A. 油田加热炉内容简介
《油田加热炉》一书以油田加热炉为主线,全面介绍了不同类型的加热炉结构特点、工作原理以及设计要点和操作维护管理。书中不仅深入探讨了加热炉的基本原理,还涵盖了与加热炉相关的关键知识,为读者提供了全面的理论与实践指导。
本书共分十一章。第一章从热工基础知识出发,重点介绍了与加热炉相关的热工知识,为后续章节打下了坚实的理论基础。第二章深入探讨了加热炉所用燃料及其燃烧计算,为设计和操作提供了科学依据。第三章至第五章分别详细阐述了管式加热炉、水套加热炉和真空相变加热炉的结构特点、工作原理和应用场景,展现了加热炉技术的多样性。第六章则聚焦于热媒加热炉,深入分析了其工作原理与特点。第七章重点关注加热炉燃烧器的设计与优化,旨在提高加热效率与燃烧性能。第八章深入探讨了加热炉的腐蚀与控制,为预防和解决腐蚀问题提供了宝贵的策略。第九章则从节能技术的角度出发,探讨了如何在加热炉设计和运行中实现节能,提升能源利用效率。第十章通过热力学分析,进一步揭示了加热炉工作过程中的能量转换与传递规律。第十一章则聚焦于加热炉的节能监测,为实施有效的节能管理提供了方法与工具。
《油田加热炉》不仅是一本专业性极强的工程技术书籍,更是油田工程技术人员、加热炉管理与操作人员的实用指南。同时,对于大中专院校的师生而言,本书也是一本极具参考价值的教材,为教学与科研提供了丰富的案例与理论支撑。通过本书的学习,读者不仅能够深入了解加热炉的基本原理与应用,还能掌握优化设计、高效操作与节能管理的实用技巧,为油田加热炉的高效运行与维护管理提供了全面的知识与技能支撑。
B. 保证常减压蒸馏装置的安全措施有哪些
常减压蒸馏装置是石油加工中最基本的工艺设备,随着减压蒸馏技术的改造和发展、原油蒸馏装置的平均能耗大幅下降、轻油拔出率和产品质量大大提高,危险、危害因素也随之增加。
常减压蒸馏装置的重点设备包括加热炉、蒸馏塔、机泵和高低压瓦斯缓冲罐等几部分。加热炉的作用是为油品的汽化提供热源,为蒸馏过程提供稳定的汽化量和热量。加热炉的平稳运行是常减压装置生产运行的必要保证,加热炉发生事故不能运行,整个装置都将被迫停工。而塔则是整个常减压蒸馏装置的核心,包括初馏塔、常压塔、常压汽提塔、减压塔及附属部分。原油在分馏塔中被分馏成不同组分的各测线油品,同时,塔内产生大量的易燃易爆气体和液体,直接影响生产的正常进行和装置的安全运行。机泵是常减压蒸馏装置的动力设备,它为输送油品及其他介质提供动力和能源,机泵故障将威胁到装置的平稳运行,特别是塔底泵的事故将导致装置全面停产。高低压瓦斯缓冲罐因其储存的介质为危害极大的瓦斯,瓦斯一旦发生泄漏将可能导致燃烧爆炸等重大事故的发生。因此高低压瓦斯缓冲罐在开工前要按照标准对其进行严格的试压和验收,检查是否泄漏。运行中要时常对其检查维护,如有泄漏等异常现象应立即停用并处理,同时还要定期排残液。
常减压蒸馏装置存在的主要危险因素,根据不同的阶段,存在不同的危险因素,避免或减轻这些危险因素的影响,可以采取相应的一些安全预防管理措施。
开工时危险因素及其安全预防管理措施
常减压装置的开工按照以下顺序步骤进行:
开工前的设备检查→设备、流程贯通试压→减压塔抽真空气密性试验→柴油冲洗→装置开车。
装置开车的顺序是:原油冷循环→升温脱水→250℃恒温热紧→常压开侧线→减压抽真空开侧线→调整操作。
在开工过程中,容易产生的危险因素主要是:机泵、换热器泄漏着火、加热炉升温过快产生裂纹等,其危险因素为油品泄漏、蒸汽试压给汽过大、机泵泄漏着火等,具体介绍如下:
油品泄漏
(1)事故原因:
①开工操作波动力大,检修质量差,或垫片不符合质量要求。
②改流程、设备投用或切换错误造成换热器憋压。
(2)产生后果:换热器憋压漏油,特别是自燃点很低的重质油泄漏,易发生自燃引起火灾。
(3)安全预防管理措施:
①平稳操作。
②加强检修质量的检查。
③选择合适的垫片。
④改流程、设备投用或切换时,严格按操作规程执行。
⑤发生憋压,迅速找出原因并进行处理。
蒸汽试压给汽过大
(1)事故原因:开工吹扫试压过程中,蒸汽试压给汽过大。
(2)产生后果:吹翻塔盘,开工破坏塔的正常操作,影响产品质量。
(3)安全预防管理措施:调节给汽量。
机泵泄漏着火
(1)事故原因:
①端面密封泄漏严重。
②机泵预热速度太快。
③法兰垫片漏油。
④泵体砂眼或压力表焊口开裂,热油喷出。
⑤泵排空未关,热油喷出着火。
(2)产生后果:机泵泄漏着火。
(3)安全预防管理措施:
①报火警灭火。
②立即停泵。若现场无法停泵,通过电工室内停电关闭泵出入口,启动备用泵。
③若泵出入口无法关闭,应将泵抽出阀及进换热器等关闭。
④若塔底泵着火,火势太大,无法关闭泵入口时,应将加热器熄火,切断进料。灭火后,迅速关阀。
停工时危险因素及其安全预防管理措施
在停工过程中,容易产生的主要危险因素有:炉温降低过快导致炉管裂纹,洗塔冲翻塔盘。停工主要危险因素有停工时炉管变脆断裂、停工蒸洗塔时吹翻塔盘等。
停工时炉管变脆断裂
(1)事故原因:停工过程中,炉温降温速度过快,可能会造成高铬炉管延展性消失而硬度增加,炉管变脆,炉管受到撞击而断裂。
(2)产生后果:炉管出现裂纹或断裂。
(3)安全预防管理措施:
①停工过程中,炉温降温不能过快,按停工方案执行。
②将原炉重新缓慢加到一个适当的温度,然后缓慢降温冷却,可以使炉管脆性消失而恢复延展性,继续使用。
③停工,将已损坏的炉管更换。
停工蒸洗塔时吹翻塔盘
(1)事故原因:停工蒸洗塔过程中,蒸汽量给的过大,又发生水击,吹翻塔盘。
(2)产生后果:停工蒸洗塔时吹翻塔盘。
(3)安全预防管理措施:适当控制吹气量。
正常生产中的危险因素及其安全预防管理
开工正常生产过程中的主要危险因素有原油进料中断加热炉炉管结焦、炉管破裂、瓦斯带油、分馏塔冲塔真空度下降、汽油线憋压、减压塔水封破坏、常顶空冷器蚀穿漏洞转油线蚀穿等。
原油进料中断加热炉炉管结焦
(1)事故原因:
①原油进料中断。
②处理量过低,炉管内油品流速低。
③加热炉进料流。
④加热炉火焰扑炉管。
⑤原料性质变重。
(2)产生后果:
①塔底液位急剧下降,造成塔底泵抽空,加热炉进料中断,加热炉出口温度急剧上升。
②结焦严重时会引起炉管破裂。
(3)安全预防管理措施:
①加强与原油罐区的联系,精心操作。
②若发生原油进料中断,联系原油罐区尽快恢复并减低塔底抽出量,加热炉降温灭火。
③炉管注汽以增加加热炉炉管内油品流速,防止结焦。
④保持炉膛温度均匀,防止炉管局部过热而结焦,防止物料偏流。
炉管破裂
(1)事故原因:
①炉管局部过热。
②炉管内油品流量少,偏流,造成结焦,传热不好,烧坏漏油。
③炉管质量有缺陷,炉管材料等级低,炉管内油品高温冲蚀,炉管外高温氧化爆皮及火焰冲蚀,造成砂眼及裂口。
④操作超温超压。
(2)产生后果:烟囱冒黑烟,炉膛温度急剧上升。
(3)安全预防管理措施:
①多火嘴、齐水苗可防止炉管局部过热造成破裂。
②选择适合材质的炉管。
③平稳操作,减少操作波动。
瓦斯带油
(1)事故原因:
①瓦斯罐排凝罐液位上升,未及时排入低压瓦斯罐网。
②瓦斯罐排凝罐加热盘管未投用。
(2)产生后果:烟囱冒黑烟,炉膛变正压,带油严重时,炉膛内发生闪爆,防爆门开,甚至损坏加热炉。
(3)安全预防管理措施:
①控制好瓦斯罐排凝罐液面,及时排油入低压瓦斯罐网。
②投用瓦斯罐排凝罐加热盘管。
③瓦斯带油严重时,要迅速灭火,带油消除后正常操作。
分馏塔冲塔真空度下降
(1)事故原因:
①原油带水。
②塔顶回流带水。
③过热蒸汽带水,塔底吹汽量过大。
④进料量偏大,进料温度突然。
⑤塔底吹汽量过大(湿式、微湿式),或炉管注汽量过大(湿式),汽提塔吹汽量过大(润滑油型),或炉出口温度波动或塔底液面波动。
⑥抽真空蒸汽压力不足或中断,减顶冷却器汽化,抽真空器排凝器气线堵,设备泄漏倒吸空气。
(2)产生后果:
①塔顶压力升高。
②油品颜色变深,甚至变黑。
③破坏塔的正常操作,影响产品质量。
④倒吸空气造成爆炸。
(3)安全预防管理措施:
①加强原油脱水。
②加强塔顶回流罐切水。
③调整塔底吹汽量。
④稳定适当进料量和进料温度。
⑤控制好塔底液位。
⑥保持适当的吹汽量,稳定的抽真空蒸汽,稳定的炉温。
⑦调整好抽真空系统的冷却器,保证其冷却负荷。
⑧加强设备检测维护。
汽油线憋压
(1)事故原因:管线两头阀门关死,外温高时容易憋坏管线。
(2)产生后果:管线爆裂,汽油流出,易起火爆炸。
(3)安全预防管理措施:夏季做好轻油的防憋压工作。
减压塔水封破坏
(1)事故原因:
①水封罐放大气线中存油凝线或堵塞,造成水封罐内压力升高,将水封水压出,破坏水封。
②水封罐放大气排出的瓦斯含对人有害的硫化氢,将其高点排空,排空高度与一级冷却器平齐。若水封罐内的减顶污油排放不及时,污油憋入罐内,当污油积累至一定程度时,水封水被压出,水封水变油封,影响末级真空泵工作。
(2)产生后果:易造成空气倒吸入塔,发生爆炸事故。
(3)安全预防管理措施:
①加强水封罐检查。
②水封破坏,迅速给上水封水,然后消除破坏水封的原因。
③若水封罐放大气线堵或凝,迅速处理畅通。
④水封变油封,迅速拿净罐内存油,并检查放大气线是否畅通。
常顶空冷器蚀穿漏洞转油线蚀穿
(1)事故原因:
①油品腐败,制造质量有问题或材质等级低。
②转油线高速冲刷及高温腐蚀穿孔,制造质量有问题或材质等级低。
(2)产生后果:
①漏油严重时,滴落在高温管线上引起火灾。
②高温油口泄漏。
(3)安全预防管理措施:
①做好原油一脱四注工作,加大防腐力度。
②报火警消防灭火,汽油罐给水幕掩护(降温)原油降量,常炉降温,关小常底吹汽,降低常顶压力,迅速切换漏油空冷器,灭火后检修空冷器。
③做好防腐工作。
④选择适当材质。
⑤将漏点处补板焊死或包盒子处理。
设备防腐
随着老油田原油的继续开采,原油的重质化、劣质化日益明显,原油的含酸介质量不断增加,加上对具有高含酸量的进口高硫原油的加工,都对设备的防腐提出更高的要求。原油中引起设备和管线腐蚀的主要物质是无机盐类及各种硫化物和有机酸等。常减压装置设备腐蚀的主要部位:
(1)初馏塔顶、常压塔顶以及塔顶油气馏出线上的冷凝冷却系统。
①腐蚀原因及结果:蒸馏过程中,原油中的盐类受热水解,生成具有强烈腐蚀性的HCl,HCl与H2S的蒸馏过程中随原油的轻馏和水分一起挥发和冷凝,在塔顶部和冷凝系统易形成低温HCl-H2S-H2O型腐蚀介质,使塔顶及塔顶油气馏出线上的冷凝冷却系统壁厚变薄,降低设备壳体的使用强度,威胁安全生产。原油中的硫化物(参与腐蚀的主要是H2S、元素硫和硫醇等活性硫及易分解为H2S的硫化物)在温度小于120℃且有水存在时,也形成低温HCl-H2S-H2O型腐蚀性介质。
②防腐预防管理措施:在电脱盐罐注脱盐剂、注水、注破乳剂,并加强电脱盐罐脱水,尽可能降低原油含盐量。在常压塔顶、初馏塔顶、减压塔顶挥发线注氨、注水、注缓蚀剂,这能有效抑制轻油低温部位的HCl-H2S-H2O型腐蚀。
(2)常压塔和减压塔的进料及常压炉出口、减压炉转油线等高温部位的腐蚀。
①腐蚀原因及结果:充化物在无水的情况下,温度大于240℃时开始分解,生成硫化氢,形成高温S-H2S-RSH型腐蚀介质,随着温度升高,腐蚀加重。当温度大于350℃时,H2S开始分解为H2和活性很高的硫,在设备表面与铁反应生成FeS保护膜,但当HCl或环烷酸存在时,保护膜被破坏,又强化了硫化物的腐蚀,当温度达到425℃时,高温硫对设备腐蚀最快。
②防腐预防管理措施:为减少设备高温部位的硫化物和环烷酸的腐蚀,要采用耐腐蚀合金材料。
(3)常压柴油馏分侧线和减压塔润滑油馏分侧线以及侧线弯头处。常压炉出口附近的炉管、转油线,常压塔的进料线。
①腐蚀原因及结果:220℃以上时,原油中的环烷酸的腐蚀性随着温度的升高而加强,到270℃~280℃时腐蚀性最强。温度升高,环烷酸汽化,液相中环烷酸浓度降低,腐蚀性下降。温度升至350℃时环烷酸汽化增加,汽相速度增加,腐蚀加剧。温度升至425℃时,环烷酸完全汽化,不产生高温腐蚀。
②防腐预防管理措施:为减少设备高温部位的硫化物和环烷酸的腐蚀,要采用耐蚀合金材料。
机泵易发生的事故及处理
机泵是整个装置中的动设备,相对装置的其他静设备如塔等更容易发生事故。机泵的故障现象有泵抽空或不上量;泵体振动大、有杂音和密封泄漏。
泵抽空或不上量
(1)产生原因:
①启动泵时未灌满液体。
②叶轮装反或介质温度低黏度大。
③泵反向旋转。
④泵漏进冷却水。
⑤入口管路堵塞。
⑥吸入容器的液位太低。
(2)处理措施:
①重新灌满液体。
②停泵联系钳工处理或加强预热。
③重新接电机导线改变转向。
④停泵检查或重新灌泵。
⑤停泵检查排除故障。
⑥提高吸入容器内液面。
泵体振动大、有杂音
(1)产生原因:
①泵与电机轴不同心。
②地脚螺栓松动。
③发生气蚀。
④轴承损坏或间隙大。
⑤电机或泵叶轮动静不平衡。
⑥叶轮松动或有异物。
(2)处理措施:
①停泵或重新找正。
②将地脚螺栓拧紧。
③憋压灌泵处理。
④停泵更换轴承。
⑤停泵检修。
⑥停泵检修,排除异物。
密封泄漏
(1)产生原因:
①使用时间长,动环磨损。
②输送介质有杂质,磨损动环产生沟流。
③密封面或轴套结垢。
④长时间抽空。
⑤密封冷却水少。
(2)处理措施:
①换泵检查。
②停泵换泵处理。
③调节冷却水太少。
C. 油田80KW加热炉每小时用多少立方天然气
在探讨油田80KW加热炉每小时用多少立方天然气的问题时,首先需要明确几个关键数据。天然气的热值为8700kcal/立方米,换算成焦耳为4.18焦耳/卡。根据80KW加热炉的功率,我们首先计算其每小时消耗的能量,即80*1000*3600焦耳。接下来,我们用消耗的能量除以天然气的热值,并将其结果除以效率80%,得到天然气的消耗量。计算过程如下:
80*1000*3600/4.18/(8700*1000)=7.9立方。考虑到加热炉的效率约为80%,实际消耗的天然气量约为10立方每小时。
因此,油田80KW加热炉在运行一小时时,大约需要消耗10立方天然气。这个计算基于天然气的热值、加热炉的功率以及考虑了实际运行效率。实际使用中,需要根据具体情况调整,以确保能源的合理利用。
D. 油田自动化设备有哪些
随着油田的发展及工业自动化水平的提高,利用现代通信、网络技术和现代计算机对设备运行数据的远距离采集与监控的监控管理系统也随之产生。目前大多由人工每日定时检查设备运行情况并测量、统计油量数据、检查设备运行状态、操作设备等等,这种方式必然使工人劳动强度加重,并且影响了设备监控与生产数据的实时性,甚至准确性。
系统的设计和开发基于下述观点,即以目前的计算机、现代通信、网络技术、视频监控为基础的生产监测和操作系统可大大提高生产效率,降低综合成本,实现生产、管理的自动化、信息化。为了达到这个目标,必须开发一个可靠的以微型计算机技术、现代通信技术为基础的生产监测和操作系统,监测到异常情况(如液位越限,压力过高过低等)系统会自动实行相应保护。且可在总控室下达相应指令远程控制命令,读取生产区的数据资料,实现真正的无人值守,大大降低生产成本。为厂领导及工艺、生产部门提供详细、及时、具体的生产第一手数据,以优化生产参数,达到高效、节能、增产的目的。基本结构如下:
该系统软件功能强大、预留接口充分,人机界面友好,操作简单,维护方便,大大提高了系统的实用性。系统内容涉及:1、储油罐区2、气液分离岗3、加热炉4、锅炉(含注水泵站)5、卸油台6、天然气站7、消防水罐8、稳定塔9、污水处理10、总控室(调度中心)等各生产岗位的监控子系统。
本系统是包含生产过程自动化、生产安全监视监控、巡检管理系统、工业大屏幕显示系统等的一体化指挥管理平台,集成了报警管理、历史数据统计管理功能、安全管理、报警联动、运行日志功能等。调度中心可对全站系统运行实行统一调度管理,监测站内各岗位主要运行参数和设备运行状态;并对泵、加热炉、采暖锅炉、天然气站等故障状态、可燃气体浓度(采集单元做充分的预留)进行监视与控制,并可在事故时自动或手动实现紧急停车功能;通过数据处理、分析进行调度管理决策指导。
E. 矿场油气集输是什么
一、矿场油气集输的任务及内容
矿场油气集输是指把各分散油井所生产的油气集中起来,经过必要的初加工处理,使之成为合格的原油和天然气,分别送往长距离输油管线的首站(或矿场原油库)或输气管线首站外输的全部工艺过程。
概括地说,矿场油气集输的工作范围是以油井井口为起点,矿场原油库或输油、输气管线首站为终点的矿场业务;主要任务是尽可能多的生产出符合国家质量指标要求的原油和天然气,为国家提供能源保障;具体工作内容包括油气分离、油气计量、原油脱水、天然气净化、原油稳定、轻烃回收、含油污水处理等工艺环节。
二、矿场油气集输流程
矿场油气集输流程是油气在油气田内部流向的总说明。它包括以油气井井口为起点到矿场原油库或输油、输气管线首站为终点的全部工艺过程。矿场油气集输流程可按多种方式划分。
(一)按布站级数划分
在油井的井口和集中处理站之间有不同的布站级数,据此可命名为一级布站流程、二级布站流程和三级布站流程。
一级布站流程是指油井产物经单井管线直接混输至集中处理站进行分离、计量等处理。该流程适用于离集中处理站较近的油井。
二级布站流程(见图7-2)是指油井产物先经单井管线混输至计量站,在计量站分井计量后,再分站(队)混输至集中处理站处理。该流程适用于油井相对集中、离集中处理站不太远、靠油井压力能将油井产物混输至集中处理站的油区,一般是按采油队布置计量站。
图7-20开式生化处理流程图
总之,上述几种流程是目前含油污水处理较常用的流程。当然,由于各油田污水的具体情况不同,上述流程也并非是绝对的,实际应用中,应根据具体的情况选择合适的流程。
F. 油田生产联合站的防爆知识有哪些
油田生产防火防爆知识
燃烧是一种复杂的物理化学反应。光和热是燃烧过程中发生的物理现象,游离基的连锁反应则说明了燃烧的化学实质。
按照链式反应理论,燃烧不是两个气态分子之间直接起作用,而是它们的分裂物-游离基这种中间产物进行的链式反应。
1 、燃烧与火灾
( 1 )燃烧是一种发光放热的氧化反应。
物质和空气中的氧所起的反应是最普遍的,是火灾和爆炸事故最主要的原因。
( 2 )氧化与燃烧
氧化反应可以体现为一般的氧化现象和燃烧现象。
二者都是同一类化学反应,只是反应速度和发生的物理现象(热和光)不同。
2 、燃烧的类型
( 1 )自燃
可燃物质受热升温而不需要明火作用就能自行燃烧。分为受热自燃和本身自燃两种类型。
本身自燃的起火特点是从可燃物质的内部向外炭化、延烧。
受热自燃往往是从外部向内延烧。
植物油的自燃能力最大,其次是动物油,矿物油如果不是废油或掺入植物油是不能自燃的。
有些浸入矿物质润滑油的纱布或油棉纱堆积起来亦能自燃。
凡是盛装氧气的容器、设备、气瓶和管道等,均不得沾附油脂。
( 2 )闪燃
一闪即灭的燃烧。
在闪点的温度时,燃烧的仅仅是可燃液体所蒸发的那些蒸汽。而不是液体自身能燃烧。
( 3 )着火
可燃物质燃烧分气相和固相两种燃烧。
可燃液体的燃烧,先是液体表面受热蒸发为蒸汽,然后与空气混合而燃烧。
可燃性固体,受热熔融再气化为蒸汽,或受热解析出可燃蒸汽。
有的可燃固体不能成为气态物质,在燃烧时则呈炽热状态。
( 4 )火灾
我国工伤事故分为 20 类,火灾属于第 8 类。
在生产过程中,超出有效范围的燃烧称为火灾。
消防部门有火灾和火警之分,火灾是造成了一定的人身和财产损失。
3 、 燃烧的条件
可燃物质、助燃物质和火源的同时存在,并相互作用是燃烧条件。
4 、防火技术基本理论
防止可燃物、助燃物和火源的同时存在或者避免它们的相互作用。
5 、防火基本技术措施
火灾的发展过程先是酝酿期,可燃物在热的作用下蒸发析出气体、冒烟和阴燃;
其次是发展期,火苗窜起,火势迅速扩大;
再是全盛期,火焰包围整个可燃材料,可燃物全面着火,燃烧面积达到最大限度,放出大量的辐射热,温度升高,气体对流加剧;
最后是衰灭期,可燃物质减少,火势逐渐衰落,终至熄灭。
防火的要点是根据对火灾发展过程特点的分析,采取以下基本措施:
( 1 ) 严格控制火源;
( 2 ) 监视酝酿期特征;
( 3 ) 控制可燃物:
以难燃或不燃材料代替可燃材料。
降低可燃物质在空气中的浓度。
防止可燃物质跑冒滴漏。
隔离和分开存放。
( 4 )阻止火焰的蔓延,限制火灾可能发展的规模:
将火附近的易燃物和可燃物,从燃烧区转移走;
将可燃物和助燃物与燃烧区隔离开;
防止正在燃烧物品飞散,以阻止燃烧蔓延。防止形成新的燃烧条件,阻止火灾范围的扩大。
设置阻火器、水封井、防火墙、留足防火间距。
( 5 )组织训练消防队伍;
( 6 )配备相应的消防器材。
6 、灭火的基本措施
一旦发生火灾,只要消除燃烧条件中的任何一条,火灾就会熄灭。
常用的灭火方法有:隔离、冷却和窒息(隔绝空气)、化学抑制法。
一、爆炸及其种类
爆炸是物质在瞬间以机械功的形式释放出大量气体和能量的现象。
爆炸发生时压力猛烈增高并产生巨大声响。
爆炸分为物理性爆炸和化学性爆炸两类。
A 、物理性爆炸是由温度、体积和压力等因素引起,爆炸前后物质的性质及化学成分均不变。
B 、化学性爆炸是物质在短时间内完成化学变化,形成其他物质同时产生大量气体和能量的现象。化学反应的高速度、大量气体和大量热量是这类爆炸的三个基本要素。
二、化学性爆炸物质
1 、简单分解的爆炸物
这类物质在爆炸是分解为元素,并在分解过程中产生热量。
Ag 2C 2=2Ag+ 2C +Q (热量)
2 、复杂分解爆炸物,如含氮炸药。
3 、可燃性混合物
由可燃物质与助燃物质组成的爆炸物质。
实际上是火源作用下的一种瞬间燃烧反应。
三、爆炸极限
1 、概念
可燃气体、可燃蒸汽或可燃粉尘与空气构成的混合物,并不是在任何混合比例之下都有着火和爆炸的危险,而是必须在一定的浓度比例范围内混合才能发生燃爆。混合的比例不同,其爆炸的危险亦不同。
混合物中可燃气体浓度减小到最小(或增加到最大),恰好不能发生爆炸时的可燃气体体积浓度分别叫爆炸下限和爆炸上限。爆炸上限和爆炸下限统称为爆炸极限。
爆炸下限和爆炸上限之间的可燃气体浓度范围叫爆炸范围。
如天然气爆炸极限在常压下为 5 % ~ 15 % 。
在 1 MPa 时爆炸极限为 5.7 % ~ 17 % ;
5 MPa 时爆炸极限为 5. 7 % ~ 29. 5 % 。
极限氧浓度
当氧浓度降低到低于某一个值时,无论可燃气体的浓度为多大,混合气体也不会发生爆炸,这一浓度称为极限氧浓度。
极限氧浓度可以通过可燃气体的爆炸上限计算。如甲烷在 1 个大气压下的爆炸上限为 15% ,当甲烷含量达到 15% ,空气的含量占 85 % ,这时氧的含量为 17. 85% ,即甲烷与空气混合,当氧的含量低于 17. 85 % 时,便不会形成达到爆炸极限的混合气。
在实际应用中,对极限氧浓度取安全系数,得到最大允许氧含量。天然气的最大允许氧含量可取 2% 。
2 、爆炸极限的影响因素
( 1 )温度
混合物的原始温度越高,则爆炸下限降低,上限增高,爆炸极限范围扩大。
( 2 )氧含量
混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。
( 3 )惰性介质
在爆炸混合物中掺入不燃烧得惰性气体,随着比例
增大,爆炸极限范围缩小,惰性气体的浓度提高到某一数值,可使混合物变成不能爆炸。
( 4 )压力
原始压力增大,爆炸极限范围扩大,尤其是上限显著提高。
原始压力减小,爆炸极限范围缩小。
在密闭的设备内进行减压操作,可以免除爆炸的危险。
( 5 )容器
容器直径越小,混合物的爆炸极限范围越小。
3 、爆炸极限的应用
( 1 )划分可燃物质的爆炸危险度
爆炸上限-爆炸下限
爆炸下限
( 2 )评定和划分可燃物质标准
( 3 )根据爆炸极限选择防爆电器
( 4 )确定建筑物耐火等级、层数
( 5 )确定防爆措施和操作规程
四、防爆技术基本理论
1 、爆炸反应的历程
热反应的爆炸和支链反应爆炸历程有分别。
热反应的爆炸:当燃烧在某一空间内进行时,如果散热不良会使反应温度不断提高,温度的提高又促使反应速度加快,如此循环进展而导致发生爆炸。
支链反应爆炸:爆炸性混合物与火源接触,就会有活性分子生成,构成连锁反应的活性中心,当链增长速度大于链销毁速度时,游离基的数目就会增加,反应速度也随之加快,如此循环发展,使反应速度加快到爆炸的等级。
爆炸是以一层层同心圆球面的形式向各方面蔓延的。
2 、可燃物质化学性爆炸的条件
( 1 )存在着可燃物质,包括可燃性气体、蒸汽或粉尘。
( 2 )可燃物质与空气混合并且达到爆炸极限,形成爆炸性混合物。
( 3 )爆炸性混合物在点火能作用下。
3 、燃烧和化学性爆炸的关系
本质是相同的,都是可燃物质的氧化反应。
区别在于氧化反应速度不同。
火灾和爆炸发展过程有显著的不同。二者可随条件而转化。
火灾有初期阶段、发展阶段和衰弱阶段。
扩散燃烧和动力燃烧
① 扩散燃烧
如果可燃气体和空气没有混合并点燃,燃烧在可燃气体和空气的界面(反应区),并形成稳定的火焰,称为扩散燃烧。
② 动力燃烧
如果可燃气体和空气充分混合并点燃,氧分子和可燃气体分子不需扩散就可以迅速结合,这种燃烧称为动力燃烧。由于化学反应速度非常快,反应区火焰会迅 速从引燃位置向周围传播,发生爆炸。
化学性爆炸过程瞬间完成。
4 、防爆技术的基本理论
防止产生化学性爆炸的三个基本条件的同时存在,是预防可燃物质化学性爆炸的基本理论。
5 、防爆技术措施
可燃混合物的爆炸虽然发生于顷刻之间,但它还是有个发展过程。
首先是可燃物与氧化剂的相互扩散,均匀混合而形成爆炸性混合物,并且由于混合物遇着火源,使爆炸开始;
其次是由于连锁反应过程的发展,爆炸范围的扩大和爆炸威力的升级;
最后是完成化学反应,爆炸力造成灾害性破坏。
防爆的基本原则是根据对爆炸过程特点的分析,采取相应的措施。阻止第一过程的出现,限制第二过程的发展,防护第三过程的危害。
其基本原则有以下几点:
( 1 )防止爆炸混合物的形成;
( 2 ) 严格控制着火源;
( 3 ) 爆炸开始就及时泄出压力;
( 4 ) 切断爆炸传播途径;
( 5 )减弱爆炸压力和冲击波对人员、设备和建筑的损坏;
( 6 )检测报警。
油气田开发是一项复杂的系统工程,由地震勘探、钻井、试油、采油(气)、井下作业、油气集输与初步加工处理、储运和工程建设等环节组成。每一生产环节,因其使用物品、所采取工艺条件和所生产产品的不同,其火灾爆炸危险性亦有所区别。
一、石油生产过程中的爆炸危险
从地震勘探、测井、射孔、完井到压裂增产改造,使用了种类繁多的爆破器材。
爆破器材再使用、保管及运输过程中,随时都存在因热能、机械能、光能、化学能、电能引起意外火灾爆炸的危险;
钻井、试油等作业中可能发生井喷失控引发爆炸着火;
采油、油气集输、初步加工处理、储运等过程是在密闭状态下连续进行,采油高温、高压、低温、负压、高流速等工艺条件,易发生油气泄漏导致油气火灾爆炸;
数以万计的锅炉、加热炉、压力容器及油田专用容器与各种机泵、罐配套构成了油气采集处理和储运的生产性,不可避免地存在火灾爆炸危险;
油田工程建设大量使用乙炔气,也存在乙炔火灾爆炸的危险;
天然气脱硫及硫磺回收,存在着硫磺粉尘的火灾爆炸危险。
上述作业条件下火灾爆炸发生的几率较高,损失较严重的火灾爆炸主要有以下 3 类:
( 1 ) 井喷失控后引发的爆炸着火;
( 2 ) 储油罐及液化石油气储罐的着火爆炸;
油气(包括天然气、液化石油气及石油蒸汽等)泄漏后引发的爆炸着火。
二、原油天然气燃爆特性
油气田产品主要是原油和天然气。
原油闪点为 28 - 45℃ ,自然点 380 - 530℃ ,凝固点因含蜡量不同差异较大。
天然气无闪点数据,自燃点则具有随分子量增加而降低的规律,如甲烷的自燃点( 645 ℃ )高于乙烷( 510 ℃ )。
原油、天然气都具有潜在的燃烧爆炸危险,其主要特点是:
1 、易燃烧
原油具有比较低的闪点、燃点和自燃点,所以它比煤炭、木材等物质更容易着火。天然气在空气中燃烧为均相燃烧,遇火即着。一旦燃烧发生,都呈现出燃烧速度快、燃烧温度高、辐射热强的特点。
2 、易爆炸
原油蒸汽与空气混合到 1.1 - 6.4 %、天然气与空气混合到 5—15 %比例范围时,遇较小的点火能就能引起爆炸。
3 、易蒸发
原油容器内压力每降低 0.1Mpa ,一般有0.8 - 1.0m3 油蒸汽析出。蒸发出的油蒸汽极易在储存处所或作业场地的低洼处积聚,从而增加了燃烧爆炸的危险因素。
4 、易产生静电
原油及其产品的电阻率一般在 1012 Ω ·cm 左右,在泵送、灌装、装卸、运输等作业过程中,流动摩擦、喷射、冲击、过滤等都会产生静电。当静电放电产生的电火花能量达到或超过油品蒸汽的最小点火能量时,就会引起燃烧或爆炸。
5 、易发生沸溢、爆喷
原油和重质油在储罐中着火燃烧时,辐射热在向四周扩散的同时也加热了油田。若继续燃烧,温度不断升高,轻馏分不断蒸发,重馏分中沥青质、树脂和焦炭产物比油重而逐渐下沉。当热波面接触原油和重质油中的水分时便使之气化,使原油和重质油体积增大(水汽化后体积增大 1700 倍,油品本身体积也在膨胀),加之水蒸汽不断地向油面上涌,即会呈现出沸溢现象,使原油和重质油不断溢出罐外。当热波面抵达水垫层时,大量水分急剧汽化或造成很大的水蒸汽压力。急剧冲击油面并将油抛向高空,形成 “ 火雨 ” 现象(爆喷),进而造成大面积或火场型火灾。
6 、易受热膨胀
当原油、天然气受热膨胀所产生的压力大于容器或处理设备的抗压强度时,还会发生设备爆炸。
除原油、天然气外,我国油气田产品还有少量的油田液化气及天然气凝液。
油田液化石油气是从压缩天然气和不稳定原油中提取的,以丙烷和丁烷为主要成分的液态烃类混合物,它与炼油厂生产的以丙烷、丙稀、丁烷和丁烯为主要成分的液化石油气不完全相同。天然气凝液是从天然气中提取、经稳定处理后得到的液体石油产品,其组分主要是戊烷和更重的烃类,也允许有一定数量的丁烷。二者都具有易燃易爆的危险特性。
三、主要危险场所的防火防爆分析
1 、火灾危险性分类
它是确定建(构)筑物的耐火等级、布置工艺装置、选择电器设备型式等,以及采取防火防爆措施的重要依据,而且依此确定防爆泄压面积、安全疏散距离、消防用水、采暖通风方式及灭火器设置数量等。
3 、爆炸危险环境分区
石油行业标准《油气田爆炸危险场所分区》( SYJ25-87 ),根据油气田生产设施及装置在油气集输、处理、储存过程中产生的爆炸性气体混合物出现的频繁程度和持续时间,将危险环境划分为 0 区、 1 区、 2 区。
( 1 ) 0 区属于最危险的区域,是指爆炸性气体混合物连续出现或长期存在的场所。密闭容器或储油罐液面以上的空间,虽然烃气体浓度一般都高于爆炸上限,形不成爆炸条件,但考虑到空气进入而使其成为爆炸危险区域,因此仍划为 0 区。
( 2 ) 1 区属于危险程度次之的区域,是指在正常运行中可能产生爆炸泵性气体混合物的场所。如通风不良的油气工艺泵房、压缩机房、地下或半地下泵房、沟、坑、油气生产井井口房、容器、储罐、槽车装油口或放气口附近的区域均属 1 区,是由设备运转,容器盖开、闭,安全阀、排放阀的工作而泄漏出来的可燃气体和易燃、可燃液体而形成的区域。
( 3 ) 2 区属于危险程度较小的区域,是指在正常运行中不可能产生爆炸性气体混合物,及时产生也只能在短时间存在的环境。如通风良好的工艺泵房、压缩机房、露天设备、开敞式油气管沟、紧靠 1 区的户内及户外区域。
在油气生产环境很少存在 0 区,多为 1 区和 2 区(大多数情况属于 2 区)。设计时应采取措施减小 1 区的危险性,降低 2 区的爆炸性气体出现概率。如 1 区加强通风, 2 区设置可燃气体检测报警系统等。
油气厂、站、库应按照 SYJ25 - 87 的规定执行。其他爆炸危险环境分区应按照国标( GB50058 - 92 )《爆炸和火灾危险环境电力装置设计规范》中的规定和参照有关专业防爆标准执行。
四、主要危险作业的防火防爆措施
1 、防范空气进入油气系统
( 1 ) 负压脱气工艺的原油稳定防止脱真空
案例:空气进入系统,原油稳定性分离器爆炸
1990 年 12 月 11 日 ,某原油稳定车间一台卧式油气水三相分离压力容器,因液位浮筒接管渗漏进行补焊后投用。启动 3 号 1 号丙烷压缩机均发现一级出口温度偏高(分别为 120 度和 112 度),压缩机出口压力由 1.8Mpa 上升至 1.95Mpa ,同时听到机内有异常声响,操作人员立即停机,紧接着(约几秒)就发生爆炸。容器呈粉碎性破裂,共破裂成 31 块,其中一块碎片重 272kg ,水平向北飞出 181m 远,飞越高度 21m 。事故致 5 人轻伤,直接经济损失 9.4 万元。
事故原因:
A. 开工时,原油稳定车间个别闸门关闭不严,使空气进入系统,与天然气混合达到爆炸极限。
B. 附近采油队吹扫干气管线时,阀门未关严,使空气经集中处理站进入该系统。
开厂措施不严密,对原料气没有进行分段化验。
C 、丙烷压缩机进口微负压运行,当温度升高出现异常时,未采取立即停机的果断措施。
( 1 ) 油气管线吹扫置换
( 2 )清罐和容器检维修
( 3 )防止天然气放空时的抽空
抽空机理
抽空是当管线设备压力泄放完后,由于天然气密度较空气小(天然气相对密度为 0.57 左右),天然气自上通道上浮流出,下通道抽吸进空气的现象。
集输管线铺设起伏大天然气抽空比较严重。若低端放空阀开启,高端放空阀也开启时,则形成抽空。抽空一直会持续到管内天然气自然全部流出,置换为空气为止。
天然气抽空产生后果是极其危险的,若空气抽吸进管线设备,如同时存在摩擦产生的静电火花、机械火花或因铁的硫化物自燃等点火源,就会发生管道内燃和爆炸事故。
l 天然气抽空的控制
抽空是可以控制和避免的,关闭放空阀不形成抽空通道就不会发生抽空。控制抽空的方法如下:
1 ) 管线放空压力接近零时应只开一端放空阀放空,不能两端都开着放空口形成抽空通道。
2 ) 若点火放空时,待火苗高约 1 m 时应及时关闭高端放空阀,让低端放空阀放空。
3 ) 管线裂口抢修放空时,应在放至接近零时关闭所有放空阀,让裂口放空。
4 ) 施工完后若置换空气应采用通球置换,以避免空气滞留使天然气— 空气混合,特别是大管线应严格做到这一点。
案例:管道内天然气抽空,自燃发生爆炸
1998 年 7 月,某大型输气站绝缘法兰漏气整改,施工 36 小时后,该段¢ 508 × 9 的管道在 6.6Km 管线两端放空阀均开启发生了抽空。恢复生产时,采取开天然气直接置换空气, 20 分钟约进天然气 9000 方后,关闭放空阀开始升压,升压过程中发现管线发热。分析判断是管线内燃,对管线采取浇水降温, 1 小时后,管线压力升至 2.6Mpa 时,采取开启 DN300 进站生产球阀和站场分离器 DN100 排污阀试图泄压时,站场发生了强烈爆炸导致全站设备损毁,人员伤亡的特大安全事故。
事故原因:
① 管线施工中开着干线放空阀产生了抽空和设备天然气内燃。
② 泄压时使天然气、空气、燃烧产物的混合气体进入到站场再混合发生了二次爆炸。
2 、 防范油气泄露
( 1 )设备密闭
案例:动火之前不检测,水罐施焊爆炸
1986 年 7 月 1 日 ,某联合站 3 名工人在给一立式 700m3 水罐焊液位装置,该水罐供应注水和天然气处理装置的冷凝器冷却用水,由于 4 号冷凝器管程腐蚀穿孔,天然气进入壳程循环冷却水中,并经循环水窜至水罐内(联通冷凝器的水管线压力为 0.2-0.4Mpa ,冷凝器壳程压力为 0.8-1.0Mpa )。长期积累,达到爆炸极限。埋下隐患,当焊工吴某与两名注水工动焊时,焊接火星引起罐内气体爆炸, 2 名工人当场死亡,另 1 名工人抢救无效死亡。
事故原因:
① 未办动火手续。
②施焊前未进行必要的可燃气体浓度检测。
( 1 ) 厂房通风
( 2 ) 以不燃溶( 1 )感温报警器
( 2 )感烟报警器
( 3 )测爆仪