导航:首页 > 装置知识 > 运输机传动装置参考文献

运输机传动装置参考文献

发布时间:2024-12-27 06:05:08

A. 机械设计课程设计设计带式运输机传动装置其中运输带工作拉力F=2900N V=1. 5滚筒直径D=400滚筒效率0....

课程设计 带式运输机传动装置设计,共31页,6698字
目录
第一章 设计任务版书 1
第二章 传动装置的总体设权计 2
2.1 电动机的选择 2
2.2 传动装置的总传动比和传动比分配 3
2.3传动装置的运动和动力参数计算 3
第三章 传动零件的设计计算 5
3.1 V带传动的设计计算 5
3.2蜗轮轮蜗杆传动的设计计算 6
第四章 轴的结构尺寸计算 8
4.1蜗轮转轴的机构尺寸计算 8
4.2蜗杆轴的结构尺寸设计 8
第五章 轴的强度校核 10
5.1 蜗轮转轴的强度校核 10
5.2 蜗杆轴的强度校核 12
第六章 滚动轴承的选择和校核 16
6.1 蜗轮转轴轴承选择和校核 16
6.2蜗杆轴轴承选择和校核 16
第七章 平键的选择计算以及联轴器的选择 18
7.1 蜗杆转轴与蜗轮接触的键的选择计算 18
7.2 周转定向连轴起的键的选择计算 18
7.4 联轴器的选择 19
第八章 减速器箱体设计及附件的选择和说明 20
8.1箱体主要尺寸设计 20
8.2附属零件的设计 20
第九章 润滑与密封 21
第十章 课程设计小结 22
参考文献 22

B. 带式输送机传动装置设计

一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:

1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。

C. 设计带式运输机传动装置

仅供参考

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.

放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.

九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。

十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

D. 设计一用于带式运输机上的单级圆柱齿轮减

我也在做这个,写不下的这么多,不过可以参考机械设计手册!这种设计 在学校帮忙做是200元

械设计课程设计任务书

班 级 姓 名

设计题目:带式运输机传动装置设计

布置形式:设计用于带式运输机的一级直齿圆柱齿轮减速器(Ⅰ)

传动简图

原始数据:

数据编号 1 2 3 4 5 6

运输带工作拉力F/N 800 850 900 950 1100 1150

运输带工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6

卷筒直径D/mm 250 260 270 240 250 260

工作条件:一班制,连续单向运转。载荷平稳,室内工作,有粉尘。

使用期限:10 年

生产批量:10 套

动力来源:三相交流电(220V/380V )

运输带速度允许误差:±5% 。
提问者: 浪人5 - 试用期 一级 其他回答 共 1 条
这个是我好不容易才找到的,一个东东啊,你可以自己看看啊,就差不多能自己理解了。。。给我你的邮箱发给你啊!我的是[email protected]

目 录
设计任务书…………………………………………………2
第一部分 传动装置总体设计……………………………4
第二部分 V带设计………………………………………6
第三部分 各齿轮的设计计算……………………………9
第四部分 轴的设计………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及数据………………………………21

设 计 任 务 书

一、 课程设计题目:
设计带式运输机传动装置(简图如下)

原始数据:
数据编号 3 5 7 10
运输机工作转矩T/(N.m) 690 630 760 620
运输机带速V/(m/s) 0.8 0.9 0.75 0.9
卷筒直径D/mm 320 380 320 360

工作条件:
连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。
二、 课程设计内容
1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。

每个学生应完成:
1) 部件装配图一张(A1)。
2) 零件工作图两张(A3)
3) 设计说明书一份(6000~8000字)。

本组设计数据:
第三组数据:运输机工作轴转矩T/(N.m) 690 。
运输机带速V/(m/s) 0.8 。
卷筒直径D/mm 320 。

已给方案:外传动机构为V带传动。
减速器为两级展开式圆柱齿轮减速器。

第一部分 传动装置总体设计

一、 传动方案(已给定)
1) 外传动为V带传动。
2) 减速器为两级展开式圆柱齿轮减速器。
3) 方案简图如下:
二、该方案的优缺点:
该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
计 算 与 说 明 结果
三、原动机选择(Y系列三相交流异步电动机)
工作机所需功率: =0.96 (见课设P9)

传动装置总效率: (见课设式2-4)

(见课设表12-8)

电动机的输出功率: (见课设式2-1)

选择电动机为Y132M1-6 m型 (见课设表19-1)
技术数据:额定功率( ) 4 满载转矩( ) 960
额定转矩( ) 2.0 最大转矩( ) 2.0
Y132M1-6电动机的外型尺寸(mm): (见课设表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:

E. 运输机械选型设计手册的图书目录

第一章带式输送机工艺设计基础资料
第一节带式输送机的选型及辅助计算
一、应用范围及选用2
(一)型式及应用范围2
(二)带速的选择3
(三)输送带的选择3
二、设计辅助计算6
(一)带式输送机几何尺寸计算6
(二)头部卸料轨迹的计算8
(三)防逆转设计计算9
(四)橡胶输送带计量方法11
(五)输送带的参数计算14
第二节带式输送机附属设施
一、皮带秤16
(一)电子皮带秤16
(二)核子皮带秤22
(三)皮带秤实物校验装置26
二、除铁器32
(一)悬挂式电磁除铁器32
(二)滚筒式电磁除铁器38
(三)永磁除铁器40
三、金属探测器42
四、重锤护栏44
五、跨越梯46
六、栏杆47
七、硫化器48
第三节带式输送机用建、构筑物
一、带式输送机通廊49
(一)非采暖地区单机通廊49
(二)非采暖地区双机通廊50
(三)采暖地区单机通廊51
(四)采暖地区双机通廊52
(五)装有电动卸料车带式输送机通廊53
二、带式输送机平台53
三、转运站54
(一)转运站类型54
(二)转运站布置要点55
四、带式输送机同层转载56
(一)ZJT1A型带式输送机同层转载56
(二)DT型带式输送机同层转载57
第四节带式输送机的驱动
一、型式及选用58
二、液力偶合器61
(一)带后辅腔限矩型液力偶合器61
(二)调速型液力偶合器65
三、MPG可控减速器66
四、CST可控驱动系统70
(一)CST可控驱动系统的构成及工作原理70
(二)CST可控驱动系统规格参数72
五、驱动装置常用配套件72
(一)电动机72
(二)减速器76
(三)联轴器91
(四)胀套107
(五)制动器108
(六)逆止器112
第五节带式输送机操作控制
一、控制系统设计116
(一)设备联锁116
(二)操作方式116
(三)安全设施117
二、安全保护监测装置117
(一)双向拉绳开关117
(二)跑偏开关117
(三)打滑检测器119
(四)溜槽堵塞检测器120
(五)料流检测器121
(六)纵向撕裂开关122
参考文献122
第二章DTⅡ(A)型带式输送机
第一节概述
一、应用范围124
二、产品规格124
三、整机结构、部件名称及代码125
四、整机典型配置126
五、部件系列127
第二节部件的选用
一、输送带132
(一)输送带规格和技术参数132
(二)输送带的选用132
二、驱动装置133
(一)驱动装置的型式133
(二)驱动装置的选用133
三、逆止器134
四、传动滚筒134
五、改向滚筒135
六、托辊136
(一)辊径选择136
(二)托辊型式选择140
(三)托辊间距141
(四)受料段和机尾长度142
七、拉紧装置142
八、清扫器142
(一)头部清扫器142
(二)空段清扫器143
九、机架143
(一)滚筒支架143
(二)中间架及支腿143
(三)拉紧装置架144
十、头部漏斗144
十一、导料槽144
十二、卸料装置144
(一)犁式卸料器144
(二)卸料车145
(三)可逆配仓带式输送机145
十三、辅助配套设施145
十四、电气及安全保护装置147
第三节设 计 计 算
一、计算标准、符号和单位148
二、原始数据及工作条件149
三、输送量和输送带宽度149
四、圆周驱动力152
五、输送带张力157
六、传动滚筒轴功率159
七、逆止力计算和逆止器选择161
八、电动机功率和驱动装置组合161
九、输送带选择计算162
十、拉紧参数计算164
十一、凸凹弧段尺寸165
十二、启动和制动165
十三、双滚筒驱动计算166
十四、下运带式输送机计算169
十五、典型计算示例171
(一)例题1:头部单传动,垂直重锤拉紧171
(二)例题2:中部双传动,垂直重锤拉紧174
(三)例题3:下运带式输送机180
第四节主 要 部 件
一、传动滚筒183
二、改向滚筒185
三、承载托辊188
(一)35°槽形托辊188
(二)45°槽形托辊189
(三)35°槽形前倾托辊190
(四)过渡托辊191
(五)35°缓冲托辊194
(六)45°缓冲托辊195
(七)平形上托辊195
(八)摩擦上调心托辊196
(九)锥形上调心托辊197
(十)摩擦上平调心托辊198
四、回程托辊198
(一)平形下托辊198
(二)V形下托辊199
(三)V形前倾托辊200
(四)平形梳形托辊201
(五)V形梳形托辊201
(六)反V形托辊202
(七)螺旋托辊202
(八)摩擦下调心托辊203
(九)锥形下调心托辊203
五、托辊辊子204
(一)普通辊子204
(二)缓冲辊子205
(三)梳形辊子206
(四)螺旋辊子207
六、拉紧装置207
(一)垂直重锤拉紧装置207
(二)车式重锤拉紧装置209
(三)螺旋拉紧装置216
(四)电动绞车拉紧装置217
七、清扫器219
(一)头部清扫器219
(二)空段清扫器220
第五节驱 动 装 置
一、驱动装置的组成及选择表220
二、Y?ZLY/ZSY驱动装置228
三、Y?DBY/DCY驱动装置270
四、驱动装置和传动滚筒组合312
五、驱动装置架364
(一)Y?ZLY/ZSY型钢式驱动装置架364
(二)Y?ZLY/ZSY板梁式驱动装置架370
(三)Y?DBY/DCY板梁式驱动装置架378
六、护罩390
(一)梅花联轴器护罩390
(二)液力偶合器护罩390
第六节电动滚筒和减速滚筒
一、概述392
二、DTYⅡ型电动滚筒392
(一)DTYⅡ型电动滚筒选用表392
(二)DTYⅡ型电动滚筒尺寸表395
三、YTH型减速滚筒396
(一)参数、结构类型及代号396
(二)滚筒尺寸及质量402
(三)滚筒驱动部分选择表403
(四)驱动部分组合表411
(五)低速级处外装逆止器安装尺寸420
(六)护罩421
(七)电动机支架423
第七节结构件
一、传动滚筒头架427
(一)角形传动滚筒头架427
(二)角形传动滚筒头架(H型钢)428
(三)矩形传动滚筒头架450
二、角形改向滚筒头架(H型钢)461
三、中部传动滚筒支架464
四、改向滚筒尾架466
(一)角形改向滚筒尾架466
(二)角形改向滚筒尾架(H型钢)468
(三)矩形改向滚筒尾架476
五、中部改向滚筒吊架478
六、垂直拉紧装置架479
七、车式重锤拉紧装置架480
(一)带滑轮车式重锤拉紧装置尾架480
(二)标准型车式重锤拉紧装置架481
(三)塔架484
八、螺旋拉紧装置尾架485
九、中间架486
(一)轻中型系列中间架486
(二)重型系列中间架488
十、支腿490
(一)轻中型系列标准支腿490
(二)重型系列标准支腿491
(三)轻中型系列中高式支腿492
(四)重型系列中高式支腿493
十一、导料槽494
(一)矩形口导料槽494
(二)喇叭口导料槽495
十二、头部漏斗496
(一)普通漏斗496
(二)带调节挡板漏斗498
(三)进料仓漏斗499
(四)普通漏斗(矩形传动滚筒头架专用)500
第八节辅 助 装 置
一、压轮501
二、输送带水洗装置502
三、输送带除水装置503
四、输送机罩503
五、犁式卸料器505
(一)电动双侧犁式卸料器505
(二)电动单侧犁式卸料器506
(三)犁式卸料器漏斗506
六、卸料车507
(一)卸料车507
(二)卸料车中部支架508
七、重型卸料车509
(一)重型卸料车509
(二)单侧卸料重型卸料车510
(三)重型卸料车专用中部支架511
八、可逆配仓带式输送机512
九、重型可逆配仓带式输送机516
(一)整体式重型配仓输送机517
(二)二节拖挂式重型配仓输送机518
(三)三节拖挂式重型配仓输送机519
附录
附录一D?YM96运煤部件典型设计522
(一)头部支架522
(二)尾部支架528
(三)中部支架及支腿533
(四)头部漏斗及配套件536
(五)导料槽547
(六)车式拉紧装置548
(七)Y?ZSY系列驱动装置组合及驱动装置架549
附录二其他部件554
(一)清扫器554
(二)固定式卸料车556
(三)电动犁式卸料车557
(四)全封闭式导料槽和全封闭式带式输送机558
附录三B>1400mm带式输送机部件561
(一)传动滚筒561
(二)改向滚筒568
(三)承载托辊571
(四)回程托辊579
(五)托辊辊子583
(六)拉紧装置588
(七)清扫器592
(八)辅助装置593
(九)机架593
(十)拉紧装置架612
(十一)中间架615
(十二)支腿617
(十三)导料槽619
(十四)头部漏斗622
参考文献624
第三章QD80轻型固定式带式输送机
第一节应用范围及选择
第二节部件选用说明
一、输送带627
二、驱动装置631
三、传动滚筒631
四、改向滚筒632
五、托辊632
六、拉紧装置633
七、中间机架633
八、头架635
九、尾架635
十、清扫器635
十一、导料槽636
十二、犁式卸料器636
十三、带式逆止器636
十四、全密封罩636
第三节设 计 计 算
一、原始数据636
二、输送带速度选择636
三、输送带宽度计算637
(一)堆料面积计算637
(二)带宽的计算637
四、输送量计算638
五、功率计算639
(一)传动滚筒轴功率计算639
(二)附加功率的计算639
(三)电动机功率计算640
六、最大张力计算640
七、输送带层数计算640
第四节轻型带式输送机部件
一、传动滚筒641
二、改向滚筒642
(一)D=?164~320mm改向滚筒642
(二)D=?108mm改向滚筒642
三、托辊组643
(一)平形上托辊643
(二)下托辊644
(三)槽形托辊644
四、拉紧装置645
(一)螺旋拉紧装置645
(二)中间螺旋拉紧装置646
(三)重锤拉紧装置647
五、卸料器649
(一)手动单侧犁式卸料器649
(二)手动双侧犁式卸料器649
六、清扫器及逆止器650
(一)弹簧清扫器650
(二)空段清扫器650
(三)头部转刷清扫器651
(四)尾部转刷清扫器651
(五)带式逆止器651
七、头架652
(一)h=500mm平形低式头架652
(二)h=500mm槽形低式头架652
(三)h≥800~1200mm平形中式头架653
(四)h≥800~1200mm槽形中式头架654
(五)h≥1200~1600mm平形高式头架656
(六)h≥1200~1600mm槽形高式头架657
(七)h≥1600~2000mm平形高式头架658
(八)h≥1600~2000mm槽形高式头架659
八、尾架660
(一)β=0°~5°螺旋拉紧装置用尾架660
(二)β=5°30′~20°螺旋拉紧装置用尾架661
(三)中间拉紧装置用尾架662
(四)直角尾架662
九、中间架及中间支架663
(一)标准中间架663
(二)凹弧中间架664
(三)凸弧中间架666
(四)中间支架673
十、头部漏斗675
(一)漏斗675
(二)护罩676
十一、导料槽676
(一)后部导料槽676
(二)中部导料槽677
(三)前部导料槽677
第五节驱 动 装 置
一、QDF风冷电动滚筒678
(一)QDF风冷电动滚筒系列选用表678
(二)QDF风冷电动滚筒安装尺寸680
二、QDN驱动装置681
(一)QDN驱动装置选用表681
(二)QDN驱动装置安装尺寸684
附录
附录一QD80轻型带式输送机技术条件685
附录二QD80轻型带式输送机质量估算686
附录三油冷、油浸式电动滚筒686
(一)QDY型油冷式电动滚筒686
(二)YD型油浸式电动滚筒688
参考文献689
第四章特轻型带式输送机
第一节概述
一、应用范围691
二、主要参数及设计选用691
三、布置形式及安装要求692
(一)布置形式692
(二)安装要求692
第二节各 类 部 件
一、传动滚筒694
二、改向滚筒695
三、托辊695
四、托板696
(一)平形托板696
(二)槽形托板697
五、拉紧装置697
(一)尾部拉紧装置697
(二)中间拉紧装置698
六、驱动装置699
(一)特轻型风冷式电动滚筒699
(二)蜗杆驱动装置700
(三)摆线针轮减速器驱动装置701
七、机架701
(一)头架和尾架701
(二)中间机架和弯曲段机架703
(三)支腿704
(四)横向支撑704
第三节特轻型带式输送机整机组合
一、水平型尾部拉紧式输送机706
二、水平型中间拉紧式输送机708
三、低斜型尾部拉紧式输送机710
四、低斜型中间拉紧式输送机712
五、高斜型尾部拉紧式输送机714
六、高斜型中间拉紧式输送机716
七、双斜型尾部拉紧式输送机718
八、双斜型中间拉紧式输送机719
九、矮斜型尾部拉紧式输送机721
十、矮斜型中间拉紧式输送机723
参考文献725
第五章深槽型带式输送机
第一节概述
一、深槽型带式输送机提高输送倾角的原理727
二、深槽型带式输送机托辊组结构类型728
第二节半圆形深槽型带式输送机
一、半圆形深槽型带式输送机的结构730
二、输送机倾角决定因素731
三、半圆形深槽型带式输送机的特点732
四、设计计算方法及算例732
(一)过渡段732
(二)弯曲段733
(三)功率计算734
第三节U形带式输送机
一、工作原理和结构特征735
二、U形带式输送机的特点735
三、U形带式输送机与普通、O形、吊挂管状带式输送机的特性比较736
四、规格及性能736
五、输送带张力及驱动功率计算738
(一)不水平拐弯运行时738
(二)水平拐弯运行时741
六、设计要点及托辊配置742
(一)设计要点742
(二)托辊配置744
参考文献747
第六章气垫带式输送机
第一节概述
一、气垫带式输送机的特点和工作原理749
(一)工作原理749
(二)主要特点749
(三)主要结构类型750
(四)应用范围750
(五)产品规格及主要参数752
(六)典型布置形式754
二、气垫带式输送机的部件名称和用途754
第二节部件的选用
一、气室755
二、风机756
三、托辊756
四、中部卸料装置756
五、机架和中间支腿756
六、密封垫756
七、消声器和隔声罩757
八、输送带757
九、其他部件757
第三节电气及安全保护装置
一、对电控的要求757
二、安全保护装置757
第四节设计选型要领
一、对凸弧段的处理758
二、对凹弧段的处理759
三、头尾过渡段759
四、盘槽边角759
五、受料点及多点装料问题的处理759
六、输送机长度760
七、关于逆止问题760
八、气垫带式输送机的计量760
第五节设 计 计 算
一、原始数据及工作条件760
二、输送带宽度和输送量计算761
三、圆周驱动力和驱动功率计算764
四、各种参数计算767
五、带负荷启动验算768
六、风机选型计算769
七、风机功率计算772
八、计算例题772
第六节气垫带式输送机部件
一、概述783
二、气室783
三、双曲气室784
四、风管785
五、气室支架785
六、双曲气室支架786
七、防雨罩787
八、风机支架788
九、风机795
十、消声器804
参考文献805
第七章波状挡边带式输送机
第一节概述
一、产品特点和应用范围807
(一)产品特点807
(二)产品应用范围808
二、产品主要性能参数808
三、产品名称和规格809
四、布置形式810
第二节部件的选用
一、波状挡边输送带811
(一)基带811
(二)波状挡边814
(三)横隔板815
(四)空边宽和有效带宽816
(五)挡边带标记方法及示例817
二、驱动装置817
(一)驱动装置的型式818
(二)驱动装置的选用819
三、传动滚筒819
四、改向滚筒820
五、改向轮和改向辊组821
六、托辊822
七、挡辊823
八、清扫器823
九、拉紧装置824
十、机架824
第三节电气及安全保护装置
第四节设 计 计 算
一、输送量825
二、许用的最大物料粒度和最大带速828
三、参数选择829
四、功率和张力的计算830
五、整机布置设计831
六、应用实例831
(一)参数选择831
(二)功率和张力计算831
第五节整机基本设计尺寸
一、上水平段基本设计尺寸833
二、下水平段基本设计尺寸833
三、凹弧段机架辅助尺寸计算834
四、中式、高式凸弧段机架辅助尺寸计算834
五、S形波状挡边带式输送机几何尺寸计算(其余机型参考此法)835
第六节DJ?JB型波状挡边带式输送机部件型谱
一、Y?ZJ型驱动装置836
二、传动滚筒855
三、改向轮856
四、托辊857
(一)上托辊857
(二)下托辊857
五、挡辊861
六、清扫器862
七、头架863
(一)中式头架863
(二)高式头架864
八、导料槽865
九、凸弧段机架866
十、凹弧机架874
十一、中间架支腿881
十二、中间架882
十三、受料段中间架883
参考文献884
第八章圆管带式输送机
第一节概述
一、产品特点和应用范围886
二、性能特点886
三、原理与结构888
四、产品规格和参数888
第二节圆管带式输送机的部件结构及选用
一、输送带890
二、托辊组结构892
三、框支架895
四、圆管带式输送机的纠偏结构897
五、特殊保障结构900
(一)弯曲段900
(二)头部和尾部901
(三)中间加载902
(四)回程过渡段输送带的支撑903
第三节圆管带式输送机的线路布置
一、过渡段长度及其托辊的布置904
二、圆管带式输送机空间弯曲布置及曲率半径905
三、圆管带式输送机输送带的搭接方向906
四、特殊物料输送时对线路布置的要求907
五、托辊间距907
第四节圆管带式输送机设计计算
一、体积输送量的计算908
二、直线段阻力计算908
三、输送带张力的计算909
四、驱动滚筒功率计算909
五、圆管带式输送机线路的确定及驱动功率概算法909
参考文献910
第九章吊挂管状带式输送机
第一节概述
一、结构及工作原理913
二、特点914
三、使用范围915
第二节规格与性能
一、带宽、带速系列及输送量915
二、允许输送的物料最大粒度915
三、各种物料的最大输送倾角915
四、满载水平输送时的最大单机长度916
五、输送机最小曲率半径916
第三节设计要点及计算
一、线路设计要点916
二、张力及驱动功率计算918
第四节部 件 选 用
一、机头922
二、机尾922
三、吊具924
四、输送带925
五、张紧小车926
六、滑轮组、重锤吊架和重锤块926
七、驱动装置927
八、保护装置938 附录一吊具数量计算938
附录二输送带长度计算938
附录三国内生产使用实例938
参考文献939

F. 甯﹀紡杈撻佹満浼犲姩瑁呯疆璁捐″紑棰樻姤鍛

甯﹀紡杈撻佹満浼犲姩瑁呯疆璁捐″紑棰樻姤鍛

銆銆 涓.閫夐樹緷鎹鍙婃剰涔

銆銆1. 甯﹀紡杈撻佹満鏄鑳跺甫鍏间綔鐗靛紩鏈烘瀯鍜屾壙杞芥満鏋勭殑涓绉嶈繍杈撹惧囷紝瀹冨湪鍦伴潰鍜屼簳涓嬭繍杈撳叿鏈夊箍娉涚殑杩愮敤銆備笌鍏朵粬璁惧囷紙濡傛満杞︾被锛夌浉姣旓紝甯﹀紡杈撻佹満涓嶄粎鍏锋湁闀胯窛绂汇佸ぇ杩愰噺銆佽繛缁杩愯緭绛夌壒鐐癸紝鑰屼笖杩愯屽彲闈狅紝鏄撲簬瀹炵幇鑷鍔ㄥ寲鍜岄泦涓鎺у埗锛岀粡娴庢晥鐩婂崄鍒嗘槑鏄俱傚叾杩愯岀淮鎶よ垂鐢ㄨ繙浣庝簬鍏璺姹借繍鏂瑰紡锛屼笖鎬绘姇璧勫皬锛屽嚒鑳藉疄琛屽甫寮忚緭閫佹満杈撻佺殑鍦哄悎锛岄兘閲囩敤杩炵画甯﹀紡杩愯緭鏈鸿緭閫併

銆銆2. 甯﹀紡杈撻佹満鏄涓绉嶇悊鎯崇殑杩炵画杩愯緭璁惧囷紝浣嗙洰鍓嶅叾鏁堣兘杩樻病鏈夊厖鍒嗗彂鎸ワ紝璧勬簮鏈夋墍娴璐癸紝濡傚皢甯﹀紡杈撻佹満鍋氶傚綋淇鏀癸紝骞堕噰鐢ㄤ竴瀹氱殑.瀹夊叏鎺鏂斤紝鎴栬歌兘瀹炵幇浜恒佽繍鏂欍佸弻鍚戣繍杈撶瓑鍔熻兘锛屽仛鍒颁竴鏈哄氱敤锛屼娇鍏跺彂鎸ユ洿澶х殑缁忔祹鏁堢泭銆

銆銆 浜.鍘熷嬫暟鎹鍙婂伐浣滄潯浠

銆銆1銆佸師濮嬫暟鎹锛

銆銆2銆佸伐浣滄潯浠讹細

銆銆杩炵画鍗曞悜杩愯浆锛屽伐浣滄椂鏈夎交寰鎸鍔锛屼娇鐢ㄦ湡闄愪负10骞达紝灏忔壒閲忕敓浜э紝鍗曠彮鍒跺伐浣滐紙8灏忔椂/澶╋級銆傝繍杈撻熷害鍏佽歌宸涓5%銆

銆銆 涓.璁捐″唴瀹逛互鍙婄爺绌舵柟娉

銆銆1.浼犲姩鏂规堢殑鎷熷畾锛堣捐″崟绾у渾鏌遍娇杞鍑忛熷櫒鍜屼竴绾у甫浼犲姩锛

銆銆2.鐢靛姩鏈虹殑閫夋嫨

銆銆涓锛塝绯诲垪涓夌浉寮傛ョ數鍔ㄦ満

銆銆3.璁$畻鎬讳紶鍔ㄦ瘮鍜屽垎閰嶄紶鍔ㄦ瘮

銆銆4.璁$畻杩愬姩鍙傛暟鍜屽姩鍔涘弬鏁

銆銆5.浼犲姩闆朵欢鐨勮捐

銆銆涓锛夌毊甯﹁疆浼犲姩璁捐¤$畻

銆銆1.鏅閫歏甯

銆銆2.纭瀹氬甫杞鐩村緞浠ュ強甯﹂

銆銆3.纭瀹氬甫闀垮拰涓蹇冭窛

銆銆4.楠岀畻灏忓甫杞鍖呰

銆銆5.纭瀹氬甫鏍规暟

銆銆浜岋級榻胯疆浼犲姩鐨勮捐

銆銆涓夛級杞寸殑璁捐¤$畻

銆銆1.鏍规嵁鎵鐭╀及绠楄酱鐨勮酱寰

銆銆鍥涳級婊氬姩杞存壙鐨勯夋嫨鍙婇獙绠

銆銆1.璁$畻杈撳叆杞存壙

銆銆2.璁$畻杈撳嚭杞存壙

銆銆浜旓級閿鑱旀帴鐨勯夋嫨

銆銆鍏锛夎仈杞村櫒鐨勯夋嫨

銆銆涓冿級娑︽粦娌瑰強娑︽粦鏂瑰紡鐨勯夋嫨

銆銆 鍥.璁捐′换鍔

銆銆1.閮ㄤ欢瑁呴厤鍥句竴寮狅紙A1锛

銆銆2.闆朵欢宸ヤ綔鍥句袱寮狅紙A3锛

銆銆3.璁捐¤烘枃涓浠斤紙6000~8000瀛楋級

銆銆 浜.璁捐¤繘绋嬪畨鎺

銆銆1.璁捐″噯澶囧伐浣滐紙2012.10.9~2012.10.20锛

銆銆2.浼犲姩瑁呯疆鐨勬讳綋璁捐★紙2012.10.21~2012.11.10锛

銆銆3.浼犲姩闆朵欢鐨勮捐★紙11.11~20锛

銆銆4.缁樺埗瑁呴厤鍥惧拰闆朵欢鐨勫伐浣滃浘锛11.21~30锛

銆銆5. 鎾板啓璁$畻璇存槑涔﹀拰姣曚笟璁捐¤烘枃锛11.1~12.10锛

銆銆6.淇鏀硅烘枃銆佸畾绋匡紙12.10~17锛

銆銆7.鍑嗗囩瓟杈╋紙12.18~30锛

銆銆 鍏.鍙傝冩枃鐚

銆銆1.銆婄畝鏄庢満姊拌捐℃墜鍐屻嬶紝瀛斿噷鍢夛紝鍖椾含鐞嗗伐澶у﹀嚭鐗堢ぞ锛2008

銆銆2.銆婃満姊拌剧▼璁捐°嬶紝瀹嬪疂鐜夛紝鍚村畻娉斤紝楂樼瓑鏁欒偛鍑虹増绀撅紝2009

銆銆3.銆婃満姊拌捐°嬶紝婵鑹璐碉紝绾鍚嶅垰锛岄珮绛夋暀鑲插嚭鐗堢ぞ锛2009

銆銆4.銆婃満姊板埗鍥俱嬶紝瀹嬪織鑹锛岄粍鍥藉叺锛岄檲铏庯紝鍖椾含鐞嗗伐澶у﹀嚭鐗堢ぞ锛2009

銆銆5.銆婂伐绋嬫潗鏂欍嬶紝 鑻忔棴骞筹紝婀樻江澶у﹀嚭鐗堢ぞ锛2008

銆銆6.銆婃満姊拌捐¤剧▼璁捐″浘鍐屻嬶紝闄堥搧楦o紝楂樼瓑鏁欒偛鍑虹増绀撅紝2009

銆銆7.銆婃満姊拌捐″熀纭銆嬶紝闄堢珛寰凤紝楂樼瓑鏁欒偛鍑虹増绀撅紝2007.8绗3鐗

銆銆8.銆婃満姊板師鐞嗐嬶紝瀛欐亽锛岄檲浣滄ā锛岃憶鏂囨澃锛岄珮绛夋暀鑲插嚭鐗堢ぞ锛2006

銆銆9.銆婃潗鏂欏姏瀛︺嬪惔寤哄崕锛岄噸搴嗗ぇ瀛﹀嚭鐗堢ぞ锛2002

;

G. 机械设计基础课程设计的题目是带式运输机传动装置设计

是指一个传送带吗,是横卧,还是有角度的。

H. 带式传输机传动装置的设计

设计—用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350 N,运输带的速度V=1.6 m/s卷筒直径D=260 mm,两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96

一.传动方案分析:
如图所示减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级具有缓冲吸振能力和过载保护作用,带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势

二.选择电动机:
(1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。
(2)电动机容量:
①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②电动机输出功率Pd=Pw/η
传动系统的总效率:η=
式中……为从电动机至卷筒之间的各传动机构和轴承的效率。
由表查得V带传动=0.96,滚动轴承=0.99,圆柱齿轮传动
=0.97,弹性连轴器=0.99,卷筒轴滑动轴承=0.96
于是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 电动机额定功率由表取得=3 kw
(3)电动机的转速:由已知条件计算卷筒的转速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4
于是转速可选范围为 ==118×(2~4)×(2~4)
=472~1888 r/min
可见同步转速为 500 r/min和2000 r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960 ×r/min的电动机
传动系统总传动比i= =≈2.04
根据V带传动的常用范围=2-4取=4
于是单级圆柱齿轮减速器传动比 ==≈2.04

I. 带式输送机传动装置毕业设计的每一步骤做简要说明(怎么完成)。

参考如下: 机械设计基础课程设计任务书………………………………. 题目名称带式运输机传动装置 学生学院 专业班级 姓 名 学 号 一、课程设计的内容设计一带式运输机传动装置(见图1)。设计内容应包括:传动装置的总体设计;传动零件、轴、轴承、联轴器等的设计计算和选择;减速器装配图和零件工作图设计;设计计算说明书的编写。图2为参考传动方案。 二、课程设计的要求与数据已知条件: 1.运输带工作拉力: F = 2.6 kN; 2.运输带工作速度: v = 2.0 m/s; 3.卷筒直径: D = 320 mm; 4.使用寿命: 8年; 5.工作情况:两班制,连续单向运转,载荷较平稳; 6.制造条件及生产批量:一般机械厂制造,小批量。三、课程设计应完成的工作1.减速器装配图1张;2.零件工作图 2张(轴、齿轮各1张);3.设计说明书 1份。四、课程设计进程安排序号设计各阶段内容地点起止日期一设计准备: 明确设计任务;准备设计资料和绘图用具教1-201第18周一二传动装置的总体设计: 拟定传动方案;选择电动机;计算传动装置运动和动力参数传动零件设计计算:带传动、齿轮传动主要参数的设计计算教1-201第18周一至第18周二 三减速器装配草图设计: 初绘减速器装配草图;轴系部件的结构设计;轴、轴承、键联接等的强度计算;减速器箱体及附件的设计教1-201第18周二至第19周一四完成减速器装配图: 教1-201第19周二至第20周一五零件工作图设计教1-201第20周周二六整理和编写设计计算说明书教1-201第20周周三至周四七课程设计答辩工字2-617第20周五五、应收集的资料及主要参考文献1 孙桓, 陈作模. 机械原理[M]. 北京:高等教育出版社,2001.2 濮良贵, 纪名刚. 机械设计[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信远. 机械设计/机械设计基础课程设计[M]. 北京:高等教育出版社,1995.4 机械制图、机械设计手册等书籍。发出任务书日期: 年 月 日 指导教师签名: 计划完成日期: 年 月 日 基层教学单位责任人签章:主管院长签章:目录一、传动方案的拟定及说明………………………………….3二、电动机的选择…………………………………………….3三、计算传动装置的运动和动力参数……………………….4四、传动件的设计计算………………………………………..6五、轴的设计计算…………………………………………….15六、滚动轴承的选择及计算………………………………….23七、键联接的选择及校核计算……………………………….26八、高速轴的疲劳强度校核……………………………….….27九、铸件减速器机体结构尺寸计算表及附件的选择…..........30十、润滑与密封方式的选择、润滑剂的选择……………….31参考资料目录

阅读全文

与运输机传动装置参考文献相关的资料

热点内容
大金液管制冷多少温度 浏览:165
ug11内部工具箱自适应 浏览:84
男机械上衣选什么 浏览:739
仪表盘不发车怎么回事 浏览:921
轴承的扭矩怎么看 浏览:28
发电机利用什么原理把机械能转化为电能 浏览:497
photoshop工具箱 浏览:292
轴承202什么好电机用 浏览:625
阀门通断用什么符号表示 浏览:198
化学仪器中下面像个球的是什么 浏览:482
什么是铸造产能企业 浏览:541
超声波光线是什么意思 浏览:871
艾瑞泽7仪表盘绿色灯是什么 浏览:448
查线路缺相用什么仪器 浏览:908
机床厂购买的仪器工具怎么摊销 浏览:158
制冷机组的压力表怎么看才算正常 浏览:125
urdf中怎么给机械臂加入障碍物 浏览:795
电动工具火花大的原因 浏览:301
轴承陶瓷干什么用的 浏览:454
夏氏机床是什么 浏览:637