该工艺的建议,并正在进行前期设计和可行性研究。 IFP 和 Axens 开发的 Liquefin 工艺的安全、环保、实用及创新特点最近已被世界认可,该工艺获得了化学工程师学会授予的“工程优秀奖” [8] 。
美国德克萨斯大学工程实验站,开发了一种新型天然气液化的技术—— GTL 技术已申请专利。该技术比目前开发的 GTL 技术更适用于小规模装置,可加工 30.5 × 104 m3 /d 的天然气。该实验站的 GTL 已许可给合成燃料 (Synfuels) 公司。该公司在 A & M 大学校园附近建立了一套 GTL 中试装置,目前正在进行经济性模拟分析。新工艺比现有技术简单的多,不需要合成气,除了发电之外,也不需要使用氧气。其经济性、规模和生产方面都不同于普通的费托 GTL 工艺。第一套工业装置可能在 2004 年上半年建成[9]。
2.2 国内研究现状
早在 60 年代,国家科委就制订了 LNG 发展规划, 60 年代中期完成了工业性试验,四川石油管理局威远化工厂拥有国内最早的天然气深冷分离及液化的工业生产装置,除生产 He 外,还生产 LNG 。 1991 年该厂为航天部提供 30tLNG 作为火箭试验燃料。与国外情况不同的是,国内天然气液化的研究都是以小型液化工艺为目标,有关这方面的文献发表较多[10],以下就国内现有的天然气液化装置工艺作简单介绍。
2.2.1 四川液化天然气装置
由中国科学院北京科阳气体液化技术联合公司与四川简阳市科阳低温设备公司合作研制的 300l/h 天然气液化装置,是用 LNG 作为工业和民用气调峰和以气代油的示范工程。该装置于 1992 年建成,为 LNG 汽车研究提供 LNG 。
该装置充分利用天然气自身的压力,采用气体透平膨胀机制冷使天然气液化,用于民用天然气调峰或生产 LNG ,工艺流程合理,采用气体透平膨胀机,技术较先进。该装置基本不消耗水、电,属节能工程,但液化率很低,约 10% 左右,这是与它的设计原则一致的。
2.2.2 吉林油田液化天然气装置
由吉林油田、中国石油天然气总公司和中科院低温中心联合开发研制的 500l/h 撬装式工业试验装置于 1996 年 12 月整体试车成功,该装置采用以氮气为冷剂的膨胀机循环工艺,整个装置由 10 个撬块组成,全部设备国产化 [11]。
该装置采用气体轴承透平膨胀机;国产分子筛深度脱除天然气中的水和 CO2 ,工艺流程简单,采用撬装结构,符合小型装置的特点。采用纯氮作为制冷工质,功耗比采用冷剂的膨胀机循环要高。没有充分利用天然气自身压力,将天然气在中压下( 5.0MPa 左右)液化(较高压力下液化既可提高氮气的制冷温度,又可减少制冷负荷),因此该装置功耗大。
2.2.3 陕北气田液化天然气
1999 年 1 月建成投运的 2 × 104 m3 /d “陕北气田 LNG 示范工程”是发展我国 LNG 工业的先导工程,也是我国第一座小型 LNG 工业化装置。该装置采用天然气膨胀制冷循环,低温甲醇洗和分子筛干燥联合进行原料气净化,气波制冷机和透平膨胀机联合进行低温制冷,燃气机作为循环压缩机的动力源,利用燃气发动机的尾气作为加热分子筛再生气的热源。该装置设备全部国产化。装置的成功投运为我国在边远油气田上利用天然气生产 LNG 提供了经验[12]。
2.2.4 中原油田液化天然气装置
中原油田曾经建设了我国最大的 LNG 装置,原料气规模为 26.6 5 × 104 m3 /d 、液化能力为 1 0 × 104 m3 /d 、储存能力为 1200 m3 、液化率为 37.5%[13]。目前,在充分吸取国外先进工艺技术的基础上,结合国内、国外有关设备的情况,主要针对自身气源特点,又研究出 LNG 工艺技术方案 [14] 。该工艺流程采用常用的分子筛吸附法脱水,液化工艺选用丙烷预冷 + 乙烯预冷 + 节流。
装置在原料气量 30× 104 m3 /d 时,收率高达 51.4% ,能耗为 0.13 Kwh/Nm3 。其优点在于各制冷系统相对独立,可靠性、灵活性好。但是工艺相对较复杂,须两种制冷介质和循环,设备投资高。由于该厂充分利用了油田气井天然气的压力能,所以液化成本低。
2.2.5 天津大学的小型液化天然气( LNG )装置
小型 LNG 装置与大型装置相比,不仅具有原料优势、市场优势而且投资低、可搬迁、灵活性大[15]。 LNG 装置主要是用胺基溶剂系统对天然气进行预处理,脱除 CO2 等杂质;分子筛脱水;液化几个步骤。装置采用单级混合制冷系统;闭合环路制冷循环用压缩机压缩制冷剂。单级混合制冷剂工艺操作简便、效率高,适用于小型 LNG 装置。
压缩机的驱动机可用燃气轮机或电动马达。电价低的地区可优先考虑电动马达(成本低、维修简单)。在燃料气价格低的地区,燃气透平将是更好的选择方案。经济评估结果表明,采用燃气轮机驱动机的液化装置,投资费要比选用电动马达高出 200 万~ 400 万美元。据对一套 15 × 106ft 3 /d 液化装置进行的成本估算,调峰用的 LNG 项目储罐容积为 10 万 m3 ,而用于车用燃料的 LNG 项目仅需 700m3 储罐,导致最终调峰用的 LNG 成本为 2.03 ~ 2.11 美元 /1000ft3 ,而车用 LNG 成本仅 0.98 ~ 0.99 美元 /1000 ft3 。
2.2.6 西南石油学院液化新工艺
该工艺日处理 3.0 × 104 m3 天然气,主要由原料气 ( CH4 : 95.28% , CO2 :2.9% ) 脱 CO2 、脱水、丙烷预冷、气波制冷机制冷和循环压缩等系统组成。 以 SRK 状态方程作为基础模型,开发了天然气液化工艺软件。 天然气压缩机的动力采用天然气发动机,小负荷电设备用天然气发电机组供电,解决了边远地区无电或电力紧张的难题。由于边远地区无集输管线可利用,将未能液化的天然气循环压缩,以提高整套装置的天然气液化率。
装置采用一乙醇胺法( MK-4 )脱除 CO2 。由于处理量小,脱二氧化碳的吸收塔和再生塔应采用高效填料塔 [16] 。由于混合制冷剂,国内没有成熟的技术和设计、运行管理经验,仪表控制系统较复杂。同时考虑到原料气中甲烷含量高,有压力能可以利用。故采用天然气直接膨胀制冷作为天然气液化循环工艺[17]。气波制冷属于等熵膨胀过程,气波制冷机是在热分离机的基础上,运用气体波运动的理论研制的。在结构上吸收了热分离机的一些优点,同时增加了微波吸收腔这一关键装置,在原理上与热分离机存在明显不同,更加有效地利用气体的压力,提高了制冷效率。
2.2.7 哈尔滨燃气工程设计研究院与哈尔滨工业大学
LNG 系统主要包括天然气预处理、天然气的低温液化、天然气的低温储存及天然气的气化和输出等[18]。经过处理的天然气通过一个多级单混冷凝过程被液化,制冷压缩机是由天然气发动机驱动。 LNG 储罐为一个双金属壁的绝热罐,内罐和外罐分别是由镍钢和碳钢制成 [19] 。
循环气体压缩机一般采用天然气驱动,可节省运行费用而使投资快速收回。压缩机一般采用非润滑式特殊设计,以避免天然气被润滑油污染[20]。采用装有电子速度控制系统的透平,而且新型透平的最后几级叶片用钻合金制造,改善了机械运转。安装于透平压缩机上的新型离合器是挠性的,它们的可靠性比较高,还可以调整间隙。

⑶ 提高材料机械性能的方法

随着现代工业的迅速发展,传统的热处理工艺已经不能完全适应现代生产对材料的性能要求,于是科研人员们开始寻求新的办法来解决和提高热处理工艺中的问题。中科院理化技术研究所深冷设备研究中心自行开发研制的SLX系列程序控制深冷箱就为热处理行业带来了一个巨大的福音。
深冷处理不仅可以提高黑色金属、有色金属、金属合金、碳化物、塑料、硅酸盐等材料的力学性能和使用寿命,稳定尺寸,改善均匀性,减小变形,而且操作简便,不破坏工件,无污染,成本低等诸优点越来越受到人们的重视。目前对深冷处理的研究应用除钢铁外,已经延伸到粉末冶金、铜合金、铝合金及其它非金属材料。行业遍布于航空航天、精密仪器仪表、摩擦偶件、工模具、量具、纺织机械零件、汽车工业和军事科学等领域。SLX 系列程序控制深冷箱主要是针对材料的低温处理、低温回火和时效/应力释放或样品冷冻需要的不同降温速率要求采用中国科学院理化技术研究所为配合热处理生产线最新研制的立式深冷箱。以液氮为制冷剂,采用最新的加热技术、控温技术和液氮分散技术,使程控升温、恒温、降温各过程更加均匀稳定。
深冷处理作为材料热处理的一种延续,材料最终性能的好坏,不单取决于热处理的工艺,还有深冷处理以及热处理与深冷处理之间相互搭配的工艺。随着现代工业的发展,对材料的性能的要求也越来越高。而当代材料的一大研究趋势主要表现为,对现有的传统材料在基本保持不改变其现有的成分基础上大幅度提高其性能,从而有效的提高资源的利用率和回收率。在材料性能得到改善的同时降低了成本,减小了对环境的损害。因此,有关材料的深冷处理的研究必将成为国内外材料科学工作者的一个重要研究方向。而深冷处理涉及到的关键技术之一就是如何方便、快捷、低廉、可靠且可控地获得低温。因此,未来对深冷处理装置及其工业应用的研究必将势不可挡。

⑷ 蝶阀的功能用途有哪些

蝶阀(英文:butterfly valve)是指关闭件(阀瓣或蝶板)为圆盘,围绕阀轴旋转来达到开启与关闭的一种阀,在管内道上主要起容切断和节流作用。蝶阀启闭件是一个圆盘形的蝶板,在阀体内绕其自身的轴线旋转,从而达到启闭或调节的目的。蝶阀全开到全关通常是小于90° ,蝶阀和蝶杆本身没有自锁能力,为了蝶板的定位,要在阀杆上加装蜗轮减速器。
采用蜗轮减速器,不仅可以使蝶板具有自锁能力,使蝶板停止在任意位置上,还能改善阀门的操作性能。工业专用蝶阀的特点能耐高温,适用压力范围也较高,阀门公称通径大,阀体采用碳钢制造,阀板的密封圈采用金属环代替橡胶环。大型高温蝶阀采用钢板焊接制造,主要用于高温介质的烟风道和煤气管道。
结构:主要由阀体、阀杆、碟板和密封圈组成。阀体呈圆筒形,轴向长度短,内置碟板。

阅读全文

与深冷处理试验装置设计相关的资料

热点内容
阀门型号ZZY什么意思 浏览:459
设备管理体系怎么写 浏览:218
啤酒发酵仪器设备有哪些 浏览:382
电动车电机轴承座细了怎么办 浏览:926
小钢炮电动工具昆明 浏览:390
怎么关煤气罐阀门 浏览:376
消防水池需要什么阀门 浏览:215
特殊化学实验装置作用原理 浏览:905
轴承转动紧有什么后果 浏览:153
行灯属于电动工具吗 浏览:286
输送带分层电动工具 浏览:256
如图所示为一个实验室模拟货物传送的装置 浏览:761
刷固态硬盘的工具箱 浏览:528
半导体制冷为什么不能特别冷 浏览:885
自动伸缩的机械装置 浏览:97
实验室制乙醇的实验装置 浏览:303
洛阳市博世电动工具维修点 浏览:350
设备租赁公司有哪些费用 浏览:732
国内刀具磨床都用什么阀门 浏览:891
深冷处理试验装置设计 浏览:477