1. plc系统设计的主要内容
PLC控制系统,即可编程逻辑控制器,专为工业生产设计的一种数字运算操作的电子装置,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。是工业控制的核心部分。PLC控制系统是工业机械手的重要组成部分。
一、plc控制系统的设计内容
(1)根据设计任务书,进行工艺分析,并确定控制方案,它是设计的依据。
(2)选择输入设备(如按钮、开关、传感器等)和输出设备(如继电器、接触器、指示灯等执行机构)。
(3)选定PLC的型号(包括机型、容量、I/O模块和电源等)。
(4)分配PLC的I/O点,绘制PLC的I/O硬件接线图。
(5)编写程序并调试。
(6)设计控制系统的操作台、电气控制柜等以及安装接线图。
(7)编写设计说明书和使用说明书。
plc控制系统
二、plc控制系统设计步骤
1、工艺分析
深入了解控制对象的工艺过程、工作特点、控制要求,并划分控制的各个阶段,归纳各个阶段的特点,和各阶段之间的转换条件,画出控制流程图或功能流程图。
2、选择合适的PLC类型
在选择PLC机型时,主要考虑下面几点:
(1)功能的选择。对于小型的PLC主要考虑I/O扩展模块、A/D与D/A模块以及指令功能(如中断、PID等)。
(2)I/O点数的确定。统计被控制系统的开关量、模拟量的I/O点数,并考虑以后的扩充(一般加上10%~20%的备用量),从而选择PLC的I/O点数和输出规格。
(3)内存的估算。用户程序所需的内存容量主要与系统的I/O点数、控制要求、程序结构长短等因素有关。一般可按下式估算:存储容量=开关量输入点数×10+开关量输出点数×8+模拟通道数×100+定时器/计数器数量×2+通信接口个数×300+备用量。
3、分配I/O点。分配PLC的输入/输出点,编写输入/输出分配表或画出输入/输出端子的接线图,接着就可以进行PLC程序设计,同时进行控制柜或操作台的设计和现场施工。
4、程序设计。对于较复杂的控制系统,根据生产工艺要求,画出控制流程图或功能流程图,然后设计出梯形图,再根据梯形图编写语句表程序清单,对程序进行模拟调试和修改,直到满足控制要求为止。
5、控制柜或操作台的设计和现场施工。设计控制柜及操作台的电器布置图及安装接线图;设计控制系统各部分的电气互锁图;根据图纸进行现场接线,并检查。
6、应用系统整体调试。如果控制系统由几个部分组成,则应先作局部调试,然后再进行整体调试;如果控制程序的步序较多,则可先进行分段调试,然后连接起来总调。
7、编制技术文件。技术文件应包括:可编程控制器的外部接线图等电气图纸,电器布置图,电器元件明细表,顺序功能图,带注释的梯形图和说明。
2. 机床电气控制线路设计通常包含哪些内容
一、控制方案的确定原则
电气设备的控制方案是多种多样的,因此,设计人员在设计时,应该本着简便、可靠、经济、实用的要求进行控制方案的制定。具体来说,设计人员应该遵循以下原则:经济效益是控制方式科学与否的重要标准。如果控制逻辑较为简单,其加工程序也较为稳定的生产设备,则适用于继电-接触控制方式,这是较为合理的;反之,如果是加工程序多变,则应该考虑采用编程序控制器;通用化指的是生产机械加工不同对象的通用化程度。如果加工一种或者几种零件的专用机床,其通用化程度低,那也是合理的,因为其可以保持较高的自动化程度,因此,这样的机床一般适用于固定的控制电路;而如果是单件、小批量的零件加工的通用机床,则应该采用数字程序或者编程控制器控制,因为其可以根据加工对象的不同设定不同加工程序,具有相当的灵活性和通用性;如果控制电路比较简单,则可以采用电网电源,如果元件多且电路复杂,则对电网电压隔离降压,减少故障的可能性。而对于自动化程度高的生产设备,就应该考虑采用直流电源,这样可以节省安装的空间,操作和维修也比较方便。事实上,影响方案确定的因素还有很多,在实际的设计中,最后方案的确定要根据设计人员的技术水平和判断力来决定。
二、电气控制线路的分析
机床的电气控制系统应保证机床的使用效能和正确的动作程序。在设计机床的电气原理图之前,应当确定电气控制的方案。控制方式应当与机床的通用化和专用化的程度相适应。对于专用机床,其工作程序往往是固定的,使用中并不需要经常改变原有的程序。因此,控制线路在结构上往往做成“固定”式的。对于一些数控机床,为了适应不同的工艺过程的需要,机床的工作程序往往需要在一定的范围内加以更改。在机床自动线中可根据控制要求和联锁条件的复杂程度不同,采用分散控制的控制方式。但是各台单机的控制方式和基本控制环节应尽量一致,以便简化设计和制造过程。自动工作循环的组成在方案中可列出有关步骤,或说明行程开关的布置与简图。如电磁铁或电磁阀的通断状态与所执行动作,对于机床自动线还应列出自动线的循环周期表。为控制线路原理设计提供具体要求和条件,如自动循环、手动调整、动作程序更换或控制系统的检测测试等等。联锁条件及电气保护机床的各种运动和操作,都是相互联系的。
三、电气控制路线的设计方法
设计人员在进行具体电路设计时,必须要根据主次原则进行设计,顺序为设计主电路,设计控制电路,信号电路及局部照明电路设计。在完成初步设计后,必须要仔细检查,保证线路符合设计要求,同时尽可能使之完善和简化,最后再根据实际需要选择所用电器的型号与规格。
(一)控制线路的设计要求
由于电气的种类繁多,因此不同用途的电气控制线路,其控制要求也不尽相同,但从规律上,还是必须要应满足一些基本要求。首先,应该满足生产机械的工艺要求,正确按照工艺的顺序工作,线路结构以简单为主要目标,尽量选用常用的且经过实际考验过的线路;其次,操作、调整和检修要符合方便的原则;最后,具有各种必要的保护装置和联锁环节,即使在误操作时也不会发生重大事故,工作稳定,安全可靠,符合使用环境条件。
(二)控制线路的设计方法
事实上,电气控制线路的设计方法主要归纳为两种:一种是经验设计法,另一种是逻辑设计法。所谓经验设计法是指,依照生产工艺的要求,根据电动机的控制方法,使用典型环节线路直接进行设计,首先设计出各个独立的控制电路,最后结合设备的工艺要求,来决定各部分电路的联锁或联系。这种方法的优点是简单,不过其缺点也很明显,即对于比较复杂的线路,就要求设计人员拥有丰富的工作经验,同时需要绘制大量的线路图,而且可能要进行多次的修改,才能得到符合要求的控制线路。所谓逻辑设计法是指采用逻辑代数进行设计,按此方法设计的线路结构合理,可节省所用元件的数量。
(三)设计控制线路注意事项
为了使线路设计得简单且准确可靠,在设计具体线路时,应注意以下几个问题:尽量减少连接导线,设计人员在设计控制电路时,必须考虑要电气设备各元器件的实际位置,应该在符合设计原则的基础上,尽可能减少配线时的连接导线。正确连接电器的线圈,从理论上看,电压线圈一般不能串联使用,原因就在于它们的阻抗不尽相同,这样就可能会造成两个线圈上的电压分配不等。而即使是两个同型号线圈,在外加电压是它们的额定电压之和的理想情况下,也不能这样连接。因为,电器动作是有先后的,而当一个接触器先动作时,其线圈阻抗增大,该线圈上的电压降增大,使另一个接触器不能吸合,如果情况严重,还可能使线圈烧毁。此外,如果电感量相差悬殊的两个电器线圈,也不应该并联连接。控制线路中应避免出现寄生电路寄生电路是线路动作过程中意外接通的电路。尽可能减少电器数量、采用标准件和相同型号的电器尽量减少不必要的触点以简化线路,提高线路可靠性。
3. 电气设计有哪些要求(设计规范,选型整定等)
电气原理图设计
为满足生产机械及工艺要求进行的电气控制电路的设计
电气工艺设计
为电气控制装置的制造,使用,运行,维修的需要进行的生产施工设计
第一节 电气控制设计的原则和内容
一,电气控制设计的原则
1)最大限度满足生产机械和生产工艺对电气控制的要求
2)在满足要求的前提下,使控制系统简单,经济,合理,便于操作,维修方便,安全可靠
3)电器元件选用合理,正确,使系统能正常工作
4)为适应工艺的改进,设备能力应留有裕量
二,电气控制设计的基本内容
1.电气原理图设计内容
1) 拟定电气设计任务书
2)选择电力拖动方案和控制方式
3)确定电动机的类型,型号,容量,转速
4)设计电气控制原理图
5)选择电器元件及清单
6)编写设计计算说明书
2. 电气工艺设计内容
1)设计电气设备的总体配置,绘制总装配图和总接线图
2)绘制各组件电器元件布置图与安装接线图,标明安装方式,接线方式
3)编写使用维护说明书
第二节 电力拖动方案的确定和电动机的选择
一,电力拖动方案的确定
1,拖动方式的选择
2,调速方案的选择
3,电动机调速性质应与负载特性相适应
二,拖动电动机的选择
(一)电动机选择的基本原则
1)电动机的机械特性应满足生产机械的要求,与负载的特性相适应
2)电动机的容量要得到充分的利用
3)电动机的结构形式要满足机械设计的安装要求,适合工作环境
4)在满足设计要求前提下,优先采用三相异步电动机
(二)根据生产机械调速要求选择电动机
一般---三相笼型异步电动机,双速电机
调速,起动转矩大---三相笼型异步电动机
调速高---直流电动机,变频调速交流电动机
(三)电动机结构形式的选择
根据工作性质,安装方式,工作环境选择
(四)电动机额定电压的选择
(五)电动机额定转速的选择
(六)电动机容量的选择
1,分析计算法:
此外,还可通过对长期运行的同类生产机械的电动机容量进行调查,并对机械主要参数,工作条件进行类比,然后再确定电动机的容量.
第三节 电气控制电路设计的一股要求
一,电气控制应最大限度地满足生产机械加工工艺的要求
设计前,应对生产机械工作性能,结构特点,运动情况,加工工艺过程及加工情况有充
分的了解,并在此基础上设计控制方案,考虑控制方式,起动,制动,反向和调速的要求,
安置必要的联锁与保护,确保满足生产机械加工工艺的要求.
二,对控制电路电流,电压的要求
应尽量减少控制电路中的电流,电压种类,控制电压应选择标准电压等级.电气控制电
各常用的电压等级如表10-2所示.
三,控制电路力求简单,经济
1.尽量缩短连接导线的长度和导线数量 设计控制电路时,应考虑各电器元件的安装
立置,尽可能地减少连接导线的数量,缩短连接导线的长度.如图10-l.
2.尽量减少电器元件的品种,数量和规格 同一用途的器件尽可能选用同品牌,型号的产品,并且电器数量减少到最低限度.
3.尽量减少电器元件触头的数目.在控制电路中,尽量减少触头是为了提高电路运行
的可靠性.例如图10-2a所示.
4.尽量减少通电电器的数目,以利节能与延长电器元件寿命,减少故障.如图10-3a所示.
四,确保控制电路工作的安全性和可靠性
1.正确连接电器的线圈 在交流控制电路中,同时动作的两个电器线圈不能串联,两个电磁线圈需要同时吸合时其线圈应并联连接,如图10-4b所示.
在直流控制电路中,两电感值相差悬殊的直流电压线圈不能并联连接.
2正确连接电器元件的触头 设计时,应使分布在电路中不同位置的同一电器触头接到电源的同一相上,以避免在电器触头上引起短路故障.
3防止寄生电路 在控制电路的动作过程中.意外接通的电路叫寄生电路.
4.在控制电路中控制触头应合理布置.
5.在设计控制电路中应考虑继电器触头的接通与分断能力.
6,避免发生触头"竞争","冒险"现象
竞争:当控制电路状态发生变换时,常伴随电路中的电器元件的触头状态发生变换.由于电器元件总有一定的固有动作时间,对于一个时序电路来说,往往发生不按时序动作的情况,触头争先吸合,就会得到几个不同的输出状态,这种现象称为电路的"竞争".
冒险:对于开关电路,由于电器元件的释放延时作用,也会出现开关元件不按要求的逻辑功能输出,这种现象称为"冒险".
7.采用电气联锁与机械联锁的双重联锁.
五,具有完善的保护环节
电气控制电路应具有完善的保护环节,常用的有漏电保护,短路,过载,过电流,过电压,欠电压与零电压,弱磁,联锁与限位保护等.
六,要考虑操作,维修与调试的方便
第四节 电气控制电路设计的方法与步骤
一,电气控制电路设计方法简介
设计电气控制电路的方法有两种,一种是分析设计法,另一种是逻辑设计法.
分析设计法(经验设计法):根据生产工艺的要求选择一些成熟的典型基本环节来实现这些基本要求,而后再逐步完善其功能,并适当配 置联锁和保护等环节,使其组合成一个整体,成为满足控制要求的完整电路.
逻辑设计法:利用逻辑代数这一数学工具设计电气控制电路.
在继电接触器控制电路中,把表示触头状态的逻辑变量称为输人逻辑变量,把表示继电
器接触器线圈等受控元件的逻辑变量称为输出逻辑变量.输人,输出逻辑变量之间的相互关
系称为逻辑函数关系,这种相互关系表明了电气控制电路的结构.所以,根据控制要求,将
这些逻辑变量关系写出其逻辑函数关系式,再运用逻辑函数基本公式和运算规律对逻辑函数
式进行化简,然后根据化简了的逻辑关系式画出相应的电路结构图,最后再作进一步的检查
和优化,以期获得较为完善的设计方案.
二,分析设计法的基本步骤
分析设计法设计电气控制电路的基本步骤是:
l)按工艺要求提出的起动,制动,反向和调速等要求设计主电路.
2)根据所设计出的主电路,设计控制电路的基本环节,即满足设计要求的起动,制动,
反向和调速等的基本控制环节.
3)根据各部分运动要求的配合关系及联锁关系,确定控制参量并设计控制电路的特殊
环节.
4)分析电路工作中可能出现的故障,加入必要的保护环节.
5)综合审查,仔细检查电气控制电路动作是否正确 关键环节可做必要实验,进一步
完善和简化电路a
三,分析设计法设计举例
下面以横梁升降机构的电气控制设计为例来说明分析设计法设计电气控制电路的方法与
步骤.
在龙门刨床上装有横梁升降机构,加工工件时,横梁应夹紧在立柱上,当加工工件高低
不同时,则横梁应先松开立柱然后沿立柱上下移动,移动到位后,横梁应夹紧在立柱上.所
以,横梁的升降由横梁升降电动机拖动,横梁的放松,夹紧动作由夹紧电动机,传动装置与
夹紧装置配合来完成.
(一)横梁升降机构的工艺要求:
(1)横梁上升时,自动按照先放松横梁一横梁上升一夹紧横梁的顺序进行.
(2)横梁下降时,自动按照放松横梁一横梁下降一横梁回升一夹紧横梁的顺序进行.
(3)横梁夹紧后,夹紧电动机自动停止转动.
(4)横梁升降应设有上下行程的限位保护,夹紧电动机应设有夹紧力保护.
(二)电气控制电路设计过程
1.主电路设计: 横梁升降机构分别由横梁升降电动机MI与横梁夹紧放松电动机W拖
动.巴两台电动机均为三相笼型异步电动机,均要求实现正反转.因此采用KM1I,KM2.
KM3,KM4四个接触器分别控制M1和M2的正反转,如图10-9所示.
2.控制电路基本环节的设计:由于横梁升降为调整运动,故对M1采用点动控制,一个
点动按钮只能控制一种运动,故用上升点动按钮犯 与下降点动按钮明 来控制横梁的升降,但在移动前要求先松开横梁,移动到位松开点动按钮时又要求横梁夹紧,也就是说点动按钮要控制KMI-KM4四个接触器,所以引入上升中间继电器KA1与下降中间继电器KA2,再由中间继电器去控制四个接触器.于是设计出横梁升降电气控制电路草图之一,如图10-9所示.
3.设计控制电路的特殊环节
1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止
工作,同时使升降电动机MI工作,带动横梁上升.按下上升点动按钮,中间继电器KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开始放松;横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下你用地 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.
2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮犯,中间继电器KAI
接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时
使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中.行程开关 SQI复位,因此 KM3应加
自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控
制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹
紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整
定在两倍额定电流左右;当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电
路切断.
3)横梁的下降仍按先放松再下降的方式控制,但下降结束后需有短时间的回升运动,该回升运动可采用断电延时型时间继电器进行控制.时间继电器KT的线圈由下降接触器 KMZ常开触头控制,其断电延时断开的常开触头与夹紧接触器KM3常开触头串联后并接于上升电路中间继电器KAI常开触头两端.这样,当横梁下降时,时间继电器KT线圈通电吸合,其断电延时断开的常开触头立即闭合,为回升电路工作作好准备.当横梁下降至所需位置时,松开下降点动按钮田.KMZ线圈断电释放,时间继电器KT线圈断电,夹紧接触器.
3.设计控制电路的特殊环节
1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止
IW,同时使升降电动机 MI工作,带动横梁上升.按下上升点动按钮犯,中间继电器
KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开
始放松;横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下 SQI,
用明 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈
的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.
2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮肥,中间继电器KAI
接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时
使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中,行程开关地 复位,因此 KM应加
自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控
制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹
紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整
定在两倍额定电流左右;当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电
路切断.KM3线圈通电吸合,横梁开始夹紧.此时,上升接触器KMI线圈通过闭合的时间断电器KT常开触头及KM3常开触头而通电吸合,横梁开始回升,经一段时间延时,延时断开的常开触头KT断开,KMI线圈断电释放,回升运动结束,而横梁还在继续夹紧,夹紧到一定程度,过电流继电器动作,夹紧运动停止.此时的横梁升降电气控制电路设计草图如图10-10
所示.
4.设计联锁保护环节
横梁上升限位保护由行程开关SQZ来实现;下降限位保护由行程开关SQ3来实现;上
升与下降的互锁,夹紧与放松的互锁均由中间继电器KAI和KAZ的常闭触头来实现;升降
电动机短路保护由熔断器FUI来实现;夹紧电动机短路保护由熔断器FUZ实现;控制电路
的短路保护由熔断器F[J3来实现.
综合以上保护,就使横梁升降电气控制电路比较完善了,从而得到图10-11所示完整的
横梁升降机构控制电路.
第五节 常用控制电器的选择
一,接触器的选择
一般按下列步骤进行:
1.接触器种类的选择:根据接触器控制的负载性质来相应选择直流接触器还是交流接触器;一般场合选用电磁式接触器,对频繁操作的带交流负载的场合,可选用带直流电磁线圈的交流按触器.
2.接触器使用类别的选择:根据接触器所控制负载的工作任务来选择相应使用类别的接触器.如负载是一般任务则选用AC—3使用类别;负载为重任务则应选用AC-4类别,如果负载为一般任务与重任务混合时,则可根据实际情况选用AC—3或AC-4类接触器,如选用AC—3类时,应降级使用.
3.接触器额定电压的确定: 接触器主触头的额定电压应根据主触头所控制负载电路的额定电压来确定.
4.接触器额定电流的选择 一般情况下,接触器主触头的额定电流应大于等于负载或电动机的额定电流,计算公式为
式中I.——接触器主触头额定电流(A);
H ——经验系数,一般取l~1.4;
P.——被控电动机额定功率(kw);
U.——被控电动机额定线电压(V).
当接触器用于电动机频繁起动,制动或正反转的场合,一般可将其额定电流降一个等级来选用.
5.接触器线圈额定电压的确定: 接触器线圈的额定电压应等于控制电路的电源电压.为保证安全,一般接触器线圈选用110V,127V,并由控制变压器供电.但如果控制电路比较简单,所用接触器的数量较少时,为省去控制变压器,可选用380V,220V电压.
6.接触器触头数目: 在三相交流系统中一般选用三极接触器,即三对常开主触头,当需要同时控制中胜线时,则选用四极交流接触器.在单相交流和直流系统中则常用两极或三极并联接触器.交流接触器通常有三对常开主触头和四至六对辅助触头,直流接触器通常有两对常开主触头和四对辅助触头.
7.接触器额定操作频率 交,直流接触器额定操作频率一般有600次/h,1200次/h等几种,一般说来,额定电流越大,则操作频率越低,可根据实际需要选择.
二,电磁式继电器的选择
应根据继电器的功能特点,适用性,使用环境,工作制,额定工作电压及额定工作电流来选择.
1.电磁式电压继电器的选择
根据在控制电路中的作用,电压继电器有过电压继电器和欠电压继电器两种类型.
表10-3列出了电磁式继电器的类型与用途.
交流过电压继电器选择的主要参数是额定电压和动作电压,其动作电压按系统额定电压的1.l-1.2倍整定.
交流欠电压继电器常用一般交流电磁式电压继电器,其选用只要满足一般要求即可,对释放电压值无特殊要求.而直流欠电压继电器吸合电压按其额定电压的0.3-0.5倍整定,释放电压按其额定电压的0.07-0.2倍整定.
2.电磁式电流继电器的选择
根据负载所要求的保护作用,分为过电流继电器和欠电流继电器两种类型.
过电流继电器:交流过电流继电器,直流过电流继电器.
欠电流继电器:只有直流欠电流继电器,用于直流电动机及电磁吸盘的弱磁保护.
过电流继电器的主要参数是额定电流和动作电流,其额定电流应大于或等于被保护电动机的额定电流;动作电流应根据电动机工作情况按其起动电流的1.回一1.3倍整定.一般绕线型转子异步电动机的起动电流按2.5倍额定电流考虑,笼型异步电动机的起动电流按4-7倍额定电流考虑.直流过电流继电器动作电流接直流电动机额定电流的1.1-3.0倍整定.
欠电流继电器选择的主要参数是额定电流和释放电流,其额定电流应大于或等于直流电动机及电磁吸盘的额定励磁电流;释放电流整定值应低于励磁电路正常工作范围内可能出现的最小励磁电流,一般释放电流按最小励磁电流的0.85倍整定.
3.电磁式中间继电器的选择
应使线圈的电流种类和电压等级与控制电路一致,同时,触头数量,种类及容量应满足控制电路要求.
三,热继电器的选择
热继电器主要用于电动机的过载保护,因此应根据电动机的形式,工作环境,起动情况,负载情况,工作制及电动机允许过载能力等综合考虑.
1.热继电器结构形式的选择
对于星形联结的电动机,使用一般不带断相保护的三相热继电器能反映一相断线后的过载,对电动机断相运行能起保护作用.
对于三角形联结的电动机,则应选用带断相保护的三相结构热继电器.
2.热继电器额定电流的选择
原则上按被保护电动机的额定电流选取热继电器.对于长期正常工作的电动机,热继电器中热元件的整定电流值为电动机额定电流的0.95-1.05倍;对于过载能力较差的电动机,热继电器热元件整定电流值为电动机额定电流的0.6一0.8倍.
对于不频繁起动的电动机,应保证热继电器在电动机起动过程中不产生误动作,若电动机起动电流不超过其额定电流的6倍,并且起动时间不超过6S,可按电动机的额定电流来选择热继电器.
对于重复短时工作制的电动机,首先要确定热继电器的允许操作频率,然后再根据电动机的起动时间,起动电流和通电持续率来选择.
四,时间继电器的选择
1)电流种类和电压等级:电磁阻尼式和空气阻尼式时间继电器,其线圈的电流种类和电压等级应与控制电路的相同;电动机或与晶体管式时间继电器,其电源的电流种类和电压等级应与控制电路的相同.
2)延时方式:根据控制电路的要求来选择延时方式,即通电延时型和断电延时型.
3)触头形式和数量:根据控制电路要求来选择触头形式(延时闭合型或延时断开型)及触头数量.
4)延时精度:电磁阻尼式时间继电器适用于延时精度要求不高的场合,电动机式或晶体管式时间继电器适用于延时精度要求高的场合.
5)延时时间:应满足电气控制电路的要求.
6)操作频率:时间继电器的操作频率不宜过高,否则会影响其使用寿命,甚至会导致延时动作失调.
五,熔断器的选择
1.一般熔断器的选择:根据熔断器类型,额定电压,额定电流及熔体的额定电流来选择.
(1)熔断器类型:熔断器类型应根据电路要求,使用场合及安装条件来选择,其保护特性应与被保护对象的过载能力相匹配.对于容量较小的照明和电动机,一般是考虑它们的过载保护,可选用熔体熔化系数小的熔断器,对于容量较大的照明和电动机,除过载保护外,还应考虑短路时的分断短路电流能力,若短路电流较小时,可选用低分断能力的熔断器,若短路电流较大时,可选用高分断能力的RLI系列熔断器,若短路电流相当大时,可选用有限流作用的Rh及RT12系列熔断器.
(2)熔断器额定电压和额定电流:熔断器的额定电压应大于或等于线路的工作电压,额定电流应大于或等于所装熔体的额定电流.
(3)熔断器熔体额定电流
1)对于照明线路或电热设备等没有冲击电流的负载,应选择熔体的额定电流等于或稍
大于负载的额定电流,即 IRN≥IN
式中IRN——熔体额定电流(A);
IN——负载额定电流(A).
2)对于长期工作的单台电动机,要考虑电动机起动时不应熔断,即
IRN≥(1.5~2.5)IN
轻载时系数取1.5,重载时系数取2.5.
3)对于频繁起动的单台电动机,在频繁起动时,熔体不应熔断,即
IRN≥(3~3.5)IN
4)对于多台电动机长期共用一个熔断器,熔体额定电流为
IRN≥(1.5~2.5)INMmax+∑INM
式中INMmax——容量最大电动机的额定电流(A);
∑INM——除容量最大电动机外,其余电动机额定电流之和(A).
(4)适用于配电系统的熔断器:在配电系统多级熔断器保护中,为防止越级熔断,使上,下级熔断器间有良好的配合,选用熔断器时应使上一级(干线)熔断器的熔体额定电流比下一级(支线)的熔体额定电流大1-2个级差.
2.快速熔断器的选择
(l)快速熔断器的额定电压:快速熔断器额定电压应大于电源电压,且小于晶闸管的反向峰值电压U.,因为快速熔断器分断电流的瞬间,最高电弧电压可达电源电压的1.5-2倍.因此,整流二极管或晶闸管的反向峰值电压必须大于此电压值才能安全工作.即
UF≥KI URE
式中UF-一硅整流元件或晶闸管的反向峰值电压(V);
URE——快速熔断器额定电压(V);
KI——安全系数,一般取1,5-2.
(2)快速熔断器的额定电流:快速熔断器的额定电流是以有效值表示的,而整流M极管和晶闸管的额定电流是用平均值表示的.当快速熔断器接人交流侧,熔体的额定电流为
IRN≥KI IZmax
式中IZmax——可能使用的最大整流电流(A);
KI——与整流电路形式及导电情况有关的系数,若保护整流M极管时,KI按表10-4
取值,若保护晶闸管时,KI按表10-5取值.
当快速熔断器接入整流桥臂时,熔体额定电流为
IRN≥1.5IGN
式中IGN——硅整流元件或晶闸管的额定电流(A).
六,开关电器的选择
(一)刀开关的选择
刀开关主要根据使用的场合,电源种类,电压等级,负载容量及所需极数来选择.
(1)根据刀开关在线路中的作用和安装位置选择其结构形式.若用于隔断电源时,选用无灭弧罩的产品;若用于分断负载时,则应选用有灭弧罩,且用杠杆来操作的产品.
(2)根据线路电压和电流来选择.刀开关的额定电压应大于或等于所在线路的额定电压;刀开关额定电流应大于负载的额定电流,当负载为异步电动机时,其额定电流应取为电动机额定电流的1.5倍以上.
(3)刀开关的极数应与所在电路的极数相同.
(二)组合开关的选择
组合开关主要根据电源种类,电压等级,所需触头数及电动机容量来选择.选择时应掌握以下原则:
(1)组合开关的通断能力并不是很高,因此不能用它来分断故障电流.对用于控制电动机可逆运行的组合开关,必须在电动机完全停止转动后才允许反方向接通.
(2)组合开关接线方式多种,使用时应根据需要正确选择相应产品.
(3)组合开关的操作频率不宜太高,一般不宜超过300次/h,所控制负载的功率因数也不能低于规定值,否则组合开关要降低容量使用.
(4)组合开关本身不具备过载,短路和欠电压保护,如需这些保护,必须另设其他保护电器.
(三)低压断路器的选择
低压断路器主要根据保护特性要求,分断能力,电网电压类型及等级,负载电流,操作频率等方面进行选择.
(1)额定电压和额定电流:低压断路器的额定电压和额定电流应大于或等于线路的额定电压和额定电流.
(2)热脱扣器:热脱扣器整定电流应与被控制电动机或负载的额定电流一致.
(3)过电流脱扣器:过电流脱扣器瞬时动作整定电流由下式确定
IZ≥KIS
式中IZ——瞬时动作整定电流(A);
Is——线路中的尖峰电流.若负载是电动机,则Is为起动电流(A);
K考虑整定误差和起动电流允许变化的安全系数.当动作时间大于20ms时,取
K=1.35;当动作时间小于 20ms时,取 K=1.7.
(4)欠电压脱扣器:欠电压脱扣器的额定电压应等于线路的额定电压.
(四)电源开关联锁机构
电源开关联锁机构与相应的断路器和组合开关配套使用,用于接通电源,断开电源和柜
门开关联锁,以达到在切断电源后才能打开门,将门关闭好后才能接通电源的效果,实现安
全保护.
七,控制变压器的选择
控制变压器用于降低控制电路或辅助电路的电压,以保证控制电路的安全可靠.控制变压器主要根据一次和二次电压等级及所需要的变压器容量来选择.
(1)控制变压器一,二次电压应与交流电源电压,控制电路电压与辅助电路电压相符合.
(2)控制变压器容量按下列两种情况计算,依计算容量大者决定控制变压器的容量.
l)变压器长期运行时,最大工作负载时变压器的容量应大于或等于最大工作负载所需要的功率,计算公式为
ST≥KT ∑PXC
式中ST——控制变压器所需容量(VA);
∑PXC——控制电路最大负载时工作的电器所需的总功率,其中PXC为电磁器件的吸持功
率(W);
KT一一一控制变压器容量储备系数,一般取1.1-1.25.
2)控制变压器容量应使已吸合的电器在起动其他电器时仍能保持吸会状态,而起动电器也能可靠地吸合,其计算公式为
ST≥0.6 ∑PXC +1.5∑Pst
式中 ∑Pst_同时起动的电器总吸持功率(W).
第六节 电气控制的施工设计与施工
一,电气设备总体配置设计
组件的划分原则是:
l)将功能类似的元件组成在一起,构成控制面板组件,电气控制盘组件,电源组件等.
2)将接线关系密切的电器元件置于在同一组件中,以减少组件之间的连线数量.
3)强电与弱电控制相分离,以减少干扰.
4)为求整齐美观,将外形尺寸相同,重量相近的电器元件组合在一起.
5)为便于检查与调试,将需经常调节,维护和易损元件组合在一起.
电气设备的各部分及组件之间的接线方式通常有:
l)电器控制盘,机床电器的进出线一般采用接线端子.
2)被控制设备与电气箱之间为便于拆装,搬运,尽可能采用多孔接插件.
3)印刷电路板与弱电控制组件之间宜采用各种类型接插件.
总体配置设计是以电气控制的总装配图与总接线图的形式表达出来的,图中是用示意方式反映各部分主要组件的位置和各部分的接线关系,走线方式及使用管线要求.总体设计要使整个系统集中,紧凑;要考虑发热量高和噪声振动大的电气部件,使其离开操作者一定距离;电源紧急控制开关应安放在方便且明显的位置.
4. 电气设计分哪些
电气设计主要分为以下几个类别:
一、电力系统设计
电力系统设计是电气设计的核心部分,主要涵盖电力系统的规划、布局和运行。这包括对不同电压等级电网的结构设计,电力负荷的计算和预测,电力设备的选型及布置,以及系统的继电保护和自动化装置的配置。
二、建筑电气设计
建筑电气设计主要关注建筑物内部的电气系统。这包括楼宇内的照明系统、动力系统、消防电气系统、安防系统以及智能化集成系统的设计和实施。此外,建筑电气设计还需要兼顾节能环保和舒适性,确保建筑内部的电气设施安全、可靠且高效。
三、工业电气设计
工业电气设计主要针对工业领域的电气需求,如工厂、矿山、油田等。设计内容包括工业设备的电气控制、自动化系统的构建、工艺流程的电气规划以及工业网络的布局等。工业电气设计需要考虑到生产流程的高效性、安全性和稳定性。
四、交通电气设计
交通电气设计主要涉及交通设施的电气系统,如公路、铁路、航空及城市交通系统。这包括交通信号系统的设计、智能交通系统的构建、交通设施的照明及供电系统设计等。交通电气设计的目标是确保交通流畅、安全,并满足节能环保的要求。
综上所述,电气设计涵盖了广泛的领域,从电力系统到建筑、工业以及交通领域都有涉及。每个领域的设计都有其特定的要求和规范,需要根据实际情况进行具体分析和设计。随着科技的不断进步,电气设计的领域和深度也在不断发展,对设计人员的专业能力提出了更高的要求。
5. 电工知识
二 常用电工仪表和测试的认识及应用
1. 电工仪表的基本原理
磁电式仪表用符号 ‘∩’表示.其工作原理为:可动线圈通电时,线圈和永久磁铁的磁场磁场相互作用的结果产生电磁力,从而形成转动力矩,使指针偏转.
电磁式仪表用符号 ‘ ‘表示,分为吸引型和排斥型两种.
吸引型电磁式仪表工作原理:线圈通电后,铁片被磁化,无论在那种情况下都能使时钟顺时方向转动.
排斥型电磁式仪表工作原理:线圈通电后,动定铁片被磁化, 动定铁片的同极相对,互相排斥,使动铁片转动.
电动式仪表用符号 ‘ ‘表示. 其工作原理为:固定线圈产生磁场,可动线圈有电流通过时受到安培力作用,使指针顺时针转动.
2. 常用的测量仪表
电工测量项目:电流、电压、电阻、电功率、电能、频率、功率因素等.
电流表和电压表
电流测量
电流测量的条件:电流表须与被测电路串联;电流流量不超过量程.
电流测量的方法:
a图 电流表直接接入式
UE 负载 适用:交直流小电流测量
A
b图 直流电流表与分流器接入
UE A R不 适用:扩大仪表量程
RfL的确定:1. 测出R表;2.定出量程范围
例:假定A表的量程为A1(1A,1m)
解:因U表=RfL,则A1 x R表 = (A2 – A1) x RfL
1 x 0.1 = (10 – 1) x RfL
即RfL = = m
c图 交流电流表通过电流互感器接入
R 适用:交流大电流测量
A
互感器的选用:
1) 选用穿互感器的匝数必须满足母线电流,小于允许电流;
2) 购买配套仪表:例如选用1匝150/5,则选用150/5仪表
电压测量
电压测量条件:电压表必须与被测电流并联,电压值不得超出量程.
电压测量方法:
a图 直接接入法
R 适用:交直流低压测量
V
b图 通过附加电阻加入
R 适用:扩大仪表量程,一般不超过2000V
V
c图
通过电流互感器接入
V 适用:交流高电压测量
R
电功率测量
功率表的选用:功率表大都采用电动式.因为要反映电压、电流要素,要使实际电压小于电压线圈耐压,实际电流小于电流线圈额定电流.
接线守则:符号 ‘*’,端接电源.电流端钮与电路串联,电压端钮与电路并联.
接线图:
I2 *
A B
I1 * A1 a R
R 负载
单相功率及三相功率测量接线:
a图 *W
A * 测量出ZA的功率