导航:首页 > 装置知识 > 年产万吨乙醇精馏装置工艺设计

年产万吨乙醇精馏装置工艺设计

发布时间:2024-12-05 14:53:42

A. 乙醇 水连续精馏塔(筛板塔)设计方案,还有工艺流程图,哪位高人有啊 帮忙给份吧、邮箱[email protected]

精馏塔的工作原理和工艺流程
精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
精馏原理 (Principle of Rectify) 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。

B. 关于乙醇水分离的精馏塔设计,老师给的设计要求,塔顶的产品质量分数96%,换算成摩尔质量0.904,

这道题目有点意思,比较绕。
==========================先看题目
进料中给出各组分质量分数:乙苯0.5843,苯乙烯0.415,焦油0.0007(本题采用正十七烷烃表示焦油)
最后要求塔顶产品中乙苯的含量不低于99%(质量分数),塔底产品中苯乙烯含量不低于99.7%(质量分数)
按照摩尔回收率的定义,摩尔回收率=塔顶产品中组分摩尔流率/进料中组分摩尔流率,那么苯乙烯的摩
尔回收率应该这么算:

首先要要明白,计算重关键组分摩尔回收率需要用塔顶物流,那理论上,塔顶物流含有99%的乙苯,1%的苯乙烯
假设进料流量为F,塔顶抽出量为D(均为质量流量),则苯乙烯摩尔回收率为
(1%*(0.5843F/99%))/0.415F=0.0142
这里主要是要求出塔顶产品中苯乙烯的流量,然后除以原料中的苯乙烯的流量,与摩尔百分比是等效的(因为是同一种物质)

C. 乙醇-水精馏浮阀塔设计

乙醇—水精馏塔设计任务书
任务书
一.设计题目
乙醇—水连续精馏塔的温计.
二.设汁任务及操作条件
(1)进精馏塔的料液含乙醇25%(质量).其余为水。
(2)产品的乙醇含量不得低于94%(质量)。
(3)残液中乙醇含量不得高于0.1%(质量)。
(4)生产能力为日产(24小时) 吨94%(质量)的乙醇产品。
(5)操作条件
①精馏塔顶压强4kPa(表压).
②进料热状态 自选。
③回流比 自选。
④加热蒸汽 低压蒸汽。
⑤单板压降 ≯0.7kPa.
三.设备型式
设备型式为筛板塔或浮阀塔.
四.厂址
厂址为西北地区。
五.设计内容
(1)设计方案的确定及流程说明。
(2)塔的工艺计算。
(3)塔和塔板主要工艺尺寸的设计。
①塔高、塔径及塔板结构尺寸的确定。
②塔板的流体力学验算。
③塔板的负荷性能图。
(4)设计结果概要或设计一览表。
(5)辅助设备选型与计算。
(6)生产工艺流程图及精馏塔的工艺条件图。
(7)对本设计的评述或有关问题的分析讨论。
六.设计基础数据
(1)常压下乙醇—水系统t—x—y数据;
(2) 乙醇的密度、粘度、表面张力等物性参数见《化工原理设计指导书》。

D. 化工原理课程设计

化工原理课程设计

题 目 乙醇-水溶液连续精馏塔优化设计

目 录

设计任务书………………………………………………………………3

英文摘要前言……………………………………………………………4

前言………………………………………………………………………4

精馏塔优化设计…………………………………………………………5

精馏塔优化设计计算……………………………………………………5

设计计算结果总表………………………………………………………22

参考文献…………………………………………………………………23

课程设计心得……………………………………………………………23

精馏塔优化设计任务书

一、设计题目
乙醇—水溶液连续精馏塔优化设计

二、设计条件
1.处理量: 15000 (吨/年)
2.料液浓度: 35 (wt%)
3.产品浓度: 93 (wt%)
4.易挥发组分回收率: 99%
5.每年实际生产时间:7200小时/年
6. 操作条件:①间接蒸汽加热;
②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;

三、设计任务
a) 流程的确定与说明;
b) 塔板和塔径计算;
c) 塔盘结构设计
i. 浮阀塔盘工艺尺寸及布置简图;
ii. 流体力学验算;
iii. 塔板负荷性能图。 d) 其它
i. 加热蒸汽消耗量;
ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。
乙醇——水溶液连续精馏塔优化设计
(南华大学化学化工学院,湖南衡阳 421001)

摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。

关键词:精馏塔,浮阀塔,精馏塔的附属设备。

(Department of Chemistry,University of South China,Hengyang 421001)

Abstract: The design of a continuous distillation valve column, in the material, proct requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.

Keywords: rectification column, valve tower, accessory equipment of the rectification column.

前 言

乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。浮阀有很多种形式,但最常用的形式是F1型和V-4型。F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,才用轻阀。浮阀塔具有下列优点:1、生产能力大。2、操作弹性大。3、塔板效率高。4、气体压强降及液面落差较小。5、塔的造价低。浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。

精馏塔优化设计计算

在常压连续浮阀精馏塔中精馏乙醇——水溶液,要求料液浓度为35%,产品浓度为93%,易挥发组分回收率99%。年生产能力15000吨/年
操作条件:①间接蒸汽加热
②塔顶压强:1.03atm(绝对压强)
③进料热状况:泡点进料

一 精馏流程的确定
乙醇——水溶液经预热至泡点后,用泵送入精馏塔。塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。工艺流程图见图

二 塔的物料衡算
查阅文献,整理有关物性数据

⑴水和乙醇的物理性质

名称

分子式
相对分子质量
密度
20℃

沸 点
101.33kPa

比热容
(20℃)
Kg/(kg.℃)
黏度
(20℃)
mPa.s
导热系数
(20℃)
/(m.℃) 表面
张力

(20℃)
N/m
水 18.02 998 100 4.183 1.005 0.599 72.8
乙醇 46.07 789 78.3 2.39 1.15 0.172 22.8

⑵常压下乙醇和水的气液平衡数据,见表
常压下乙醇—水系统t—x—y数据如表1—6所示。

表1—6 乙醇—水系统t—x—y数据
沸点t/℃ 乙醇摩尔数/% 沸点t/℃ 乙醇摩尔数/%
气相 液相 气相 液相
99.9 0.004 0.053 82 27.3 56.44
99.8 0.04 0.51 81.3 33.24 58.78
99.7 0.05 0.77 80.6 42.09 62.22
99.5 0.12 1.57 80.1 48.92 64.70
99.2 0.23 2.90 79.85 52.68 66.28
99.0 0.31 3.725 79.5 61.02 70.29
98.75 0.39 4.51 79.2 65.64 72.71
97.65 0.79 8.76 78.95 68.92 74.69
95.8 1.61 16.34 78.75 72.36 76.93
91.3 4.16 29.92 78.6 75.99 79.26
87.9 7.41 39.16 78.4 79.82 81.83
85.2 12.64 47.49 78.27 83.87 84.91
83.75 17.41 51.67 78.2 85.97 86.40
82.3 25.75 55.74 78.15 89.41 89.41

乙醇相对分子质量:46;水相对分子质量:18
25℃时的乙醇和水的混合液的表面张力与乙醇浓度之间的关系为:

式中 σ——25℃时的乙醇和水的混合液的表面张力,N/m;
x——乙醇质量分数,%。
其他温度下的表面张力可利用下式求得

式中 σ1——温度为T1时的表面张力;N/m;
σ2——温度为T2时的表面张力;N/m;
TC——混合物的临界温度,TC=∑xiTci ,K;
xi——组分i的摩尔分数;
TCi——组分i的临界温度, K。

料液及塔顶、塔底产品的摩尔分数
X==0.174
X==0.838
X==0.0039

平均摩尔质量
M=0.17446.07+(1-0.174)18.02=22.9 kg/kmol
M= 0.83846.07+ (1-0.838) 18.02=41.52kg/kmol
M=0.003946.07+(1-0.0039)18.02=18.12kg/kmol

物料衡算
已知:F==74.83
总物料衡算 F=D+W=74.83
易挥发组分物料衡算 0.838D+0.0039W=74.830.174
联立以上二式得:
D=15.25kg/kmol
W=59.57kg/kmol

三 塔板数的确定
理论塔板数的求取
⑴根据乙醇——水气液平衡表1-6,作图

⑵求最小回流比Rmin和操作回流比
因为乙醇-水物系的曲线是不正常的平衡曲线,当操作线与q线的交点尚未落到平衡线上之前,操作线已经与平衡线相切,如图g点所示. 此时恒浓区出现在g点附近, 对应的回流比为最小的回流比. 最小回流比的求法是由点a(,)向平衡线作切线,再由切线的斜率或截距求
作图可知 b=0.342 b==0.342 Rmin =1.45

由工艺条件决定 R=1.6R
故取操作回流比 R=2.32

⑶求理论板数
塔顶,进料,塔底条件下纯组分的饱和蒸气压
组分 饱和蒸气压/kpa
塔顶 进料 塔底
水 44.2 86.1 101.33
乙醇 101.3 188.5 220.0

①求平均相对挥发度
塔顶 ===2.29
进料 ==2.189
塔底 ==2.17
全塔平均相对挥发度为
===2.23
===2.17
②理论板数
由芬斯克方程式可知
N===7.96

由吉利兰图查的 即
解得 =14.2 (不包括再沸器)
③进料板

前已经查出 即
解得 N=6.42
故进料板为从塔顶往下的第7层理论板 即=7
总理论板层数 =14.2 (不包括再沸器)
进料板位置 =7
2、全塔效率
因为=0.17-0.616lg
根据塔顶、塔釜液组成,求塔的平均温度为,在该温度下进料液相平均粘计划经济为
=0.1740.41+(1-0.174)0.3206=0.336
=0.17-0.616lg0.336=0.462
3、实际塔板数
精馏段塔板数:
提馏段塔板数:
四、塔的工艺条件及物性数据计算

以精馏段为例:
操作压力为
塔顶压力: =1.04+103.3=104.34
若取每层塔板压强 =0.7
则进料板压力: =104.34+130.7=113.4kpa
精馏段平均操作压力 =kpa
2、温度
根据操作压力,通过泡点方程及安托因方程可得
塔顶 =78.36
进料板=95.5
=
3、平均摩尔质量
⑴ 塔顶==0.838 =0.825

= 0.83846.07+(1-0.838)18.02=41.52 kg/kmol
=0.82546.07+(1-0.825)18.02=41.15 kg/kmol
⑵ 进料板: = 0.445 =0.102
= 0.44546.07+(1-0.445)18.02=30.50 kg/kmol
=0.10246.07+(1-0.102)18.02=20.88 kg/kmol
精馏段的平均摩尔质量
= kg/kmol
= kg/kmol
4、平均密度
⑴液相密度
=
塔顶: = =796.7
进料板上 由进料板液相组成 =0.102
=
=
=924.2
故精馏段平均液相密度=
⑵气相密度
=

5、液体表面张力
=
=0.83817.8+(1-0.838)0.63=15.0
=0.10216.0+(1-0.102)0.62=2.20
=
6、液体粘度
=
=0.8380.55+(1-0.838)0.37=0.521
=0.1020.34+(1-0.102)0.29=0.295
=

以提馏段为例
平均摩尔质量
塔釜 = 0.050 =0.0039
=0.05046.07+(1-0.050)18.02=19.42 kg/kmol
=0.003946.07+(1-0.0039)18.02=18.12 kg/kmol
提馏段的平均摩尔质量
= kg/kmol
= kg/kmol
平均密度

塔釜,由塔釜液相组成 =0.0039
=0.01
=
∴ =961.5
故提馏段平均液相密度
=
⑵气相密度
==

五 精馏段气液负荷计算
V=(R+1)D=(2.32+1)15.25=50.63

== m
L=RD=2.3215.25=35.38
= m

六 提馏段气液负荷计算
V’=V=50.63
=0.382 m
L’=L+F=35.38+74.83=110.2
=0.0006 m

七 塔和塔板主要工艺尺寸计算
1塔径
首先考虑精馏段:
参考有关资料,初选板音距=0.45m
取板上液层高度=0.07m
故 -=0.45-0.07=0.38m
==0.0239
查图可得 =0.075
校核至物系表面张力为9.0mN/m时的C,即
C==0.075=0.064
=C=0.064=1.64 m/s

可取安全系数0.70,则
u=0.70=0.71.64=1.148 m/s
故 D==0.645 m
按标准,塔径圆整为0.7m,则空塔气速为0.975 m/s

2 精馏塔有效高度的计算
精馏段有效高度为
=(13-1)0.45=5.4m
提馏段有效高度为
=(20-1)0.45=8.55m
在进料孔上方在设一人孔,高为0.6m
故精馏塔有效高度为:5.4+8.55+0.6=14.55m

3 溢流装置
采用单溢流、弓形降液管
⑴ 堰长
取堰长 =0.75D
=0.750.7=0.525m
⑵ 出口堰高
=
选用平直堰,堰上液层高度由下式计算
=
近似取E=1.03,则
=0.017
故 =0.07-0.017=0.053m
⑶ 降液管的宽度与降液管的面积
由查《化工设计手册》
得 =0.17,=0.08
故 =0.17D=0.12 =0.08=0.031
停留时间 =39.9s (>5s符合要求)
⑷ 降液管底隙高度
=-0.006=0.053-0.006=0.047m
塔板布置及浮阀数目击者及排列
取阀孔动能因子 =9
孔速 ===8.07m
浮阀数 n===39(个)
取无效区宽度 =0.06m
安定区宽度 =0.07m
开孔区面积
R==0.29m
x==0.16m
故 ==0.175m
浮阀排列方式采用等腰三角形叉排
取同一磺排的孔心距 a=75mm=0.075m
估算排间距h
h===0.06m

八 塔板流体力学校核
1、气相通过浮塔板的压力降,由下式

⑴ 干板阻力 ==0.027
⑵ 液层阻力 取充气系数数 =0.5,有
==0.50.07=0.035
⑶ 液体表面张力所造成阻力此项可以忽略不计。
故气体流经一层浮阀塔塔板的压力降的液柱高度为:
=0.027+0.035=0.062m
常板压降
=0.062860.59.81=523.4(<0.7K,符合设计要求)。

淹塔
为了防止淹塔现象了生,要求控制降液管中清液层高度符合,其中
由前计算知 =0.061m,按下式计算
=0.153=0.153=0.00002m
板上液层高度 =0.07m,得:
=0.062+0.07+0.00002=0.132m
取=0.5,板间距今为0.45m,=0.053m,有
=0.5(0.45+0.053)=0.252m
由此可见:<,符合要求。

雾沫夹带
由下式可知 <0.1kg液/kg气
===0.069
浮阀塔也可以考虑泛点率,参考化学工程手册。
泛点率=100%
=D-2=0.7-20.12=0.46
=-2=0.3875-20.031=0.325
式中——板上液体流经长度,m;
——板上液流面积,;
——泛点负荷系数,取0.126;
K——特性系数,取1.0.

泛点率=
=36.2% (<80%,符合要求)

九 塔板负荷性能图
1、雾沫夹带线
按泛点率=80%计
100%=80%

将上式整理得
0.039+0.626=0.0328
与分别取值获得一条直线,数据如下表。
0.00035 0.00085
0.835 0.827
2、泛液线
通过式以及式得
=
由此确定液泛线方程。
=
简化上式得关系如下

计算数据如下表。

0.00035 0.00055 0.00065 0.00085
0.8215 0.8139 0.8105 0.8040
3、液相负荷上限线
求出上限液体流量值(常数)
以降液管内停留时间=5s

4、漏夜线
对于型重阀,由,计算得


5、液相负荷下限线
去堰上液层高度=0.006m
根据计算式求的下限值

取E=1.03

经过以上流体力学性能的校核可以将精馏段塔板负荷性能图划出。如图

由塔板负荷性能图可以看出:
① 在任务规定的气液负荷下的操作点
P(0.00083,0.630)(设计点),处在适宜的操作区内。
② 塔板的气相负荷上限完全有雾沫夹带控制,操作下限由漏液控制。
③ 按固定的液气比,即气相上限=0.630 ,气相下限=0.209 ,求出操作弹性K,即
K==3.01
十 精馏塔的主要附属设备
1 冷凝器
(1)冷凝器的选择:强制循环式冷凝器
冷凝器置于塔下部适当位置,用泵向塔顶送回流冷凝水,在冷凝器和泵之间需设回流罐,这样可以减少台架,且便于维修、安装,造价不高。
(2)冷凝器的传热面积和冷却水的消耗量
热流体为78.36℃的93%的乙醇蒸汽,冷流体为20℃的水
Q=qm1r1 Q=qm2r2
Q—单位时间内的传热量,J/s或W;
qm1, qm2—热、冷流体的质量流量,kg/s;

r1 ,r2—热,冷流体的汽化潜热,J/kg
r1=600 kJ/㎏ r2=775 kJ/㎏ qm1=0.153kg/s
Q=qm1r1=0.153×600000=91800J/s
Q=qm2r2=775000 qm2=91800
∴ qm2=0.12 kg/s
传热面积:
A=
==21.2
K取700W·m-2/℃
∴ A=
2 再沸器
(1)再沸器的选择:釜式再沸器
对直径较大的塔,一般将再沸器置于踏外。其管束可抽出,为保证管束浸于沸腾器液中,管束末端设溢流堰,堰外空间为出料液的缓冲区。其液面以上空间为气液分离空间。釜式再沸器的优点是气化率高,可大80%以上。
(2)加热蒸汽消耗量
Q=qm1r1 Q=qm2r2
Q—单位时间内的传热量,J/s或W;
qm1, qm2—热、冷流体的质量流量,kg/s;
r1 ,r2—热,冷流体的汽化潜热,J/kg
∵ r1=2257 kJ/㎏ r2=1333 kJ/㎏ qm2=0.43kg/s
∴ Q=qm2r1=0.43×1333=573.2 kJ/s=2257 qm1
∴ 蒸汽消耗量qm1为0.254 kg/s

表 浮阀塔板工艺设计计算结果

序号 项目 数值
1 平均温度tm,℃ 86.93
2 平均压力Pm,kPa 108.89
3 液相流量LS,m3/s 0.00035
4 气相流量VS,m3/s 0.375
5 实际塔板数 33
6 塔径,m 0.70
7 板间距,m 0.45
8 溢流形式 单溢流
9 堰长,m 0.525
10 堰高,m 0.053
11 板上液层高度,m 0.07
12 堰上液层高度,m 0.047
13 安定区宽度,m 0.07
14 无效区宽度,m 0.06
15 开孔区面积,m2 0.175
16 阀孔直径,m 0.039
17 浮阀数 39
18 孔中心距,m 0.075
19 开孔率 0.147
20 空塔气速,m/s 0.8
21 阀孔气速,m/s 8.07
22 每层塔板压降,Pa 700
23 液沫夹带,(kg液/kg气) 0.069
24 气相负荷上限,m3/s 0.00356
25 液相负荷上限,m3/s 0.00028
26 操作弹性 3.01

参考文献

[1]陈英男、刘玉兰.常用华工单元设备的设计[M].上海:华东理工大学出版社,2005、4
[2]刘雪暖、汤景凝.化工原理课程设计[M].山东:石油大学出版社,2001、5
[3]贾绍义、柴诚敬.化工原理课程设计[M].天津:天津大学出版社,2002、8
[4]路秀林、王者相.塔设备[M].北京:化学工业出版社,2004、1
[5]王明辉.化工单元过程课程设计[M].北京:化学工业出版社,2002、6
[6]夏清、陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005、1
[7]夏清、陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005、1
[8]《化学工程手册》编辑委员会.化学工程手册—气液传质设备[M]。北京:化学工业出版社,1989、7
[9]刘光启、马连湘.化学化工物性参数手册[M].北京:化学工业出版社,2002
[10]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2002

课程设计心得

通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。

E. 毕业论文题目

化学化工环境
1. 喜树发根培养及培养基中次生代谢产物的研究
2. 虾下脚料制备多功能叶面肥的研究
3. 缩合型有机硅电子灌封材料交联体系研究
4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究
5. 酶法双甘酯的制备
6. 硅酸锆的提纯毕业论文
7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究
8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究
9. 铝合金阳极氧化及封闭处理
10. 贝氏体白口耐磨铸铁磨球的研究
11. 80KW等离子喷涂设备的调试与工艺试验
12. 2800NM3/h高温旋风除尘器开发设计
13. 玻纤增强材料注塑成型工艺特点的研究
14. 年处理30万吨铜选矿厂设计
15. 年处理60万吨铁选厂毕业设计
16. 广东省韶关市大宝山铜铁矿井下开采设计
17. 日处理1750吨铅锌选矿厂设计
18. 6000t/a聚氯乙烯乙炔工段初步工艺设计
19. 年产50万吨焦炉鼓冷工段工艺设计
20. 年产25万吨合成氨铜洗工段工艺设计
21. PX装置异构化单元反应器进行自动控制系统设计
22. PX装置异构化单元脱庚烷塔自动控制系统设计
23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响
24. 高温高压条件下浆态鼓泡床气液传质特性的研究
25. 新型纳米电子材料的特性、发展及应用
26. 发达国家安全生产监督管理体制的研究
27. 工伤保险与事故预防
28. 氯气生产与储存过程中危险性分析及其预防
29. 无公害农产品的发展与检测
30. 环氧乙烷工业设计
31. 年产 21000吨 乙醇 水精 馏装置 工艺设计
32. 年产26000吨乙醇精馏装置设计
33. 高层大厦首层至屋面消防给水工程设计
34. 某市航空发动机组试车车间噪声控制设计
35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究
36. 一株新的短程反硝化聚磷菌的鉴定及活性研究
37. 广州地区酸雨特征及其与气象条件的关系
38. 超声协同硝酸提取城市污泥重金属的研究
39. 脱氨剂和铁碳法处理稀土废水氨氮的研究
40. 稀土 超磁致 伸缩 材料 扬声器 研制
41. 纳米氧化铋的发展
42. 海泡石TiO2光敏催化剂的制备及其研究
43. 超磁致伸缩复合材料的制备
44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文
45. APCVD法在硅基板上制备硅化钛纳米线
46. 浅层地热能在热水系统中的利用初探及其工程设计
47. 输配管网的软件开发

F. 化工原理课程设计 乙醇——水混合溶液精馏塔设计 急需帮助

筛板精馏塔抄的工艺设计,用它来分离乙醇-水溶液.
分离任务:
1.乙醇的质量分数为30%;
2.处理量为20000t/a;
3.塔顶产品组成(质量分数)为93.5%;
4.塔顶易挥发组分回收率为99%;
5.每年实际生产时间为7200h.
6.操作条件 :
(1)操作压力:常压 (2)进料热状态:自选 (3)回流比:自选
(4)间接低压蒸汽 (表压为0.3mpa) 加热 (5)单板压降:0.7 kpa
我以前做过这个 包挂工艺尺寸计算 再沸器 原料预热器 离心泵 费用计算 折旧
你留个邮箱吧 我发给你

G. 大学PLC课程设计一般有哪些题目

1. 基于FX2N-48MRPLC的交通灯控制 x0dx0a2. 西门子PLC控制的四层电梯毕业设计论文 x0dx0a3. PLC电梯控制毕业论文 x0dx0a4. 基于plc的五层电梯控制 x0dx0a5. 松下PLC控制的五层电梯设计 x0dx0a6. 基于PLC控制的立体车库系统设计 x0dx0a7. PLC控制的花样喷泉 x0dx0a8. 三菱PLC控制的花样喷泉系统 x0dx0a9. PLC控制的抢答器设计 x0dx0a10. 世纪星组态 PLC控制的交通灯系统 x0dx0a11. X62W型卧式万能铣床设计 x0dx0a12. 四路抢答器PLC控制 x0dx0a13. PLC控制类毕业设计论文 x0dx0a14. 铁路与公路交叉口护栏自动控制系统 x0dx0a15. 基于PLC的机械手自动操作系统 x0dx0a16. 三相异步电动机正反转控制 x0dx0a17. 基于机械手分选大小球的自动控制 x0dx0a18. 基于PLC控制的作息时间控制系统 x0dx0a19. 变频恒压供水控制系统 x0dx0a20. PLC在电网备用自动投入中的应用 x0dx0a21. PLC在变电站变压器自动化中的应用 x0dx0a22. FX2系列PCL五层电梯控制系统 x0dx0a23. PLC控制的自动售货机毕业设计论文 x0dx0a24. 双恒压供水西门子PLC毕业设计 x0dx0a25. 交流变频调速PLC控制电梯系统设计毕业论文 x0dx0a26. 基于PLC的三层电梯控制系统设计 x0dx0a27. PLC控制自动门的课程设计 x0dx0a28. PLC控制锅炉输煤系统 x0dx0a29. PLC控制变频调速五层电梯系统设计 x0dx0a30. 机械手PLC控制设计 x0dx0a31. 基于PLC的组合机床控制系统设计 x0dx0a32. PLC在改造z-3040型摇臂钻床中的应用 x0dx0a33. 超高压水射流机器人切割系统电气控制设计 x0dx0a34. PLC在数控技术中进给系统的开发中的应用 x0dx0a35. PLC在船用牵引控制系统开发中的应用 x0dx0a36. 智能组合秤控制系统设计 x0dx0a37. S7-200PLC在数控车床控制系统中的应用 x0dx0a38. 自动送料装车系统PLC控制设计 x0dx0a39. 三菱PLC在五层电梯控制中的应用 x0dx0a40. PLC在交流双速电梯控制系统中的应用 x0dx0a41. PLC电梯控制毕业论文 x0dx0a42. 基于PLC的电机故障诊断系统设计 x0dx0a43. 欧姆龙PLC控制交通灯系统毕业论文 x0dx0a44. PLC在配料生产线上的应用毕业论文 x0dx0a45. 三菱PLC控制的四层电梯毕业设计论文 x0dx0a46. 全自动洗衣机PLC控制毕业设计论文 x0dx0a47. 工业洗衣机的PLC控制毕业论文 x0dx0a48. 《双恒压无塔供水的PLC电气控制》 x0dx0a49. 基于三菱PLC设计的四层电梯控制系统 x0dx0a50. 西门子PLC交通灯毕业设计 x0dx0a51. 自动铣床PLC控制系统毕业设计 x0dx0a52. PLC变频调速恒压供水系统 x0dx0a53. PLC控制的行车自动化控制系统 x0dx0a54. 基于PLC的自动售货机的设计 x0dx0a55. 基于PLC的气动机械手控制系统 x0dx0a56. PLC在电梯自动化控制中的应用 x0dx0a57. 组态控制交通灯 x0dx0a58. PLC控制的升降横移式自动化立体车库 x0dx0a59. PLC在电动单梁天车中的应用 x0dx0a60. PLC在液体混合控制系统中的应用 x0dx0a61. 基于西门子PLC控制的全自动洗衣机仿真设计 x0dx0a62. 基于三菱PLC控制的全自动洗衣机 x0dx0a63. 基于plc的污水处理系统 x0dx0a64. 恒压供水系统的PLC控制设计 x0dx0a65. 基于欧姆龙PLC的变频恒压供水系统设计 x0dx0a66. 西门子PLC编写的花样喷泉控制程序 x0dx0a67. 欧姆龙PLC编写的全自动洗衣机控制程序 x0dx0a68 景观温室控制系统的设计 x0dx0a69. 贮丝生产线PLC控制的系统 x0dx0a70. 基于PLC的霓虹灯控制系统 x0dx0a71. PLC在砂光机控制系统上的应用 x0dx0a72. 磨石粉生产线控制系统的设计 x0dx0a73. 自动药片装瓶机PLC控制设计 x0dx0a74. 装卸料小车多方式运行的PLC控制系统设计 x0dx0a75. PLC控制的自动罐装机系统 x0dx0a76. 基于CPLD的可控硅中频电源 x0dx0a77. 西门子PLC编写的花样喷泉控制程序 x0dx0a78. 欧姆龙PLC编写的全自动洗衣机控制程序 x0dx0a79. PLC在板式过滤器中的应用 x0dx0a80. PLC在粮食存储物流控制系统设计中的应用 x0dx0a81. 变频调速式疲劳试验装置控制系统设计 x0dx0a82. 基于PLC的贮料罐控制系统 x0dx0a83. 基于PLC的智能交通灯监控系统设计 x0dx0ax0dx0a1.基于labVIEW虚拟滤波器的设计与实现 x0dx0a2.双闭环直流调速系统设计 x0dx0a3.单片机脉搏测量仪 x0dx0a4.单片机控制的全自动洗衣机毕业设计论文 x0dx0a5.FPGA电梯控制的设计与实现 x0dx0a6.恒温箱单片机控制 x0dx0a7.基于单片机的数字电压表 x0dx0a8.单片机控制步进电机毕业设计论文 x0dx0a9.函数信号发生器设计论文 x0dx0a10.110KV变电所一次系统设计 x0dx0a11.报警门铃设计论文 x0dx0a12.51单片机交通灯控制 x0dx0a13.单片机温度控制系统 x0dx0a14.CDMA通信系统中的接入信道部分进行仿真与分析 x0dx0a15.仓库温湿度的监测系统 x0dx0a16.基于单片机的电子密码锁 x0dx0a17.单片机控制交通灯系统设计 x0dx0a18.基于DSP的IIR数字低通滤波器的设计与实现 x0dx0a19.智能抢答器设计 x0dx0a20.基于LabVIEW的PC机与单片机串口通信 x0dx0a21.DSP设计的IIR数字高通滤波器 x0dx0a22.单片机数字钟设计 x0dx0a23.自动起闭光控窗帘毕业设计论文 x0dx0a24.三容液位远程测控系统毕业论文 x0dx0a25.基于Matlab的PWM波形仿真与分析 x0dx0a26.集成功率放大电路的设计 x0dx0a27.波形发生器、频率计和数字电压表设计 x0dx0a28.水位遥测自控系统 毕业论文 x0dx0a29.宽带视频放大电路的设计 毕业设计 x0dx0a30.简易数字存储示波器设计毕业论文 x0dx0a31.球赛计时计分器 毕业设计论文 x0dx0a32.IIR数字滤波器的设计毕业论文 x0dx0a33.PC机与单片机串行通信毕业论文 x0dx0a34.基于CPLD的低频信号发生器设计毕业论文 x0dx0a35.110kV变电站电气主接线设计 x0dx0a36.m序列在扩频通信中的应用 x0dx0a37.正弦信号发生器 x0dx0a38.红外报警器设计与实现 x0dx0a39.开关稳压电源设计 x0dx0a40.基于MCS51单片机温度控制毕业设计论文 x0dx0a41.步进电动机竹竿舞健身娱乐器材 x0dx0a42.单片机控制步进电机 毕业设计论文 x0dx0a43.单片机汽车倒车测距仪 x0dx0a44.基于单片机的自行车测速系统设计 x0dx0a45.水电站电气一次及发电机保护 x0dx0a46.基于单片机的数字显示温度系统毕业设计论文 x0dx0a47.语音电子门锁设计与实现 x0dx0a48.工厂总降压变电所设计-毕业论文 x0dx0a49.单片机无线抢答器设计 x0dx0a50.基于单片机控制直流电机调速系统毕业设计论文 x0dx0a51.单片机串行通信发射部分毕业设计论文 x0dx0a52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文 x0dx0a53.超声波测距仪毕业设计论文 x0dx0a54.单片机控制的数控电流源毕业设计论文 x0dx0a55.声控报警器毕业设计论文 x0dx0a56.基于单片机的锁相频率合成器毕业设计论文 x0dx0a57.基于Multism/protel的数字抢答器 x0dx0a58.单片机智能火灾报警器毕业设计论 x0dx0a59.无线多路遥控发射接收系统设计毕业论文 x0dx0a60.单片机对玩具小车的智能控制毕业设计论文 x0dx0a61.数字频率计毕业设计论文 x0dx0a62.基于单片机控制的电机交流调速毕业设计论文 x0dx0a63.楼宇自动化--毕业设计论文 x0dx0a64.车辆牌照图像识别算法的实现--毕业设计 x0dx0a65.超声波测距仪--毕业设计 x0dx0a66.工厂变电所一次侧电气设计 x0dx0a67.电子测频仪--毕业设计 x0dx0a68.点阵电子显示屏--毕业设计 x0dx0a69.电子电路的电子仿真实验研究 x0dx0a70.基于51单片机的多路温度采集控制系统 x0dx0a71.基于单片机的数字钟设计 x0dx0a72.小功率不间断电源(UPS)中变换器的原理与设计 x0dx0a73.自动存包柜的设计 x0dx0a74.空调器微电脑控制系统 x0dx0a75.全自动洗衣机控制器 x0dx0a76.电力线载波调制解调器毕业设计论文 x0dx0a77.图书馆照明控制系统设计 x0dx0a78.基于AC3的虚拟环绕声实现 x0dx0a79.电视伴音红外转发器的设计 x0dx0a80.多传感器障碍物检测系统的软件设计 x0dx0a81.基于单片机的电器遥控器设计 x0dx0a82.基于单片机的数码录音与播放系统 x0dx0a83.单片机控制的霓虹灯控制器 x0dx0a84.电阻炉温度控制系统 x0dx0a85.智能温度巡检仪的研制 x0dx0a86.保险箱遥控密码锁 毕业设计 x0dx0a87.10KV变电所的电气部分及继电保护 x0dx0a88.年产26000吨乙醇精馏装置设计 x0dx0a89.卷扬机自动控制限位控制系统 x0dx0a90.铁矿综合自动化调度系统 x0dx0a91.磁敏传感器水位控制系统 x0dx0a92.继电器控制两段传输带机电系统 x0dx0a93.广告灯自动控制系统 x0dx0a94.基于CFA的二阶滤波器设计 x0dx0a95.霍尔传感器水位控制系统 x0dx0a96.全自动车载饮水机 x0dx0a97.浮球液位传感器水位控制系统 x0dx0a98.干簧继电器水位控制系统 x0dx0a99.电接点压力表水位控制系统 x0dx0a100.低成本智能住宅监控系统的设计 x0dx0a101.大型发电厂的继电保护配置 x0dx0a102.直流操作电源监控系统的研究 x0dx0a103.悬挂运动控制系统 x0dx0a104.气体泄漏超声检测系统的设计 x0dx0a105.电压无功补偿综合控制装置 x0dx0a106.FC-TCR型无功补偿装置控制器的设计 x0dx0a107.DSP电机调速 x0dx0a108.150MHz频段窄带调频无线接收机 x0dx0a109.电子体温计 x0dx0a110.基于单片机的病床呼叫控制系统 x0dx0a111.红外测温仪 x0dx0a112.基于单片微型计算机的测距仪 x0dx0a113.智能数字频率计 x0dx0a114.基于单片微型计算机的多路室内火灾报警器 x0dx0a115.信号发生器 x0dx0a116.基于单片微型计算机的语音播出的作息时间控制器 x0dx0a117.交通信号灯控制电路的设计 x0dx0a118.基于单片机步进电机控制系统设计 x0dx0a119.多路数据采集系统的设计 x0dx0a120.电子万年历 x0dx0a121.遥控式数控电源设计 x0dx0a122.110kV降压变电所一次系统设计 x0dx0a123.220kv变电站一次系统设计 x0dx0a124.智能数字频率计 x0dx0a125.信号发生器 x0dx0a126.基于虚拟仪器的电网主要电气参数测试设计 x0dx0a127.基于FPGA的电网基本电量数字测量系统的设计 x0dx0a128.风力发电电能变换装置的研究与设计 x0dx0a129.电流继电器设计 x0dx0a130.大功率电器智能识别与用电安全控制器的设计 x0dx0a131.交流电机型式试验及计算机软件的研究 x0dx0a132.单片机交通灯控制系统的设计 x0dx0a133.智能立体仓库系统的设计 x0dx0a134.智能火灾报警监测系统 x0dx0a135.基于单片机的多点温度检测系统 x0dx0a136.单片机定时闹钟设计 x0dx0a137.湿度传感器单片机检测电路制作 x0dx0a138.智能小车自动寻址设计--小车悬挂运动控制系统 x0dx0a139.探讨未来通信技术的发展趋势 x0dx0a140.音频多重混响设计 x0dx0a141.单片机呼叫系统的设计 x0dx0a142.基于FPGA和锁相环4046实现波形发生器 x0dx0a143.基于FPGA的数字通信系统 x0dx0a144.基于单片机的带智能自动化的红外遥控小车 x0dx0a145.基于单片机AT89C51的语音温度计的设计 x0dx0a146.智能楼宇设计 x0dx0a147.移动电话接收机功能电路 x0dx0a148.单片机演奏音乐歌曲装置的设计 x0dx0a149.单片机电铃系统设计 x0dx0a150.智能电子密码锁设计 x0dx0a151.八路智能抢答器设计 x0dx0a152.组态控制抢答器系统设计 x0dx0a153.组态控制皮带运输机系统设计 x0dx0a154..基于单片机控制音乐门铃 x0dx0a155.基于单片机控制文字的显示 x0dx0a156.基于单片机控制发生的数字音乐盒 x0dx0a157.基于单片机控制动态扫描文字显示系统的设计 x0dx0a158.基于LMS自适应滤波器的MATLAB实现 x0dx0a159.D功率放大器毕业论文 x0dx0a160.无线射频识别系统发射接收硬件电路的设计 x0dx0a161.基于单片机PIC16F877的环境监测系统的设计 x0dx0a162.基于ADE7758的电能监测系统的设计 x0dx0a163.智能电话报警器 x0dx0a164.数字频率计 课程设计 x0dx0a165.多功能数字钟电路设计 课程设计 x0dx0a166.基于VHDL数字频率计的设计与仿真 x0dx0a167.基于单片机控制的电子秤 x0dx0a168.基于单片机的智能电子负载系统设计 x0dx0a169.电压比较器的模拟与仿真 x0dx0a170.脉冲变压器设计 x0dx0a171.MATLAB仿真技术及应用 x0dx0a172.基于单片机的水温控制系统 x0dx0a173.基于FPGA和单片机的多功能等精度频率计 x0dx0a174.发电机-变压器组中微型机保护系统 x0dx0a175.基于单片机的鸡雏恒温孵化器的设计 x0dx0a176.数字温度计的设计 x0dx0a177.生产流水线产品产量统计显示系统 x0dx0a178.水位报警显时控制系统的设计 x0dx0a179.红外遥控电子密码锁的设计 x0dx0a180.基于MCU温控智能风扇控制系统的设计 x0dx0a181.数字电容测量仪的设计 x0dx0a182.基于单片机的遥控器的设计 x0dx0a183.200电话卡代拨器的设计 x0dx0a184.数字式心电信号发生器硬件设计及波形输出实现 x0dx0a185.电压稳定毕业设计论文 x0dx0a186.基于DSP的短波通信系统设计(IIR设计) x0dx0a187.一氧化碳报警器 x0dx0a188.网络视频监控系统的设计 x0dx0a189.全氢罩式退火炉温度控制系统 x0dx0a190.通用串行总线数据采集卡的设计 x0dx0a191.单片机控制单闭环直流电动机的调速控制系统 x0dx0a192.单片机电加热炉温度控制系统 x0dx0a193.单片机大型建筑火灾监控系统 x0dx0a194.USB接口设备驱动程序的框架设计 x0dx0a195.基于Matlab的多频率FMICW的信号分离及时延信息提取 x0dx0a196.正弦信号发生器 x0dx0a197.小功率UPS系统设计 x0dx0a198.全数字控制SPWM单相变频器 x0dx0a199.点阵式汉字电子显示屏的设计与制作 x0dx0a200.基于AT89C51的路灯控制系统设计 x0dx0a200.基于AT89C51的路灯控制系统设计 x0dx0a201.基于AT89C51的宽范围高精度的电机转速测量系统 x0dx0a202.开关电源设计 x0dx0a203.基于PDIUSBD12和K9F2808简易USB闪存设计 x0dx0a204.微型机控制一体化监控系统 x0dx0a205.直流电机试验自动采集与控制系统的设计 x0dx0a206.新型自动装弹机控制系统的研究与开发 x0dx0a207.交流异步电机试验自动采集与控制系统的设计 x0dx0a208.转速闭环控制的直流调速系统的仿真与设计 x0dx0a209.基于单片机的数字直流调速系统设计 x0dx0a210.多功能频率计的设计 x0dx0a211.18信息移频信号的频谱分析和识别 x0dx0a212.集散管理系统—终端设计 x0dx0a213.基于MATLAB的数字滤波器优化设计 x0dx0a214.基于AT89C51SND1C的MP3播放器 x0dx0a215.基于光纤的汽车CAN总线研究 x0dx0a216.汽车倒车雷达 x0dx0a217.基于DSP的电机控制 x0dx0a218.超媒体技术 x0dx0a219.数字电子钟的设计与制作 x0dx0a220.温度报警器的电路设计与制作 x0dx0a221.数字电子钟的电路设计 x0dx0a222.鸡舍电子智能补光器的设计 x0dx0a223.高精度超声波传感器信号调理电路的设计 x0dx0a224.电子密码锁的电路设计与制作 x0dx0a225.单片机控制电梯系统的设计 x0dx0a226.常用电器维修方法综述 x0dx0a227.控制式智能计热表的设计 x0dx0a228.电子指南针设计 x0dx0a229.汽车防撞主控系统设计 x0dx0a230.单片机的智能电源管理系统 x0dx0a231.电力电子技术在绿色照明电路中的应用 x0dx0a232.电气火灾自动保护型断路器的设计 x0dx0a233.基于单片机的多功能智能小车设计 x0dx0a234.对漏电保护器安全性能的剖析 x0dx0a235.解析民用建筑的应急照明 x0dx0a236.电力拖动控制系统设计 x0dx0a237.低频功率放大器设计 x0dx0a238.银行自动报警系统

阅读全文

与年产万吨乙醇精馏装置工艺设计相关的资料

热点内容
有雪种但不制冷为什么 浏览:318
超声波洁牙与普通洁牙有什么区别 浏览:421
惯性离心力实验装置 浏览:855
西安燃气阀门公司 浏览:110
nsk轴承是什么 浏览:238
qq密码恢复工具箱 浏览:248
防雷装置安全性能检测制度 浏览:851
水泵接合器上面装的是什么阀门 浏览:523
燕秀工具箱64位安装 浏览:70
天津金源和五金制品厂 浏览:807
自动喷锌装置 浏览:74
利用传感器的测量仪器有哪些 浏览:173
负控装置的作用是什么 浏览:223
机械基础所说的自由度是什么意思 浏览:181
机械键盘按键进水失灵怎么办 浏览:438
小型压面机怎么换轴承 浏览:157
摩托车排气阀门在哪 浏览:596
hp是哪个电力设备厂家型号 浏览:94
空调是依靠什么制冷制热的 浏览:890
2016工程机械如何发展 浏览:247