导航:首页 > 装置知识 > 带式输送机张紧装置的设计图

带式输送机张紧装置的设计图

发布时间:2024-11-03 11:21:51

Ⅰ 求带式输送机传动装置设计

课程设计说明书

一.电动机的选择:
1.选择电动机的类型:
按工作要求和条件,选用三机笼型电动机,封闭式结构,电压380V,Y系列斜闭式自扇冷式鼠笼型三相异步电动机。(手册P167)
选择电动机容量 :
滚筒转速:
负载功率:
KW
电动机所需的功率为:
(其中: 为电动机功率, 为负载功率, 为总效率。)
2.电动机功率选择:

折算到电动机的功率为:

3.确定电动机型号:
按指导书 表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围为: .取V带传动比 ,则总传动比理论范围为 ,故电动机转速的可选范围为
符合这一范围的同步转速有750,1000和1500
查手册 表 的:选定电动机类型为:
其主要性能:额定功率: ,满载转速: ,额定转速: ,质量:
二、确定传动装置的总传动比和分配传动比
1.减速器的总传动比为:

2、分配传动装置传动比:
按手册 表1,取开式圆柱齿轮传动比
因为 ,所以闭式圆锥齿轮的传动比 .
三.运动参数及动力参数计算:
1.计算各轴的转速:
I轴转速:

2.各轴的输入功率
电机轴:
I轴上齿轮的输入功率:
II轴输入功率:
III轴输入功率:
3.各轴的转矩
电动机的输出转矩:

四、传动零件的设计计算
1.皮带轮传动的设计计算:
(1)选择普通V带
由课本 表5.5查得:工作情况系数:
计算功率:
小带轮转速为:
由课本 图5.14可得:选用A型V带:小带轮直径
(2)确定带轮基准直径,并验算带速
小带轮直径 ,参照课本 表5.6,取 ,

由课本 表5.6,取
实际从动轮转速:
转速误差为:
满足运输带速度允许误差要求.
验算带速
在 范围内,带速合适.
(3)确定带长和中心距
由课本 式5.18得:

查课本 表5.1,得:V带高度:
得:
初步选取中心距:
由课本 式5.2得:
根据课本 表5.2选取V带的基准长度:
则实际中心距:
(4)验算小带轮包角:
据课本 式5.1得: (适用)
(5)确定带的根数:
查课本 表5.3,得: .查课本 表5.4,得:
查课本 表5.4,得: .查课本 表5.2,得:
由课本 式5.19得:
取 根.
(6)计算轴上压力
查课本 表5.1,得:
由课本 式5.20,得:单根V带合适的张紧力:

由课本 式5.21,得:作用在带轮轴上的压力为 :

2、齿轮传动的设计计算:
(1)选择齿轮材料及精度等级
初选大小齿轮的材料均为45钢,经调质处理,硬度为
由课本表取齿轮等级精度为7级,初选
(2)计算高速级齿轮
<1>查课本 表6.2得:
取 ,
由课本 图6.12取 ,由课本 表6.3,取 ,
齿数教少取 ,取 则 .
<2>接触疲劳许用应力
由课本 图6.14查得: .
由课本 表6.5,查得: ,
则应力循环次数:

查课本 图6.16可得接触疲劳的寿命系数: ,
.
<3>计算小齿轮最小直径
计算工作转矩:
由课本 表6.8,取: ,

<4>确定中心距:
为便于制造和测量,初定: .
<5>选定模数 齿数 和螺旋角
一般: ,初选: 则 .
由 得:
由课本 表6.1取标准模数: ,则:
取 ,则: .
取 , .
齿数比:
与 的要求比较,误差为1.6%,可用.是:
满足要求.
<6>计算齿轮分度圆直径
小齿轮: ;
大齿轮:
<7>齿轮宽度

圆整得大齿轮宽度: ,取小齿轮宽度: .
<8>校核齿轮弯曲疲劳强度
查课本 图6.15,得 ;
查课本 表6.5,得: ;
查课本 图6.17得:弯曲强度寿命系数: ;

由课本 表6.4,得: ,
Z较大 ,取 ,
则: ,
所以两齿轮齿根弯曲疲劳强度满足要求,此种设计合理.
〈9〉齿轮的基本参数如下表所示:

名称 符号 公式 齿1 齿2
齿数

19 112
分度圆直径

58.015 341.985
齿顶高

3 3
齿根高

3.75 3.75
齿顶圆直径

64.015 347.985
齿根圆直径

50.515 334.485
中心距

200
孔径 b
齿宽

80 75

五、轴的设计计算及校核:
1.计算轴的最小直径
查课本 表11.3,取:
轴:
轴:
轴:
取最大转矩轴进行计算,校核.
考虑有键槽,将直径增大 ,则: .
2.轴的结构设计
选材45钢,调质处理.
由课本 表11.1,查得: .
由课本 表11.4查得: , .
由课本 式10.1得:联轴器的计算转矩:
由课本 表10.1,查得: ,
按照计算转矩应小于联轴器公称转矩的条件,查手册 表8-7,
选择弹性柱销联轴器,型号为: 型联轴器,其公称转矩为:
半联轴器 的孔径: ,故取: .
半联轴器长度 ,半联轴器与轴配合的毂孔长度为: .
(1)轴上零件的定位,固定和装配
单级减速器中可以将齿轮安排在箱体中央,相对两轴承对称分布.齿轮左面由套筒定位,右面由轴肩定位,联接以平键作为过渡配合固定,两轴承均以轴肩定位.

(2)确定轴各段直径和长度
<1> 段:为了满足半联轴器的轴向定位要求, 轴段右端需制出一轴肩,故取 段的直径 ,左端用轴端挡圈定位,查手册表按轴端去挡圈直径 ,半联轴器与轴配合的毂孔长度: ,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故段的长度应比略短,取: .
<2>初步选择滚动轴承,因轴承同时受有径向力和轴向力的作用 ,故选用蛋列圆锥滚子轴承,参照工作要求并根据: .
由手册 表 选取 型轴承,尺寸: ,轴肩
故 ,左端滚动轴承采用绉件进行轴向定位,右端滚动轴承采用套筒定位.
<3>取安装齿轮处轴段 的直径: ,齿轮右端与右轴承之间采用套筒定位,已知齿轮轮毂的宽度为 ,为了使套筒端面可靠地压紧齿轮,此轴段应略短与轮毂宽度,故取: ,齿轮右端采用轴肩定位,轴肩高度 ,取 ,则轴环处的直径: ,轴环宽度: ,取 , ,即轴肩处轴径小于轴承内圈外径,便于拆卸轴承.
<4>轴承端盖的总宽度为: ,取: .
<5>取齿轮距箱体内壁距离为: .
, .
至此,已初步确定了轴的各段直径和长度.
(3)轴上零件的周向定位
齿轮,半联轴器与轴的周向定位均采用平键联接
按 查手册 表4-1,得:平键截面 ,键槽用键槽铣刀加工,长为: .
为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为; ,半联轴器与轴的联接,选用平键为: ,半联轴器与轴的配合为: .
滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为: .
(4)确定轴上圆角和倒角尺寸,
参照课本 表11.2,取轴端倒角为: ,各轴肩处圆角半径: 段左端取 ,其余取 , 处轴肩定位轴承,轴承圆角半径应大于过渡圆角半径,由手册 ,故取 段为 .
(5)求轴上的载荷
在确定轴承的支点位置时,查手册 表6-7,轴承 型,取 因此,作为简支梁的轴的支撑跨距 ,据轴的计算简图作出轴的弯矩图,扭矩图和计算弯矩图,可看出截面处计算弯矩最大 ,是轴的危险截面.
(6)按弯扭合成应力校核轴的强度.

<1>作用在齿轮上的力
因已知低速级大齿轮的分度圆直径为: ,
得: , , .
<2>求作用于轴上的支反力
水平面内支反力:

垂直面内支反力:

<3>作出弯矩图
分别计算水平面和垂直面内各力产生的弯矩.

计算总弯矩:

<4>作出扭矩图: .
<5>作出计算弯矩图: ,
.

<6>校核轴的强度
对轴上承受最大计算弯矩的截面的强度进行校核.
由课本 式11.4,得: ,
由课本 表11.5,得: ,
由手册 表4-1,取 ,计算得: ,
得: 故安全.
(7)精确校核轴的疲劳强度
校核该轴截面 左右两侧.
<1>截面 右侧:由课本 表11.5,得:
抗弯截面模量: ,
抗扭截面模量: ,
截面 右侧的弯矩: ,
截面 世上的扭矩为: ,
截面上的弯曲应力: ,
街面上行的扭转切应力: .
截面上由于轴肩而形成的理论应力集中系数 及 ,
由课本 图1.15,查得:
得:
由课本 图1.16,查得:材料的敏性系数为:
故有效应力集中系数为:

由课本 图1.17,取:尺寸系数 ;扭转尺寸系数: .
按磨削加工,
由课本 图1.19,取表面状态系数: .
轴未经表面强化处理,即: .
计算综合系数值为:
.
由课本第一章取材料特性系数: .
计算安全系数 :
由课本 式,得: ,
.
由课本 表11.6,取疲劳强度的许用安全系数: .
,故可知其安全.
<2>截面 左侧
抗弯截面模量为: .
抗扭截面模量为: .
弯矩及弯曲应力为: ,
扭矩及扭转切应力为: ,
过盈配合处的 值: ,由 ,得: .
轴按磨削加工,由课本 图1.19,取表面状态系数为: .
故得综合系数为: ,
.
所以在截面 右侧的安全系数为: ,
.
.

故该轴在截面右侧的强度也是足够的.
3. 确定输入轴的各段直径和长度

六. 轴承的选择及计算
1.轴承的选择:
轴承1:单列圆锥滚子轴承30211(GB/T 297-1994)
轴承2:单列圆锥滚子轴承30207(GB/T 297-1994)
2.校核轴承:
圆锥滚子轴承30211,查手册:
由课本 表8.6,取

由课本 表8.5,查得:单列圆锥滚子轴承 时的 值为: .
由课本 表8.7,得:轴承的派生轴向力: , .
因 ,故1为松边,
作用在轴承上的总的轴向力为: .
查手册 表6-7,得:30211型 , .
由课本 表8.5,查得: ,
,得: .
计算当量动载荷: ,
.
计算轴承寿命,由课本 式8.2,得: 取: .
则: .

七.键的选择和计算
1.输入轴:键 , , 型.
2.大齿轮:键 , , 型.
3.输出轴:键 , , 型.
查课本 表3.1, ,式3.1得强度条件: .
校核键1: ;
键2: ;
键3: .
所有键均符合要求.
八.联轴器的选择
选择 轴与电动机联轴器为弹性柱销联轴器
型号为: 型联轴器:
公称转矩: 许用转速: 质量: .
选择 轴与 轴联轴器为弹性柱销联轴器
型号为: 型联轴器:
公称转矩: 许用转速: 质量: .
九.减数器的润滑方式和密封类型的选择
1、 减数器的润滑方式:飞溅润滑方式
2、 选择润滑油:工业闭式齿轮油(GB5903-95)中的一种。
3、 密封类型的选择:密封件:毡圈1 30 JB/ZQ4606-86
毡圈2 40 JB/ZQ4606-86

十.设计小节
对一级减速器的独立设计计算及作图,让我们融会贯通了机械专业的各项知识,更为系统地认识了机械设计的全过程,增强了我们对机械行业的深入了解,同时也让我们及时了解到自己的不足,在今后的学习中会更努力地探究.
十一.参考资料
1.“课本”:机械设计/杨明忠 朱家诚主编 编号 ISBN 7-5629-1725-6 武汉理工大学出版社 2004年6月第2次印刷.
2.“手册”:机械设计课程设计手册/吴宗泽,罗圣国主编 编号ISBN7-04-019303-5 北京高等教育出版社 2006年11月第3次印刷.
3“指导书”:机械设计课程设计指导书/龚桂义,罗圣国主编 编号ISBN 7-04-002728-3 北京高等教育出版社 2006年11月第24次印刷.

Ⅱ 传动皮带的松紧度是如何确定的

带传动中皮带使用一段时间后肯定会松弛,在实际工作中,没有必要进行计算。最简单的方法是:在皮带静止状态下(安装在皮带轮上),用手压张紧侧,皮带下沉如在20mm~30mm范围内基本上是正常的,超出这个范围应该是松弛了。目前大多使用自动张紧装置和手动张紧装置(需定期检查)来调节皮带的松紧度。

Ⅲ 带式输送机的主要由哪几部分组成

带式输送机也就复是皮带制输送机,基本组成部分有机架、输送带、传动滚筒、改下滚筒、托辊、驱动装置等。

有些重型带式输送机或比较长的输送机可能还会安装有清扫器、防跑偏装置、进料装置、卸料装置、制动装置、逆止器等。


(3)带式输送机张紧装置的设计图扩展阅读:

1、水平拐弯带式输送机

水平拐弯带式输送机可以绕开建筑物或不利地形, 减少甚至不设中间转载站,集中系统供电和控制,减少物料溢出或堵塞的危险,减少粉尘飞扬、噪声,以及不必要的能耗。

2、气垫式带输送机

其输送带在空气膜(气垫)上运行,用不动的带有气孔的气室盘形槽和气室取代了运行的托辊,运动部件的减少,总的等效质量减少,阻力减小,效率提高,并且运行平稳,可提高带速。但一般其运送物料的块度不超过300mm。

Ⅳ 皮带运输机上张紧滚筒是干什么的与拉紧装置有无冲突 与张紧装置有何区别

有张紧装置,就不需要用拉紧。张紧滚筒是张紧装置的一部分,张紧装置俗名:垂直拉紧

Ⅳ 基于PLC控制的带式输送机自动张紧装置的毕业论文谁有!!最好是免费的,简述也行

1. PLC电镀行车控制系统设计
2. 机械手模型的PLC控制系统设计
3. PLC在自动售货机控制系统中的应用
4. 基于PLC控制的纸皮压缩机
5. 基于松下系列PLC恒压供水系统的设计
6. 基于PLC的自动门电控部分设计
7. 基于PLC的直流电机双闭环调速系统设计
8. 基于PLC的细纱机电控部分设计
9. 燃气锅炉温度的PLC控制系统
10. 交流提升系统PLC操作控制台
11. 基于PLC铝带分切机控制系统的设计
12. 高层建筑电梯控制系统设计
13. 转炉气化冷却控制系统
14. 高炉上料卷扬系统
15. 调速配料自动控制系统
16. 基于PLC的砌块成型机的电气系统设计
17. PLC在停车场智能控制管理系统应用
18. PLC 在冷冻干燥机的应用
19. 基于PLC的过程控制
20. 电器装配线PLC控制系统
21. 基于PLC的过程控制系统的设计
22. 基于PLC的伺服电机试验系统设计
23. 陶瓷压砖机PLC电气控制系统的设计
24. 多工位组合机床的PLC控制系统
25. 基于PLC的车床数字化控制系统设计
26. PLC实现自动重合闸装置的设计
27. 混凝土搅拌站控制系统设计
28. 基于PLC控制的带式输送机自动张紧装置
29. 基于PLC的化学水处理控制系统的设计
30. S7-300 PLC在电梯控制中的应用
31. 模糊算法在线优化PI控制器参数的PLC设计
32. 神经网络在线优化PI参数的PLC及组态设计
33. 模糊算法优化PI参数的PLC实现及组态设计
34. BP算法在线优化PI控制器参数的PLC实现
35. 推钢炉过程控制系统设计
36. 焦炉电机车控制系统的设计
37. 基于PLC的锅炉控制系统设计
38. 热量计的硬件电路设计
39. 高层建筑PLC控制的恒压供水系统的设计
40. 材料分拣PLC控制系统设计
41. 基于PLC控制的调压调速电梯拖动系统设计
42. 基于PLC的七层交流变频电梯控制系统设计
43. 五层交流双速电梯PLC电气控制系统的设计
44. 四层交流双速电梯的PLC电气控制系统的设计
45. 三层楼交流双速电梯的PLC电气控制系统的设计
46. PLC在恒温控制过程中的应用
Q.Q,89 ........................................后面接着输入......
36........................................后面接着输入......
28........................................后面接着输入......
136
(4行连着输入就是我的QQ)
47. 变频器在恒压供水控制系统中的应用
48. 基于西门子PLC的Z3040型摇臂钻床改造
49. PLC控制的恒压供水系统的设计

Ⅵ 怎样调整皮带机皮带跑偏

1 、调整承载托辊组 皮带机的皮带在整个皮带输送机的中部跑偏时可调整托辊组的位置来调整跑偏;在制造时托辊组的两侧安装孔都加工成长孔,以便进行调整。具体调整方法(见图1),具体方法是皮带偏向哪一侧,托辊组的哪一侧朝皮带前进方向前移,或另外一侧后移。如图1所示皮带向上方向跑偏则托辊组的下位处应当向左移动,托辊组的上位处向右移动。

4、张紧处的调整 皮带张紧处的调整是皮带输送机跑偏调整的一个非常重要的环节。重锤张紧处上部的两个改向滚筒除应垂直于皮带长度方向以外还应垂直于重力垂线,即保证其轴中心线水平。使用螺旋张紧或液压油缸张紧时,张紧滚筒的两个轴承座应当同时平移,以保证滚筒轴线与皮带纵向方向垂直。具体的皮带跑偏的调整方法与滚筒处的调整类似。

5、转载点处落料位置对皮带跑偏的影响 转载点处物料的落料位置对皮带的跑偏有非常大的影响,尤其在两条皮带机在水平面的投影成垂直时影响更大。通常应当考虑转载点处上下两条皮带机的相对高度。相对高度越低,物料的水平速度分量越大,对下层皮带的侧向冲击也越大,同时物料也很难居中。使在皮带横断面上的物料偏斜,最终导致皮带跑偏。如果物料偏到右侧,则皮带向左侧跑偏,反之亦然。在设计过程中应尽可能地加大两条皮带机的相对高度。在受空间限制的移动散料输送机械的上下漏斗、导料槽等件的形式与尺寸更应认真考虑。一般导料槽的的宽度应为皮带宽度的三分之二左右比较合适。为减少或避免皮带跑偏可增加挡料板阻挡物料,改变物料的下落方向和位置。

6、双向运行皮带输送机跑偏的调整 双向运行的皮带输送机皮带跑偏的调整比单向皮带输送机跑偏的调整相对要困难许多,在具体调整时应先调整某一个方向,然后调整另外一个方向。调整时要仔细观察皮带运动方向与跑偏趋势的关系,逐个进行调整。重点应放在驱动滚筒和改向滚筒的调整上,其次是托辊的调整与物料的落料点的调整。同时应注意皮带在硫化接头时应使皮带断面长度方向上的受力均匀,在采用导链牵引时两侧的受力尽可能地相等。

阅读全文

与带式输送机张紧装置的设计图相关的资料

热点内容
旋塞阀门做气密试验怎么做 浏览:509
机械硬盘怎么连接电脑没反应了 浏览:840
女机械二觉是什么职业 浏览:868
煤气阀门开的时候声音很大 浏览:360
化学实验时装置气密性检查 浏览:940
在医院做医疗设备利润如何 浏览:619
自动换袋装置 浏览:317
汽车仪表盘效果图怎么画 浏览:975
建筑幕墙水波自动装置 浏览:962
大连机床怎么保存程序 浏览:516
制冷饮料罐是什么垃圾 浏览:721
经鼻高流量仪器关机怎么办 浏览:505
手持电动工具安全风险等级 浏览:808
体育器材哪些检测机构 浏览:259
机械开挖四类土要乘以多少 浏览:900
暖气片上可以加阀门吗 浏览:637
网吧设备回收公司在哪里 浏览:43
刷脸支付设备多少钱一台有大有小吗 浏览:537
消防器材夹套是什么意思 浏览:882
焦化厂升降的设备是什么 浏览:651