导航:首页 > 装置知识 > LNG液化装置能力设计大了怎么改

LNG液化装置能力设计大了怎么改

发布时间:2025-01-02 16:43:25

1. 液化天然气的发展概况

1941 年在美国克利夫兰建成了世界第一套工业规模的LNG装置,液化能力为 8500 m3 /d 。从 60 年代开始, LNG 工业得到了迅猛发展,规模越来越大,基本负荷型液化能力在 2.5 × 104 m3 /d 。各国投产的 LNG 装置已达 160 多套, LNG 出口总量已超过 46.18 × 106 t/a 。
天然气的主要成分是甲烷,甲烷的常压沸点是 -16 1 ℃ ,临界温度为 -84 ℃ ,临界压力为 4.1MPa 。 LNG 是液化天然气的简称,它是天然气经过净化(脱水、脱烃、脱酸性气体)后[4],采用节流、膨胀和外加冷源制冷的工艺使甲烷变成液体而形成的[5]。 中国天然气贸易的发展,不但反映了世界天然气市场格局的变化,而且正在为世界天然气市场注入新的活力。
2011年中国天然气产量首次突破1000亿立方米,达到1011.8亿立方米,同比增长6.4%。2012年前8个月产量累计达到697.7万吨,同比增长5.4%。天然气管道建设也如火如荼。2011年全国新增天然气长输管道里程超过5000公里,全国干、支线天然气管道总长度超过5万公里。2013年10月16日,西气东输三线工程在北京、新疆和福建三地同时开工,沿线经10个省区,总长度7378公里,设计年输气量300亿立方米。
液化天然气则随着海上液化天然气进口量的不断增加以及陆上液化天然气液化工厂的建设,国内资源供应得到了保障。2011年我国进口液化天然气1221.5万吨(约合171亿立方米),约为上年进口量的1.3倍。我国海上液化天然气进口量今后将会逐年增加,2015年有望达到4000万吨,年均复合增长率超过30%。 2013年11月22日俄罗斯国家杜马通过一项法律允许俄液化天然气出口自由化,这项法律将打破多年来液化天然气出口由俄罗斯天然气工业股份公司垄断的局面。
上述法律自2013年12月1日起生效。按照规定,俄罗斯将有两类能源公司获得液化天然气出口权。持有2013年1月1日前颁发的联邦矿产资源开采许可证,并被允许建立液化天然气工厂,或将开采出的天然气用于生产天然气的公司。此外,拥有包括黑海和亚速海在内的内海、领海及大陆架矿产资源开采权,并将开采出的天然气或按产品分成协议获得的天然气进行液化,国有资本超过50%的公司。
根据该法,俄工业贸易部将颁发液化天然气许可证的权力转交给能源部。天然气出口商将向俄能源部提供按俄政府规定的程序出口天然气的信息,此举是为了协调液化天然气出口,避免在俄出口商之间形成竞争。
俄政府希望,液化天然气出口自由化将有助于提高俄在世界天然气市场的份额,保持天然气价格稳定。
2013年前10个月,俄天然气出口量为1633.53亿立方米,其中远距离出口量同比增长17.7%,为1098.71亿立方米;近距离出口量同比下降16%,为416.63亿立方米。此外,前10个月出口至亚太地区的液化天然气同比略降1.6%,为118.15亿立方米。 中国三大国有石油公司之一的中国海洋石油总公司(China National Offshore Oil Corp., 简称∶中海油集团)正发行10年期美元计价债券,初步指导息率为同期美国国债加约210点子。今次是该集团首次在国际市场上发债集资,以作为其投资澳大利亚昆士兰Curtis液化天然气(liquefied natural gas 简称∶LNG)项目之用。
销售文件没有显示具体发债金额,仅称为基准规模。在美元债市场,基准规模一般指5亿美元或以上。
中海油集团是中央特大型国有企业,也是中国最大的海上油气生产商,总部设在北京。主要业务包括油气勘探开发、专业技术服务、炼化销售及化肥、天然气及发电、金融服务、新能源等六大业务板块。
该集团是在香港上市的中国海洋石油有限公司(CNOOC Ltd.,0883.HKCEO 简称∶中海油)的母公司,上市的中海油曾在国际债券市场多次发债,在今年5月初刚发行了40亿美元、四档不同年期的美元债,但中海油集团则是首次在海外发债。
销售文件显示,今次发债由中海油集团旗下全资附属公司CNOOC Curtis Funding No. 1 Pty Ltd担任发债体,由中海油集团提供担保。有关债券获穆迪(Moody's)初步Aa3及标准普尔(Standard & Poor's)初步AA-评级,并计划于香港联合交易所上市。
文件显示,中海油集团计划把今次发债集资所得,用于旗下CNOOC (AUS) Investment或子公司的一般企业用途,当中部分将用作收购Curtis液化天然气项目之用。
中海油集团在5月时与英国石油公司(BP PLC, BP.LN)签订一项19.3亿美元的约束性协议,以取得Curtis液化天然气项目的40%权益,令其总权益由10%增至50%,协议还包括一个20年的供应合约。
销售文件显示,中国银行(Bank of China)、高盛(Goldman Sachs)、摩根大通(JP Morgan)及瑞银(UBS)担任今次发债的联席全球协调人,该4间投行,连同工银国际(ICBC International)、建银国际(CCB International)、农银国际(ABC Internaitonal)、交银国际(BOCOM International),担任今次发债的联席账簿管理人及联席牵头经办人,预计最快于今天内定价。 2.1 国外研究现状
现在世界能源生产总量中,天然气已占到1/3,并有可能在不远的将来逐步将现时广受欢迎的石油和煤炭挤到次要地位。2020年前,天然气在世界能源需求中的比例将会达到45%-50%。目前,世界天然气年需求量超过2.5×10m,进入国际贸易的为(6250-6500)×l0m,而其中以LNG方式出售的约占33%。据第20届世界天然气大会和相关资料预测,2030年前,世界天然气的潜在需求将增加到4×10m,液化天然气历来是一种细分市场产品。它的消耗量正以每年10%的速度增长,全球液化天然气需求将从2010年的2.18亿吨增至2015年的3.1亿吨,到2020年可达到4.1亿吨。2011年上半年,液化天然气需求同比增长8.5%,全年增长12%,主要是受来自于日本、英国和印度新增需求,以及韩国传统买家需求增长的刺激。预计到2015年,我国天然气供应结构为国产气1700亿立方米,净进口900亿立方米,天然气消费量将达到2600亿立方米,占一次能源消费中的比重则将从目前的4%上升至7%至8%。2011年中国天然气的消费量为1313亿立方米,届时天然气占一次性能源的消费比例可能将提升至10%至15%。
近年来,随着世界天然气产业的迅猛发展,LNG已成为国际天然气贸易的重要部分。与十年前相比,世界LNG贸易量增长了一倍,出现强劲的增长势头。据预测,2012年国际市场上LNG的贸易量将占到天然气总贸易量的36%,到2020年将达到天然气贸易量的40%,占天然气消费量的15%。
国外的液化装置规模大、工艺复杂、设备多、投资高,基本都采用阶式制冷和混合冷剂制冷工艺,目两种类型的装置都在运行,新投产设计的主要是混合冷剂制冷工艺,研究的主要目的在于降低液化能耗。制冷工艺从阶式制冷改进到混合冷剂制冷循环,目前有报道又有 C Ⅱ -2 新工艺[6],该工艺既具有纯组分循环的优点,如简单、无相分离和易于控制,又有混合冷剂制冷循环的优点,如天然气和制冷剂制冷温位配合较好、功效高、设备少等优点。
法国Axens 公司与法国石油研究所 (IFP) 合作,共同开发的一种先进的天然气液化新工艺—— Liquefin 首次工业化,该工艺为 LNG 市场奠定了基础。其生产能力较通用的方法高 15%-20% ,生产成本低 25% 。使用 Liquefin 法之后,每单元液化装置产量可达 600 × 104 t/y 以上。采用 Liquefin 工艺生产 LNG 的费用每吨可降低 25% [7] 。该工艺的主要优点是使用了翅片式换热器和热力学优化后的工艺,可建设超大容量的液化装置。 Axens 已经给美国、欧洲、亚洲等几个主要地区提出使用该工艺的建议,并正在进行前期设计和可行性研究。 IFP 和 Axens 开发的 Liquefin 工艺的安全、环保、实用及创新特点最近已被世界认可,该工艺获得了化学工程师学会授予的“工程优秀奖” [8] 。
美国德克萨斯大学工程实验站,开发了一种新型天然气液化的技术—— GTL 技术已申请专利。该技术比目前开发的 GTL 技术更适用于小规模装置,可加工 30.5 × 104 m3 /d 的天然气。该实验站的 GTL 已许可给合成燃料(Synfuels) 公司。该公司在 A & M 大学校园附近建立了一套 GTL 中试装置,目前正在进行经济性模拟分析。新工艺比现有技术简单的多,不需要合成气,除了发电之外,也不需要使用氧气。其经济性、规模和生产方面都不同于普通的费托 GTL 工艺。第一套工业装置可能在 2004 年上半年建成[9]。
2.2 国内研究现状
早在20世纪 60 年代,国家科委就制订了 LNG 发展规划, 60 年代中期完成了工业性试验,四川石油管理局威远化工厂拥有国内最早的天然气深冷分离及液化的工业生产装置,除生产 He 外,还生产 LNG 。 1991 年该厂为航天部提供 30tLNG 作为火箭试验燃料。与国外情况不同的是,国内天然气液化的研究都是以小型液化工艺为目标,有关这方面的文献发表较多[10],以下就国内现有的天然气液化装置工艺作简单介绍。
2011年,我国液化天然气行业市场销售CRN值约为80%,其中中石油、中石化、中海油三大国企的比重达到近六成,销售地区主要集中在天津、山东、广东、新疆、陕西等地。在LNG进口方面,截至2011年底,中国共投运LNG接收站5座,接收能力合计达1580万吨/年;到2014年全部建成后,中国LNG接收能力将达3380万吨/年。我国天然气地质资源量估计超过38万亿立方米,可采储量前景看好,按国际通用口径,预计可采储量7-10万亿立方米,可采95年,在世界上属资源比较丰富的国家。陆上资源主要集中在四川盆地、陕甘宁地区、塔里木盆地和青海,海上资源集中在南海和东海。此外,在渤海、华北等地区还有部分资源可利用。由于资源勘探后,未能有效利用,以及政策不配套,造成用气结构不合理,都在一定程度上制约了我国天然气工业的健康发展。但是,随着我国的社会进步和经济发展,天然气成为主要能源将是一个必然的趋势。
2.2.1 四川液化天然气装置
由中国科学院北京科阳气体液化技术联合公司与四川简阳市科阳低温设备公司合作研制的 300l/h 天然气液化装置,是用 LNG 作为工业和民用气调峰和以气代油的示范工程。该装置于 1992 年建成,为 LNG汽车研究提供 LNG 。
该装置充分利用天然气自身的压力,采用气体透平膨胀机制冷使天然气液化,用于民用天然气调峰或生产 LNG ,工艺流程合理,采用气体透平膨胀机,技术较先进。该装置基本不消耗水、电,属节能工程,但液化率很低,约 10% 左右,这是与它的设计原则一致的。
2.2.2 吉林油田液化天然气装置
由吉林油田、中国石油天然气总公司和中科院低温中心联合开发研制的 500l/h 撬装式工业试验装置于 1996 年 12 月整体试车成功,该装置采用以氮气为冷剂的膨胀机循环工艺,整个装置由 10 个撬块组成,全部设备国产化 [11]。
该装置采用气体轴承透平膨胀机;国产分子筛深度脱除天然气中的水和 CO2 ,工艺流程简单,采用撬装结构,符合小型装置的特点。采用纯氮作为制冷工质,功耗比采用冷剂的膨胀机循环要高。没有充分利用天然气自身压力,将天然气在中压下( 5.0MPa 左右)液化(较高压力下液化既可提高氮气的制冷温度,又可减少制冷负荷),因此该装置功耗大。
2.2.3 陕北气田液化天然气
1999 年 1 月建成投运的 2 × 104 m3 /d “陕北气田 LNG 示范工程”是发展我国 LNG 工业的先导工程,也是我国第一座小型 LNG 工业化装置。该装置采用天然气膨胀制冷循环,低温甲醇洗和分子筛干燥联合进行原料气净化,气波制冷机和透平膨胀机联合进行低温制冷,燃气机作为循环压缩机的动力源,利用燃气发动机的尾气作为加热分子筛再生气的热源。该装置设备全部国产化。装置的成功投运为我国在边远油气田上利用天然气生产 LNG 提供了经验[12]。
2.2.4 中原油田液化天然气装置
中原油田曾经建设了我国最大的 LNG 装置,原料气规模为 26.6 5 × 104 m3 /d 、液化能力为 1 0 × 104 m3 /d 、储存能力为 1200 m3 、液化率为 37.5%[13]。目前,在充分吸取国外先进工艺技术的基础上,结合国内、国外有关设备的情况,主要针对自身气源特点,又研究出 LNG 工艺技术方案 [14] 。该工艺流程采用常用的分子筛吸附法脱水,液化工艺选用丙烷预冷 +乙烯预冷 + 节流。
装置在原料气量 30× 104 m3 /d 时,收率高达 51.4% ,能耗为 0.13 Kwh/Nm3 。其优点在于各制冷系统相对独立,可靠性、灵活性好。但是工艺相对较复杂,须两种制冷介质和循环,设备投资高。由于该厂充分利用了油田气井天然气的压力能,所以液化成本低。
2.2.5 天津大学的小型液化天然气装置
小型 LNG 装置与大型装置相比,不仅具有原料优势、市场优势而且投资低、可搬迁、灵活性大[15]。 LNG 装置主要是用胺基溶剂系统对天然气进行预处理,脱除 CO2 等杂质;分子筛脱水;液化几个步骤。装置采用单级混合制冷系统;闭合环路制冷循环用压缩机压缩制冷剂。单级混合制冷剂工艺操作简便、效率高,适用于小型 LNG 装置。
压缩机的驱动机可用燃气轮机或电动马达。电价低的地区可优先考虑电动马达(成本低、维修简单)。在燃料气价格低的地区,燃气透平将是更好的选择方案。经济评估结果表明,采用燃气轮机驱动机的液化装置,投资费要比选用电动马达高出 200 万~ 400 万美元。据对一套 15 × 106ft 3 /d 液化装置进行的成本估算,调峰用的 LNG 项目储罐容积为 10 万 m3 ,而用于车用燃料的 LNG 项目仅需 700m3 储罐,导致最终调峰用的 LNG 成本为 2.03 ~ 2.11 美元 /1000ft3 ,而车用 LNG 成本仅 0.98 ~ 0.99 美元 /1000 ft3 。
2.2.6 西南石油大学液化新工艺
该工艺日处理 3.0 × 104 m3 天然气,主要由原料气 ( CH4 : 95.28% , CO2 :2.9% ) 脱 CO2 、脱水、丙烷预冷、气波制冷机制冷和循环压缩等系统组成。 以 SRK 状态方程作为基础模型,开发了天然气液化工艺软件。 天然气压缩机的动力采用天然气发动机,小负荷电设备用天然气发电机组供电,解决了边远地区无电或电力紧张的难题。由于边远地区无集输管线可利用,将未能液化的天然气循环压缩,以提高整套装置的天然气液化率。
装置采用一乙醇胺法( MK-4 )脱除 CO2 。由于处理量小,脱二氧化碳的吸收塔和再生塔应采用高效填料塔 [16] 。由于混合制冷剂,国内没有成熟的技术和设计、运行管理经验,仪表控制系统较复杂。同时考虑到原料气中甲烷含量高,有压力能可以利用。故采用天然气直接膨胀制冷作为天然气液化循环工艺[17]。气波制冷属于等熵膨胀过程,气波制冷机是在热分离机的基础上,运用气体波运动的理论研制的。在结构上吸收了热分离机的一些优点,同时增加了微波吸收腔这一关键装置,在原理上与热分离机存在明显不同,更加有效地利用气体的压力,提高了制冷效率。
2.2.7 哈尔滨燃气工程设计研究院与哈尔滨工业大学
LNG 系统主要包括天然气预处理、天然气的低温液化、天然气的低温储存及天然气的气化和输出等[18]。经过处理的天然气通过一个多级单混冷凝过程被液化,制冷压缩机是由天然气发动机驱动。 LNG 储罐为一个双金属壁的绝热罐,内罐和外罐分别是由镍钢和碳钢制成 [19] 。
循环气体压缩机一般采用天然气驱动,可节省运行费用而使投资快速收回。压缩机一般采用非润滑式特殊设计,以避免天然气被润滑油污染[20]。采用装有电子速度控制系统的透平,而且新型透平的最后几级叶片用钻合金制造,改善了机械运转。安装于透平压缩机上的新型离合器是挠性的,它们的可靠性比较高,还可以调整间隙。

2. LNG气化站的设计

1、LNG气化站设计标准
至今我国尚无LNG的专用设计标准,在LNG气化站设计时,常采用的设计规范为:GB 50028—2006《城镇燃气设计规范》、GB50016-2006《建筑设计防火规范》、GB 50183—2004《石油天然气工程设计防火规范》、美国NFPA—59A《液化天然气生产、储存和装卸标准》。其中GB 50183—2004《石油天然气工程设计防火规范》是由中石油参照和套用美国NFPA—59A标准起草的,许多内容和数据来自NFPA—59A标准。由于NF-PA—59A标准消防要求高,导致工程造价高,目前难以在国内实施。目前国内LNG气化站设计基本参照GB 50028—93《城镇燃气设计规范》(2002年版)设计,实践证明安全可行。
2、LNG气化站的选址及总图布置
① LNG气化站选址
气化站的位置与其安全性有着密切的关系,因此气化站应布置在交通方便且远离人员密集的地方,与周围的建构筑物防火间距必须符合《城镇燃气设计规范》GB 50028—2006的规定,而且要考虑容易接入城镇的天然气管网,为远期发展预留足够的空间。
② LNG气化站总图布置
合理布置气化站内的建构筑物、工艺设施,可使整个气化站安全、经济、美观。站区总平面应分区布置,即分为生产区(包括卸车、储存、气化、调压等工艺区)和辅助区,生产区布置在站区全年最小频率风向的上风侧或上侧风侧,站内建构筑物的防火间距必须符合《城镇燃气设计规范》GB 50028—2006的规定。
3、LNG气化站卸车工艺
LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设置的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。
卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG时采用上进液方式外,正常卸槽车时基本都采用下进液方式。
为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。
4、LNG存储
储罐是LNG气化站的主要设备,直接影响气化站的正常生产,也占有较大的造价比例。按结构形式可分为地下储罐、地上金属储罐和金属预应力混凝土储罐。对于LNG储罐,现有真空粉末绝热型储罐、正压堆积绝热型储罐和高真空层绝热型储罐,中、小型气化站一般选用真空粉末绝热型低温储罐。储罐分内、外两层,夹层填充珠光砂并抽真空,减小外界热量传入,保证罐内LNG日气化率低于0.3%
5、LNG的气化
气化装置是气化站向外界供气的主要装置,设计中我们通常采用空温式气化器,其气化能力宜为用气城镇高峰小时计算流量的I.3~1.5倍,不少于2台,并且应有1台备用。当环境温度较低时,空温式气化器出口天然气温度低于5℃时,应将出口天然气进行二次加热,以保证整个供气的正常运行。一般天然气加热器采用水浴式加热器
6、BOG与EAG(安全放散气体)的处理
BOG主要来源于LNG槽车回气和储罐每天0.3%的自然气化。现在常用的槽车容积为40m3,回收BOG的时间按照30min计算,卸完LNG的槽车内气相压力约为0.55MPa,根据末端天然气压力的不同,回收BOG后槽车内的压力也不同,一般可以按照0.2MPa计算。回收槽车回气需要BOG加热器流量为280m3/h,加LNG储罐的自然蒸发量,则可计算出BOG加热器流量。LNG的储存温度为-163℃,即BOG的温度约为-163℃,为保证设备的安全,要将BOG加热到15℃。根据流量和温度可以确定BOG加热器的规格。回收的BOG经过调压、计量、加臭后可以直接进入管网,如果用户用气非连续则需要设置BOG储罐进行储存。
EAG主要是在设备或管道超压时排放。当LNG气化为气体天然气时,天然气比常温空气轻时的临界温度为-110℃。为防止EAG在放散时聚集,则需将EAG加热至高于-110℃后放散。容积为100m3的LNG储罐选择500m3/h的EAG加热器,最大量放散时出口温度不会低于-15℃。

3. 漫谈LNG装置中控室抗爆改造问题

近些年随石化、化工装置安全事故频发引发了人们对安全问题的关注,其中石油化工装置中控制室抗爆问题近年来格外引人注目。如《危险化学品安全专项整治三年行动实施方案》中提出“涉及甲乙类火灾危险性的生产装置控制室、交接班室原则上不得布置在装置区内,确需布置的,应按照《石油化工控制室抗爆设计规范》(GB50779-2012),在2020年底前完成抗爆设计、建设和加固”。由于LNG装置中的烃类等可燃物质具有爆炸风险,因而这一规定也适用于LNG装置。本文结合作者服务过的LNG装置控制室改造的实际案例就相关标准、规范对LNG控制室抗爆设计的要求及对已建成的LNG装置如何进行抗爆改造等进行简单汇总,希望可以帮助行业从业人员加深对控制室抗爆要求的理解,理清整改及新建中控室的抗爆设计的工作思路。

一、LNG中控室抗爆设计的必要性

纵观国内LNG厂站设施,目前新建装置的中控室一般布置在装置区外(是否需要抗爆应根据爆炸风险评估结果确定);而前些年建设的小型LNG工厂项目,有大量的工厂中控室是建在装置区内的,作为全厂重要设施及人员集中场所,且其距离火灾危险设备相对较近,按照《危险化学品安全专项整治三年行动实施方案》的条文要求,该类装置的中控室抗爆设计建设整改将成为必然面对的课题。具体说来,实施方案对抗爆控制室的整改要求如下:

(1)涉及爆炸危险性化学品的生产装置控制室、交接班室不得布置在装置区内,已建成投用的必须于2020年底前完成整改。

(2)涉及甲乙类火灾危险性的生产装置控制室、交接班室原则上不得布置在装置区内,确需布置的应按照《石油化工控制室抗爆设计规范》(GB50779-2012),在2020年底前完成抗爆设计、建设和加固。

(3)具有甲乙类火灾危险性、粉尘爆炸危险性、中毒危险性的厂房(含装置或车间)和仓库内的办公室、休息室、外操室、巡检室,2020年8月前必须予以拆除。

对照上述条文(2),LNG工厂内的中控室应参照GB50779(注意该规范目前正在修订升版,修订后的标准GB/T 50779预计将在今年颁布,与2012版比较,GB修订为GB/T,名称由《石油化工控制室抗爆设计规范》修订为《石油化工建筑物抗爆设计标准》)。此外,除中控室之外,一些LNG工厂同时还有现场机柜间,上述三条要求中并未提及现场机柜间,尤其是无人值守的现场机柜间问题,对此可以参照SH/T 3006-2012《石油化工控制室设计规范》及HG/T20508-2014《控制室设计规范》等相关标准。概括的说,建筑物是否需要考虑抗爆性能主要取决于建筑物是否位于爆炸风险的区域内和建筑物内是否有人员长期停留。目前新建的中央控制室等重要建筑一般布置在远离装置区的位置,其是否需要抗爆应根据爆炸风险评估确定。LNG工艺装置区内的控制室、有人值守的机柜间等建筑物是重要设施,同时还是人员集中场所,距离火灾危险设备相对较近,为防止装置区发生火灾、爆炸等事故时对其造成损害,故规定其宜进行抗爆设计。

二、新建LNG装置中控室的抗爆设计

抗爆控制室的设计需要在布置、建筑结构及暖通空调等三方面的加以注意。对此稍许展开说明如下。

应符合现行国标《石油化工企业设计防火规范》GB50160的有关规定,应布置在非爆炸危险区域内,并可根据安全分析(评估)报告的结果进行调整,同时应符合下列要求:

1)抗爆控制室宜布置在工艺装置的一侧,四周不应同时布置甲、乙类装置,且布置控制室的场地不应低于相邻装置区的地坪。(基于防止可燃气体在控制室周围聚集的考虑)

2)抗爆控制室应独立设置,不得与非抗爆建筑物合并建造。(基于避免在装置爆炸状态下,非抗爆建筑物可能产生的碎块阻塞控制室内人员疏散通道的考虑)

3)抗爆控制室应至少在两个方向设置人员的安全出口,且不得直接面向甲、乙类工艺装置。(现行国家标准《建筑设计防火规范》GB50016-2014(2018年版)的要求;基于提高人员疏散可能性的考虑,要求在建筑物不同的方向设置疏散口)

(1)建筑设计

1)抗爆控制室的建筑层面不得采用装配式架空隔热构造,女儿墙高度应在满足屋面防水构造要求的情况下取最小值,并宜采用钢筋混凝土结构。

2)建筑物外墙不应设置雨篷、挑檐等附属结构。

3)建筑物不得设置变形缝。

4)面向甲、乙类工艺装置的外墙应采用抗爆实体墙。需在该墙体上开洞时,应经过抗爆验算。

5)在人员通道外门的室内侧,应设置隔离前室。(设置隔离前室主要是为了有效地保持室内的正压(防爆措施)环境;同时,当外门在爆炸荷载的作用下损坏时,成为第二道防护体系。)

6)活动地板下底面以上的外墙上不得开设电缆进线洞口。基础墙体洞口应采取封堵措施,并满足抗爆要求。(主要是为了防止装置爆炸产生的超压通过电缆槽盒及建筑外墙上的开洞进入室内。)

7)操作室内、外地面高差不应小于600mm,其中活动地板下地面与室外地面的高度差不应小于300mm。空气调节设备机房室内、外高差不应小于300mm。

(2)建筑门窗

控制室外门、隔离前室内门、计算荷载、开启方向、自动闭门器、配置逃生门锁及抗爆门镜、密封要求、联锁要求、内外窗选型等均有明确要求。

(3)结构设计

混凝土的强度等级、钢筋的抗拉强度、屈服强度、最大拉力下的总伸长率及抗爆结构件的钢筋强度等级以及配筋面积等都作了明确规定。

抗爆控制室的重要房间、一般房间的空调系统、通风空调设备联锁、新风及回风过滤要求、备用空调机要求、抗爆控制室的排烟系统要求等均有明确规定,具体可以查阅上述的规范。

三、已有LNG装置中控室改造思路

为了提升爆炸冲击波危险区域内不满足抗爆要求的工厂内部既有建筑物的抗爆能力,防止重大人员伤害,宜对其进行抗爆治理,现根据以上所列的现行规范对相关治理原则要求整理如下:

1)当建筑物受到的爆炸冲击波超压≥6.9kPa或冲量≥207kPa•ms,且未进行抗爆设计时,建筑物宜进行抗爆治理。

2)建筑物抗爆治理应优先考虑撤出建筑物内人员的方案。无法实现无人值守时,应对建筑物进行抗爆治理。抗爆加固的工程成本过高或抗爆加固改造后建筑物难以满足GB50016、GB50160及其他现行国家标准要求的,应考虑将建筑物迁至爆炸冲击危险等级为低级的区域。

3)对于其他抗爆能力不足的既有建筑物,应根据建筑物内的人员数量、建筑物的重要性、建筑物结构类型、爆炸冲击波大小及建筑物损坏程度等,分批进行抗爆治理。

4)当既有建筑物的一部分需要抗爆加固时,应对建筑物整体进行结构安全核算,核算时应考虑非抗爆部分在爆炸中破坏后对抗爆加固部分的作用和影响。

5)应根据建筑物结构安全性核算结果、生产操作环节的制约、建筑物的现状及场地状况,综合权衡适用性、可实施性及经济性等因素,制定全面完整的抗爆治理方案。可选择新建抗爆建筑物或对既有建筑物进行抗爆加固。

6)对既有建筑物进行抗爆加固时,可采用直接加固法(例如各类结构加固法、抗爆涂层法等)或间接加固法(例如增设支点加固法、抗爆庇护罩法等),加固方法的相关要求应满足GB/T50779(最新)的规定。

7)当建筑物钢筋混凝土构件(钢筋混凝土柱、梁、板)不满足抗爆安全要求时,可采用各类结构加固法或间接加固法,例如增设支点加固法、加大截面加固法、外包型钢加固法、粘贴符合材料加固法和增设剪力墙法等。

8)对既有建筑物的墙体进行抗爆加固时,宜选择抗爆涂层法。抗爆涂层法加固时,宜在建筑物内侧喷涂抗爆涂层,喷涂厚度应根据计算结果确定。

9)抗爆涂层动态性能应通过其他爆炸冲击波测试的验证(作用在抗爆涂层上的峰值反射压力不得低于300kPa,正压作用时间不得低于150ms),并提供爆炸冲击波测试报告。未通过气体爆炸冲击测试验证的抗爆涂层不得用于石油化工建筑物的抗爆治理。

10)对于采用直接加固方法无法满足抗爆要求的建筑物,可采用抗爆庇护罩法。普通的砖混结构建筑物宜采用抗爆庇护罩法进行抗爆加固。

11)对于面积较小、改造难度大的建筑物,可选用模块化的可移动式抗爆庇护设施。

12)谨慎使用在建筑物与爆炸源之间增设抗爆墙的抗爆加固方法。如果确需使用该方法,应通过CFD方法详细模拟爆炸冲击波传播过程,并进行专项论证。

四、已有LNG工厂中控室改造实例

华北某LNG工程于2008年建成投产,并于2010年进行技术改造,增加二期液化装置的设计和施工,二期装置于2012年建成投产。结合《全国安全专项整治三年行动计划》(国务院安委【2020】3号)、二级标准化复查及安全生产经营许可证换证对控制室的相关要求,需将该LNG工厂原控制室改造为抗爆控制室。

结合安委办3号文的要求,改造前该中控室存在的问题有(见上图1所示平面图):

(1)原控制室与电容室、配电室为合并建筑,未独立设置;

(2)原控制室采用钢结构,且朝向危险区域方向存在非防爆窗;

(3)原控制室在生产区内且墙体不是抗爆实体墙、未设置隔离前室、且门上部设有挑檐,为非防爆建筑。

经过讨论,改造的备选方案有:

(1)在原中控室与危险区域之间增设抗爆墙;

(2)选址重建抗爆控制室;

(3)在原址上改建抗爆控制室。

当地应急管理厅不认可增设抗爆墙的做法,故而方案1无法实施。因场内其他位置无法满足新抗爆控制室的大小及位置要求,所以方案2也无法实施。最终仅有原址改建的方案可行。

1)将控制室与配电室分离成单独的建筑;

2)将控制室结构由钢结构改为钢筋混凝土结构;

3)将控制室墙体由岩棉板改为钢筋混凝土实体墙;

4)在门口增加隔离前室;

5)将控制室门改为防爆门,未设置窗户;

6)增加冗余的空调、新风、消防排烟等系统。

    控制室改造工期较长,需考虑在工厂正常运行的情况下进行改造。因而提前建立了临时中控室,改造前将系统搬迁至临时中控室(年度停机检修时进行);且在改造前对控制柜及相关控制电缆做硬性防护(临时隔离间),并安装临时空调以保证控制柜处于恒温恒湿的状态;对涉及到的控制柜及相关控制回路逐个进行工艺安全性分析,确定每一个控制回路出问题时所造成的影响及应对措施,制订《工艺防控方案》,并在改造正式开始前对所有人员进行培训。又通过对各系统的控制逻辑及通讯中断对现场的影响进行分析后,制定了不停机回迁方案,保证了整个改造期间LNG工厂的正常运行。

五、结语

当前国家高度重视石化等行业的安全生产问题。本文作者结合服务过的LNG装置控制室改造的实际案例就相关规范对LNG控制室抗爆设计的要求及对已建成的现有LNG装置如何进行抗爆改造等进行了汇总,文中引用的案例来自于团队真实的整改案例,考虑到各地LNG装置实际运行的差异性,这些汇总难以面面俱到,目的在于抛砖引玉,引起行业同仁们的探讨交流及重视,不当之处还请指正。

阅读全文

与LNG液化装置能力设计大了怎么改相关的资料

热点内容
冲击载荷用的轴承怎么配合 浏览:783
冰箱不堵又不漏为什么不能制冷 浏览:99
led氧化设备哪里买 浏览:289
什么是人品仪表 浏览:720
仪表盘on和of各代表什么 浏览:618
尼尔机械纪元怎么发型 浏览:497
如何设置虚拟手机设备 浏览:533
机床加工钻孔攻牙怎么解决毛刺 浏览:308
简易净水装置中小卵石的作用 浏览:675
阀门为什么要抹润滑油 浏览:194
格力空调晚上不制冷怎么回事 浏览:621
主轴承调整垫片什么作用 浏览:784
检查仪器坏了怎么办 浏览:808
雷凌的仪表盘怎么调节 浏览:881
溶液配置实验装置图 浏览:235
高压锅阀门漏气是怎么回事 浏览:41
铝片超声波焊不了是什么原因 浏览:976
梦见工具箱有个洞 浏览:381
粉末自动下落装置 浏览:194
东莞市金泽五金制品 浏览:240