⑴ 初中化学仪器名称及简图
初中化学实验中常用的仪器有烧杯,事关,酒精灯等。
烧杯(Beaker):烧杯是常用的实验容器,主要用于搅拌、加热和混合反应物质。它通常是圆筒形状,有一把宽边,方便倾斜倒出溶液。试管(Test tube):试管是用来进行小规模试验的玻璃容器,通常呈直筒形状。它可用于加热、混合溶液和观察反应等。
化学仪器的作用
1、化学仪器在实验中起到了重要的作用,它们帮助进行物质的观察、性质分析和反应实验等。通过合理选择和使用化学仪器,能够更加准确和安全地进行实验。随着科学技术的发展,化学仪器也在不断创新和进步。现代化学实验室中常用的仪器设备包括色谱仪、光谱仪、电子天平等,这些仪器能够提供更精确的数据和分析结果,支持更深入的化学研究。
2、除了实验室中的化学仪器,还有一些在工业生产过程中使用的大型化学设备,如反应釜、蒸馏塔等。这些设备在化学工程和制药等领域起到重要的作用,帮助进行大规模的化学合成和分离操作。无论是实验室仪器还是工业设备,安全使用是至关重要的。在进行化学实验时,应保持仪器干净整洁,遵守操作规程,正确调节温度、气压等参数。
⑵ 常用的色谱仪器有哪两大类,各自有何特点
色谱仪器分为气相色谱和液相色谱,还有气相色谱质谱联用仪等;
[检测家全新机租赁]赛默飞/气质联用ISQ7000
检测家提供新机租赁业务,为您提供实验室一站式服务,解决实验成本高、快速扩项难等问题;
[检测家全新机租赁] 液相色谱 Waters e2695
那么,高效液相色谱仪(HPLC,)如何选型?
高效液相色谱仪的选型,归结起来就是2个问题:如何确定高效液相色谱仪的配置?如何选择高效液相色谱仪的品牌?
今天我们就来谈谈第一问题,如何确定高效液相色谱仪的配置?
高效液相色谱仪可以分为5大部分:高压输液泵单元、进样器单元、分离单元、检测器单元、色谱数据处理单元,下面我们来逐一分析,谈谈高效液相色谱仪的选型细则。
1、高压输液泵单元的配置选型:
高效液相色谱仪的高压输液方式分为等度方式、梯度方式两大类别。
等度方式:在色谱分析过程中,流动相中各个组分的比例不随时间发生变化,例如某次分析过程中流动相中甲醇与水的比例是50:50一直保持不变,那么这种就叫做等度方式。
梯度方式:在色谱分析过程中,流动相中各个组分的比例随时间发生发生变化,例如某次分析过程中,随着时间的推移,流动相中其中一种(或几种)溶剂比例逐渐增大、另一种或几种溶剂的比例逐渐减少,最终那么这种输液方式就叫做梯度方式。
相应以上2种流动相输液方式,有等度泵和梯度泵这两种配置方式。
等度泵:一般采用单泵来作为高压输液泵单元,这是一种最简单最经济的配置方式。
梯度泵:又分为高压梯度、低压梯度。
高压梯度:常用的是二元高压梯度泵,也有三元高压梯度泵;我们通常所说的双泵,就是指“二元高压梯度泵”。有几元高压,则必须有几台泵;高压梯度泵单元,除了几台高压泵之外,还需要有配套的流动相混合装置(通常采用混合器);由于是高压混合的梯度方式,所以通常不太会产生气泡,脱气机通常可以不用配备。
低压梯度:与高压梯度“有几元高压就用几台泵”所不同的是,低压梯度只需要一台高压泵,但是在高压泵的前端,需要加上比例阀(有的公司称为低压梯度单元),通过比例阀来调节几种不同流动相进入高压泵的比例,从而实现梯度淋洗。因为低压下各种不同溶剂混合时可能产生吸热或放热,所以对于低压梯度泵单元来说,流动相脱气机与混合器一样,都是必不可少的。
高效液相色谱仪(HPLC)的高压输液泵单元的选型,主要是根据所检测项目方法的所需来定,方法中流动相输液是等度方式,那么等度泵(单泵)即可满足需求;如果方法中规定需要用到梯度淋洗输液方式,那么就需要选择梯度泵了。
在一些有HPLC分析方法开发任务的单位,为了满足将来可能的方法开发需要,即便暂时不需要梯度泵,也往往会配备梯度泵以利拓展方法。
2、进样器单元的配置选型
高效液相色谱仪(HPLC)的进样器单元,有2种配置可供选择:手动进样器、自动进样器。
手动进样器:无论是国产还是进口大牌,例如沃特世(Waters)、岛津(Shimadzu)、安捷伦(Agilent),世界上绝大多数公司均采用美国Rheodyne公司生产的六通进样阀作为高效液相色谱仪的手动进样阀。
自动进样器:自动进样器的最大优点就是,能极大的提高设备使用效率、减少人力成本。例如一个公司的HPLC使用部门,可以在下午下班之前,把未做完的50个样品都放进自动进样器内,然后设定分析程序、仪器清洗程序、关机程序,然后所有的人都可以下班,无需派人值守,第二天早上打印图谱、上报数据即可。
3、分离单元(高效液相色谱柱)
色谱柱是高效液相色谱仪的核心部件。
色谱法最核心的机制就是把样品中各个组分进行有效分离,而实现分离靠的就是色谱柱。
色谱柱选择时需要考虑四大参数:固定相类型(填料种类)、柱长、柱内径、填料粒度。
固定相类型:目前主要有硅胶基质的ODS(碳十八)、氨基、氰基、苯基、硅胶等色谱柱,以及高分子聚合物的固定相填料。目前ODS(碳十八)应用最为广泛,高效液相色谱法大约有80%分离采用的就是ODS(碳十八)填料。
柱长:色谱柱的长度越长,分离效果越好,但是背压也就越大、柱子价格就会越贵。目前柱长应用较多的是375px、500px、625px这三个长度,尤其以625px最多。
柱内径:其它几个柱参数不变的情况下,高效液相色谱柱的内径越小,分离度越好(分离度越高),但是柱负载量越小。常用柱内径是3.9mm、4.6mm、6.0mm,尤其以4.6mm为最常用。
填料粒径:根据色谱法的速率理论,填料粒径越小,分离效果越好;但是填料粒度越小,在同样的流动相输送流速下,对于高效色谱仪高压泵的背压也就越大,对于高压泵的加压能力、密封性能也就要求越高。高效液相色谱仪一般采用3微米、5微米或10微米的填料粒径,而3微米以下粒径的填料,通常应用于超高效液相色谱仪。高效液相色谱法应用最多的是5微米粒径的填料。
分离单元还有另外两个问题需要掂量:是否需要配预柱(保护柱)、是否需要配柱温箱。
预柱(保护柱):预柱(保护柱)的存在,会加大色谱死体积,会降低柱效,所以除非样品特别脏、或有特别多的高分子物质会堵塞分析柱,否则尽量不用预柱(保护柱)。
柱温箱:因为高效液相色谱法对于温度的些微波动并不特别敏感,除了一些对于柱温稳定性要求特别高的分离,高效液相色谱法很多情况下并不需要配置柱温箱。当然,如果采购预算足够多,安装柱温箱确实能有更好的色谱出峰时间重复性。
4、检测器单元的配置选型
高效液相色谱仪的检测器有很多种,最常见的是紫外检测器,还有示差检测器、荧光检测器、二极管阵列检测器、蒸发光散射检测器等等。
紫外检测器:是一种选择性检测器,几乎是所有HPLC检测器里面价格最便宜、应用最广泛的一种检测器,适合于测定有紫外吸收的物质(带苯环、杂环、双键叁键的物质)。紫外检测器的特点是灵敏度很高、适用性很广泛。
示差检测器:是一种通用型检测器,但是它的灵敏度低于紫外检测器,而且它对于流速比较敏感。示差检测器主要用来对一些没有紫外吸收的物质进行检测,例如糖类、高分子聚合物等等。
荧光检测器:仅仅适合于在紫外光照射下能发射荧光的物质,例如维生素A、维生素D、黄曲霉毒素等检测。高效液相色谱仪的荧光检测器的特点是灵敏度高、但适用范围较窄。
二极管阵列检测器:是紫外检测器的一个变种,二极管阵列检测器的特点是灵敏度较紫外检测器低、但是能做三维图谱,特别适合于医药研发类的应用。
蒸发光散射检测器:蒸发光散射检测器是一种新型的通用型检测器,未来的趋势是可以替代示差检测器等来检测无紫外吸收的物质,但是目前价格非常昂贵。
5、色谱数据处理单元
高效液相色谱仪的色谱数据处理单元,有数据处理机和色谱工作站两种,随着电脑的普及与应用,色谱数据处理机已经渐渐被淘汰,目前以色谱工作站为主流。
色谱工作站又分为可否反控两大类。
可反控工作站:不但能记录与处理色谱数据,而且可以反控高效液相色谱仪的各个组成单元。因为一些控制指令接口与数据传输的技术性问题,可反控工作站一般是各大仪器厂商自行研发与设计的,互相之间不能通用。
不可反控工作站:仅能记录与处理色谱数据,不可反控高效液相色谱仪。不可反控工作站通常是外挂式的,包含硬件和软件两大部分,硬件部分主要是一个A/D转换器,将高效液相色谱仪传输来的模拟信号转换成数字信号,再输进计算机;软件部分主要功能就是把硬件传输来的数字信号转换成图谱并进行积分计算等操作。
不可反控工作站的优点是通用性强,但是不可反控仪器、不便进行自动化操作。
二极管阵列检测器必须要用特殊的三维色谱软件。
综上所述,搞清楚了高效液相色谱仪的高压输液泵单元、进样器单元、分离单元、检测器单元、色谱数据处理单元的选型考量细则,那么我们才可以在尽量节约经费的情况下,选到我们所需要的仪器配置了。
⑶ 有机化学实验仪器名称及图片
有机化学实验仪器名称有旋转蒸发仪、催化氢化装置、压缩气体钢瓶等。
3、压缩气体钢瓶。
在有机化学实验中,有时会用到气体来作为顷棚让反应物。如氢气、氧气等,也会用到气体作为保护气,例如氮气、氩气等,有的气体用来作为燃料,例如煤气、液化气等。所有这些气体都需要装在特制的容器中。一般都是用的压缩气体钢瓶。将气体以较高压力贮存在钢瓶中,既便于运输又可以在一般实验室里随时用到非常纯净的气体。
⑷ 淋滤试验设计
天然条件下,河流渗滤系统是一个复杂的开放系统,具有多层次、多影响因素的特点。有机污染物在渗滤过程中的衰减除受微生物的作用外,还受各种环境因素包括光、温度、化学物质以及其他物理过程的影响,因而在拟定的研究目标下,很难实现在天然河流渗滤系统中的有机污染物生物降解试验研究。
另外,原则上在一个未受污染或污染较轻的天然河流水环境中,在各种状态下都不允许进行人为投放污染物的研究,而且在野外自然状态下进行试验将要消耗大量的人力、物力和财力,因而室内模拟试验成为研究河流渗滤系统自然净化过程的重要手段之一。
BTEX在河流渗滤系统中的环境行为非常复杂,要想真正掌握其迁移转化的机理,必须借助于模拟试验研究。在对大量试验数据进行分析的基础上,才能在理论上有所突破。土柱试验(淋滤试验)历来是土壤-水系统中污染物迁移转化机理研究的重要手段,国内外学者利用土柱试验进行了大量的试验研究工作,在此基础上形成了大量的研究成果,所以进行土柱试验是研究BTEX在河流渗滤系统中迁移转化的有效手段。
本试验也主要以室内土柱试验(淋滤试验)为主要研究手段,其主要目的是研究BTEX污染河水通过河流渗滤系统时各组分发生了哪些环境行为,以及河流渗滤系统对这些污染组分的净化机理和净化效果如何,探讨BTEX在河流渗滤系统中的迁移转化对地下水环境的影响。
本次试验在已有的对BTEX的挥发行为及其在土壤中的吸附行为研究的基础上,通过动态土柱试验(淋滤试验)研究BTEX各组分分别在以 和 作为电子受体的情况下在河流渗滤系统中的生物降解性能,并结合其中的微生物指标的测定,研究BTEX在河流渗滤系统中的生物降解作用。
(一)试验装置
试验装置有三部分组成,分别为淋滤液输入系统、模拟的河流渗滤系统和淋滤液输出采集系统,这三部分各自的主要功能是:
(1)淋滤液输入系统:利用该系统把人工配制的、含有BTEX污染组分的淋滤液源源不断地输入至模拟的河流渗滤系统。
(2)模拟的河流渗滤系统:把从野外采集的河流沉积物样品装入自制的有机玻璃柱中,制成模拟的河流渗滤系统,其入口连通淋滤液输入系统接纳淋滤液,其出口连通淋滤液输出采集系统,淋滤液在流经模拟的河流渗滤系统的过程中,经过吸附、微生物降解等作用被净化。
(3)淋滤液输出采集系统:通过该系统采集经模拟的河流渗滤系统净化后的淋滤液,然后测定淋滤液中BTEX各组分和两种电子受体的浓度。
(二)试验系统的装配
为了满足试验对三部分的功能要求,试验系统的三部分应分别由相应设备组装而成。试验系统和试验装置实物图如图3-29和图3-30所示。
图3-29 试验系统示意图
图3-30 淋滤试验装置
(1)输入系统设备的组装:采用5L下口瓶盛放淋滤液,使用硅胶管将带有阀门的出口与土柱连接,每隔一定时间向瓶中注入配制好的淋滤液,以保证淋滤液能够源源不断地供给,并利用阀门和蠕动泵来控制淋滤液流速。为了排除挥发的影响,从出口处另引出一根硅胶管,每日从中采集淋滤液以测定淋滤液进入土柱的初始浓度。
(2)渗滤系统设备的组装:由三根有机玻璃柱联通而成,其中最上层一根长30cm,直径10cm,内装野外采集粉土样品;中间一根长50cm,直径10cm,内装野外采集细砂样品;最下端一根长50cm,直径10cm,内装野外采集粗砂样品。由此三部分组成的渗滤系统可以模拟野外河流渗滤系统,淋滤液经过此系统时,其中的BTEX经过土壤吸附、微生物降解等相关过程被净化。将土样分别装入有机玻璃柱中并夯实,柱两端用滤网和石英砂隔开。根据装入土壤的质量和体积计算出各土柱的容重(表3-18)。其中柱1代表以 为电子受体的系统,柱2代表以 为电子受体的系统。
(3)采集系统设备的组装:在土柱最下端由硅胶管和淋滤液收集装置组成,每天定时测定淋滤液下渗流量,并采集相应水样测定其中的目标组分含量。
(三)淋滤试验过程
实验室人工配制淋滤液以模拟BTEX污染河水,分别以 和 作为电子受体加入模拟的污染河水中,将淋滤液源源不断输入到土柱中,以模拟在不同条件下河流渗滤系统中BTEX的迁移转化机理。
表3-18 土柱容重
试验前必须对土柱进行洗盐,以消除土壤中原有盐分对试验测定的影响。用去离子水从顶部注入土柱,完全饱和后继续冲洗土样中的盐分。经过一定时间的洗盐过程, 的浓度从最初的5.5mg/L降至检测限以下;而 自淋滤洗盐开始即未检出。通过洗盐可以在今后淋滤试验中排除土壤中溶出的两种电子受体对降解作用的影响。
另外为了模拟地下水的避光环境,将土柱用锡纸包裹,外层再覆盖黑布,尽可能减少光对土壤中微生物菌群的影响。BTEX渗滤试验步骤如下:
第一步,室内人工配制淋滤液,用去离子水作为溶剂。第一套系统(柱1)溶质是BTEX色谱纯试剂和KNO3,其中苯、甲苯、乙苯、间二甲苯的浓度均约为80mg/L, 浓度为400mg/L,并将它源源不断地供给输入系统,污水经过渗滤系统后流入采集系统。第二套系统(柱2)以 作为电子受体,试验系统装置各部件没有做任何改动,变化的仅仅是输入系统污水成分。同样用去离子水作为溶剂,溶质是BTEX色谱纯试剂和K2SO4,其中苯、甲苯、间二甲苯、乙苯的浓度均约为80mg/L, 浓度为400mg/L,并将它源源不断地供给输入系统,污水经过渗滤系统后流入采集系统。
第二步,两套系统同时开始注入淋滤液,并每天一次定时从两套采集系统采集渗出液,同时测量其渗出液温度与流量Q,并分析渗出液中BTEX各单组分、 、 等各项指标。然后分析渗出液中的BTEX各单组分和 、 浓度变化的相关关系。
第三步,对试验数据处理计算得到最后试验结果。
第四步,对比两套试验系统的试验结果。
上述所有的淋滤试验都是在饱水状态下进行的,人为控制试验的淋滤液流量以使其稳定。
试验精度保证:由于本次试验的目标污染物是极易挥发的BTEX,试验过程中挥发损失的控制、样品测试的准确性就显得极为重要。
试验过程中全部选用5000 mL下口瓶储存溶液,用注射器从下口引出的硅胶管抽取目标污染物溶液,并测定其初始浓度,以最大限度地控制试验过程中挥发损失对试验的影响。
各目标组分测定方法参考《水和废水监测分析方法》 推荐的方法,具体见表3-19。淋滤试验结束后,将土柱中的土壤立即取出进行微生物指标分析,并与未经淋滤的土壤样品进行对比,从而确定淋滤过程中,土壤中微生物菌群发生的变化。分析指标包括:细菌、真菌、放线菌、硝化细菌、亚硝化细菌和反硝化细菌,分析方法参见表3 -19。BTEX检测结果来自华北水利水电学院环境工程实验中心,采用岛津GC-14C型气相色谱仪检测,检测条件同第二章所述。 和 的检测结果来自华北水利水电学院资源与环境实验室,采用岛津UV-2550紫外分光光度计测定。
表3-19 各目标组分分析方法
⑸ 是谁制造出第一台色谱仪
色谱法,又称色层法或层析法,是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。它的英文名称为:chromatography这个词来源于希腊字 chroma和 graphein,直译成英文时为 color和writing两个字;直译成中文为色谱法。但也有人意译为色层法或层析法。
右图为高中生物学实验中的叶绿体色素纸层析分离实验,就是一种简单常见的色谱分析方法(纸色谱)。
1906年由 Tswett 研究植物色素分离,提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名方式,这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。
在色谱法中,静止不动的一相(固体或液体)称为固定相(stationary phase) ;运动的一相(一般是气体或液体)称为流动相(mobile phase)。
柱色谱(Column chromatography)为向玻璃管中填入固定相,以流动相溶剂浸润后在上方倒入待分离的溶液,再滴加流动相,因为待分离物质对固定相的吸附力不同,吸附力大的固着不动或移动缓慢,吸附力小的被流动相溶剂洗下来随流动相向下流动,从而实现分离。
纸色谱 (Paper chromatography)以滤纸条为固定相,在纸条上点上待分离的混合溶液的样点,将纸条下端浸入流动相溶剂中悬挂,溶剂因为毛细作用沿滤纸条上升,样点中的溶质从而被分离。 (图片就是纸色谱法。)
薄层色谱(Thin-layer chromatography)是在玻璃板上涂以固定相涂层,然后点样,下端浸入溶剂,同样自下而上分离。常用于探索柱色谱实验条件,溶剂和固定相的选择等。
常用固定相有石膏、氧化铝、蔗糖、淀粉等,常用流动相为水、苯等各种有机溶剂。
色谱法的分类方法很多,最粗的分类是根据流动相的状态将色谱法分成四大类。
色谱法按流动相种类的分类:
┌————————┬———————┬———————————————┐
│ 色谱类型 │ 流动相 │ 主要分析对象 │
├————————┼———————┼———————————————┤
│气相色谱法 │ 气体 │ 挥发性有机物 │
│液相色谱法 │ 液体 │可以溶于水或有机溶剂的各种物质│
│超临界流体色谱法│ 超临界流体 │ 各种有机化合物 │
│电色谱法 │缓冲溶液、电场│ 离子和各种有机化合物 │
└————————┴———————┴———————————————┘
色谱仪chromatograph
为进行色谱分离分析用的装置。包括进样系统、检测系统、记录和数据处理系统、温控系统以及流动相控制系统等。现代的色谱仪具有稳定性、灵敏性、多用性和自动化程度高等特点。有气相色谱仪、液相色谱仪和凝胶色谱仪等。这些色谱仪广泛地用于化学产品,高分子材料的某种含量的分析,凝胶色谱还可以测定高分子材料的分子量及其分布。
例:
MC029-GC102气相色谱仪
该产品为实验室用的填充相气相色谱仪,具有热道、氢焰二种检测器,定温控制恒温槽及气流控制装置。可广泛应用于石油、化工、医学及厂矿科研单位作为生产控制、科学研究方面的有机、无机气体和沸点400℃以内的液体样品进行常量、微量分析。
特点:
□石油炼制工业及其特种油类的制造过程的控制和质量检验。
□人造纤维及合成树脂等对其原料体、中间体聚合过程中的控制或质量检验。
□农业的化肥、农药的分析及合成过程中原料体、中间体的控制或质量检验。
□医药卫生方面的制药、劳动防护、有毒气体的分析分离等。
□生物化学方面的生物液体分离分析研究等。
技术指标:
□检测器灵敏度:热导池:S≥1000mVml/mg;载气H样品C6H6;氢焰:Mt≤1?0-10g/sec;载气N2样品C6H6
□检测器稳定性:基线漂移:≤0.05mV/h
□层析柱恒温室:(室温+40℃-300℃);恒温精度:?.3℃;有效区最大温差:2℃; 气化室:最高400℃