㈠ 上海3150T油压机设计
物理原理假设在两个充满油的、用一根输油管连接起来的汽缸里放入两个适合的活塞,如果将其中一个活塞向下压,压力通过输油管中的油就会传到第二个活塞。由于油的不可压缩性,压力传导效率很高,几乎所有的作用力都被传导到第二个活塞上。连接两个汽缸的管道可以是任何长度、任何形状,只要它可以穿过两个活塞中间的所有装置就行。管道可以分叉,这样如有必要,主汽缸可以比辅汽缸有更大的驱动力,上海3150T油压机设计。为了弄清楚促进作用力增大的因素,让我们先来看看活塞的尺寸。假设一个活塞直径2厘米,第二个活塞直径为6厘米,上海3150T油压机设计。活塞的面积为πr2,则一个活塞的面积为3.14平方厘米,上海3150T油压机设计,第二个活塞的面积为28.26平方厘米。第二个活塞的面积是一个活塞面积的9倍。能够输出任意位置的功率和 所需压力。上海3150T油压机设计
经计算机优化设计,四柱式结构简单,经济,实用;框架式结构刚性好,精度高,抗偏载能力强;液压控制系统采用插装式集成系统,动作可靠,使用寿命长,液压冲击小,减小了连结管路与泄漏点;采用进口PLC控制的电气系统,结构紧凑,工作灵敏可靠,使用维修方便。具有调整、手动、半自动三种操作方式和定程,定压两种成型工艺规范。底梁内配有液压垫,通过操作面板选择,液压垫可以实现有顶出、无顶出和液压垫压边三种工作循环。移动工作台·冲裁缓冲装置·光幕安全保护装置·油冷却装置·位移传感装置·触摸式工业显示屏·打料装置(液压式或机械式)·模具快速夹紧机构·模具保护装置·进口PLC·导轨润滑装置。上海3150T油压机设计液压传动能完结低速大吨位运动。选用恰当的节约技术可使运动安排的速度十分平稳。
锻造所使用的基本设备有哪些锻造设备的种类繁多,锤类锻造设备、热模锻压力机、螺旋压力机、平锻机、液压机等是目前锻造车间的常用生产设备。 锻造设备的合理选用,主要是由生产的实用性和经济性所决定的。应该根据工厂现有设备的实际情况灵活选用。一般来说,中小型自由锻件选用自由锻锤;大型锻件选用自由锻锤或水压机;大批量生产的模锻件宜选用热模锻压力机;中等批量模锻件、小型复杂锻件宜选用有砧座模锻锤;难变形材料的大、中型模锻件宜选用对击狂;对称形精密锻件宜选用螺旋压力机;大型轻金属模锻件宜选用液压机。 世界上超万吨级的热锻模锻压力机、大型模锻自动生产线已经普遍可见,液压螺旋压力机的吨位已经超过8000t,模锻液压机超过70000t,多向模锻液压机超过65000t。
程控液压模锻锤
程控液压模锻锤是消化吸收当今国内外锻锤不错技术,综合运用了电子、液压等现代控制、传动技术,具有自主知识产权的机电一体化高科技产品。程控液压模锻锤既具有传统锻锤灵活自如、成形速度快的特性又具有热模锻高精度特性,是锻造行业实现高效、节能节材、符合环保要求的新型数控锻造设备。 程控液压模锻锤采用智能测控技术实现打击能量,打击步序的自动控制;采用高度集成锥阀式控制技术,实现模锻锤的全液压动力驱动;采用整体U型铸钢砧座床身及可拆换的放射型宽导轨结构,实现打击系统的高可靠运行。具有结构布局灵活、执行机构动作便利、及时满足配合关系等优势。
模锻工艺具有如下特点:
1、由于热模锻压力机导向精度高,并可采用带有导向装置的组合模,所以能锻出精度较高的锻件。模锻中可以得到精度较高的锻件,锻件机械加工余量的平均值在0.4~2㎜范围内,较蒸空模锻锤上模锻件小30~50%,公差也相应减少,一般为0.2~0.5㎜。可有效地提高锻件的材料利用率和劳动生产率。
2、各个工步的型槽可单独制作,并用紧固螺钉紧固在通用模架上。工作时上下模块不产生对击。模块的尺寸比锤上用模小得多,从而有效地节约了模具材料。而且单独制作的模块制造、使用、修理也方便得多。采用高度集成锥阀式控制技术,实现模锻锤的全液压动力驱动;天津自动油压机制造
锻造液压机的工作方式为:定压压制、定程压制。上海3150T油压机设计
下量、展宽量和延伸变形量。它们取决于辊径的大小、孔型的形状尺寸、毛坯的温度和冷却润滑等变形条件。有的双支承辊锻机在一端有辊轴伸出,这是悬臂式和双支承式结合的复合型辊锻机,它既能实现纵向辊锻又能在悬臂端完成横向展宽成形。在大批量辊锻生产中,普遍采用机械手传送工件,实现生产过程的自动化,提高生产率,减轻劳动强度。用凸模对放置在凹模中的坯料加压,使之产生塑性流动,从而获得相应于模具的型孔或凹凸模形状的制件的锻压方法。挤压时,坯料产生三向压应力,即使是塑性较低的坯料,也可被挤压成形。挤压,特别是冷挤压,材料利用率高,材料的组织和机械性能得到改善,上海3150T油压机设计
江苏拢研机械有限公司是一家工业自动控制系统装置,液压和气压动力机械及元件、机械零部件的研发、制造、加工、销售、维修、技术服务、技术咨询;自营和代理各类商品及技术的进出口业务(国家限定企业经营或禁止进出口的商品和技术除外)。(依法须经批准的项目,经相关部门批准后方可开展经营活动)的公司,是一家集研发、设计、生产和销售为一体的专业化公司。拢研机械作为工业自动控制系统装置,液压和气压动力机械及元件、机械零部件的研发、制造、加工、销售、维修、技术服务、技术咨询;自营和代理各类商品及技术的进出口业务(国家限定企业经营或禁止进出口的商品和技术除外)。(依法须经批准的项目,经相关部门批准后方可开展经营活动)的企业之一,为客户提供良好的锻造设备,辗环机,锻造液压机,锻造流水线。拢研机械始终以本分踏实的精神和必胜的信念,影响并带动团队取得成功。拢研机械始终关注机械及行业设备市场,以敏锐的市场洞察力,实现与客户的成长共赢。
㈡ 线切割浅析模具加工中有什么概念简介
科学技术的发展,促进了工业的发展,对焊管模具特别是复杂焊管模具的加工起到巨大的推动作用,尤其是电火花切割(以下简称线切割)加工方法因其能够加工复杂的直通式和小锥度式型腔,切削精度高和加工质量好,不受加工工件硬度的限制,能够加工硬度较高的材料,在焊管模具加工中得到了广泛的应用。佛山咏昊发现,进行合理的工艺分析,对焊管模具结构进行合理的设计,对加工工艺进行合理的分析,关系到焊管模具的加工精度。通过穿丝孔的确定与切割路线的优化,改善切割工艺,这对于提高切割质量和生产效率,是一条行之有效的重要途径。
一、线切割加工的加工原理:线切割加工的原理是利用贮丝筒、上、下架使钼丝高速地往复运用,其中上下丝架中有轴承与导轮控制着钼丝的垂直精和线性度,工件作用于上下丝架间通过两个垫板支撑,脉冲电源将钼丝与工件分别带上正、负极电,通过放电产生高温对金属进行熔化、汽化,从而使工件多余部分按预定的轨迹被切除,得到我们需要的焊管模具结构的一种加工方法,线切割加工分快走丝、慢走丝,快走丝加工精度低,成本低,快走丝成本高,加工精度高。
二、基本特性:
(1)由于线切割加工的技术的日趋完善,已形成一个从图形输入到加工过程的CAD/CAM系统,实现了电火花线切割加工的自动化。在生产过程中,复杂形状平面几何轮廓都能够切割出来。
(2)由于正负极放电可使加工点产生高达10000℃以上的温度,在这一温度范围内,可使各种金属物体熔化。因此,它可以加工各种高硬度的金属,如淬火的工具钢、硬质合金、聚晶金刚石等。
(3)在许多复杂的焊管模具型腔中经常出现的尖角与清角,在机加工中很难实现,如果是通孔和带有小锥度的通孔,利用线切割工艺可轻而易举地解决这个问题。
三、走丝路线的优化
线切割加工焊管模具中,优化电极丝的走丝路线有利于提高切割质量和缩短加工时间。因此在走丝路线编程中,应该根据工件的尺寸、形状、精度要求,电极丝放电间隙的大小及凹凸模的间隙的大小等多方面因素,并结合以下点综合地分析:
①一般情况下,尽量将走丝路线安排于零件的切割过程与装夹零件的支持架保持在同一坐标系内,保证定位的准确性;
②走丝路线的起始点应安排在沿着离开零件夹具的方向进行切割,最后转向夹具方向切割,并将分离切割安排在走丝线路的末端;
③切割加工中,有些焊管模具的拐角(或尖角)处易发生塌角(或倒圆)现象,应根据具体情况适当修整走丝路线及工艺参数;
④对于一些精度要求高的焊管模具,为减小变形,改善焊管模具加工表面的变质层,提高焊管模具使用寿命。
⑤因电极丝直径和放电间隙等原因,在焊管模具切割表面交接处,有时会出现一个凸出于切割表面的高线条。在切割时,要根据焊管模具的结构,合理的选取切入路线,尽量避免在加工过程出现凸起的现象。
四、放电间隙的确定
实际生产过程中,影响线切割加工放电间隙的因素比较多,主要包括:焊管模具的材料的机械性能、焊管模具的结构形状、焊管模具技术要求、电极丝走丝速度快慢、张紧力大小、导轮运行状态、工作液种类、浓度及脏污程度,以及脉冲电源的电规准参数等。
在实际操作过程中,为了准确地确定放电间隙,可在每次编程前,按设定的加工条件,取与焊管模具材料相同的试件,试切割一个正方形。然后,实测其放电间隙,再计算出合理的偏移量,作为电极丝中心线(实际走丝轨迹)的调整依据。此外,焊管模具材料不同,放电间隙大小也会有所差异。一般情况下,熔点低的材料比熔点高的材料放电间隙大些,淬火钢比未淬火钢放电间隙大些,热容量小、导热性差的材料放电间隙相应较大。
五、焊管模具配合间隙的选择
冲裁模的凸、凹模配合间隙的合理确定,直接关系到冲裁件精度与冲裁件的断面质量,影响焊管模具的使用寿命。根据要加工零件的机械性能的厚度,来选取焊管模具的间隙。随着冲裁件材料由软至硬,凸、凹模的间隙逐渐增大。间隙一般可按材料厚度的10%~12%选取。通常,对于软质材料(如软铝、纯铜等),按冲裁件厚度的10%~12%选取间隙;对于半硬质材料(如硬铝、黄铜等),按冲裁件厚度的12%一15%选取;对于硬质材料(如薄钢板,硅钢片等),按冲裁件厚度的15%~20%选取。此外,还应根据冲裁件的形状特征、精度要求及技术条件,以及焊管模具的结构与精度等因素作适当的微量调整。由于线切割加工的特点,线切割加工的焊管模具,其凸凹模的间隙的选取应比常规数据略微小些,以延长焊管模具的使用寿命,可以得到较高的零件质量。
六、冲裁模刃口实际尺寸的确定
刃口磨损对冲裁件尺寸的确定,对于凸模、凹模的刃口尺寸直接关系到冲裁件的尺寸精度,其刃口磨损后冲裁件的尺寸变大。对于落料模,零件的尺寸接近于凹模的尺寸,线切割时要求凹模刃口的实际加工尺寸应接近或等于冲裁件的最小极限尺寸;冲孔模,零件的尺寸接近于凸模的尺寸,线切割时要求凸模刃口的实际加工尺寸应接近或等于冲孔的最极限尺寸。这样,在确保冲裁件尺寸精度的前提下,有利于延长焊管模具的使用寿命,提高经济效益。在生产过程中,要根据焊管模具的加工情况,采取合理的加工方法,满足焊管模具的加工要求,焊管模具的加工精度要根据零件的精度进行选取,在满足零件精度要求的前提下,尽量降低焊管模具的制造精度,以降低成本,根据焊管模具的加工情况,凸模的制造精度应比凹模的制造精度高一级。
七、线切割加工在焊管模具中的运用
在生产中,焊管模具使用一段时间会出现一些质量问题,要根据实际情况采取一些措施加以解决。如果焊管模具的主要件(凸凹模)刃口部分出现裂纹,按常规要重新下料,重新加工焊管模具,但是现在利用线切割加工工艺,完全可采用“切割镶块法”来修补焊管模具。为适应数控线切割技术加工焊管模具。
对焊管模具结构设计的改进。传统凸模通常设计成三个台阶,最小的台阶是工作刃口,中间的台是固定定位台阶,最大的台阶是防止凸模被拉出固定板的轴向定位台阶,这三个台阶缺一不可,各有其功用数控线切割加工凸模是在淬火后加工,且只能加工成上下一致的直台型凸模。根据这一特点,如果把凸模设计成直台型,凸模与固定板的固定:传统方法有粘接和铆接,实践证明粘接不可靠。在工作中很容易脱落,铆接虽然牢固可靠,但是在淬火时凸模后部不能淬火。我们知道高碳合金钢,在空气中都能淬上一定的硬度,凸模工作部分要有高硬度,后部却不能有硬度,这给凸模热处理带来了很大的难度,显然这两种方法不是简便、经济、可靠的方法。通过大量的试验我总结出了一套完全适应数控线切割加工工艺的凸模结构。如果是较短、较窄的凸模,可以按凸模工作部分,设计成直台型,凸模的定位固定也使用同一台阶。轴向固定使用侧圆柱孔装入销子固定,这个圆柱是在凸模切割完成后,再在线切割上由外向里切割出圆柱孔,所以凸模后部有一条0.1mm左、右的切割缝,这个缝隙在销子装入轴向固定销子压人固定板后对凸模强度没有影响。在凸模上割出圆柱孔,固定板相应的铣出半圆槽,装入销子就可以,把凸模完全定位固定。如果是较窄、较长的凸模可以再增加几个圆柱孔,具体圆柱孔直径和个数由卸料力决定。
在凸模后端面设计出螺纹孔,相应把垫板加厚,装人螺栓,凸模就可定位固定。如果凸模横截面积足够大,可以在凸模后端面设计螺纹孔,用螺栓紧固,防止凸模脱落。通过这一系例的改进凸模已完全适应了数控线切割加工工艺,且结构简单,便于数控线切割加工。在生产过程中,焊管模具使长时间的使用,会出现一些质量问题,要根据焊管模具的实际结构,对焊管模具进行维修,。在设计焊管模具结构时,应根据焊管模具加工的情况,焊管模具的结构,焊管模具材料的性能,采取一些合理的结构进行设计和加工,使焊管模具的加工变的容易,降低成本,缩短制造周期,满足生产加工的需要。
八、数控线切割加工技术的发展趋势
未来数控线切割加工技术的发展空间是十分广阔的。由于线切割加工过程本身的复杂性,迄今对线切割加工的机理尚不成熟,大多研究成果是建立在大量系统的工艺实验基础上的,所以对线切割加工原理的深入研究,并以此直接指导和应用于实践加工是数控线切割加工技术发展的根本。慢走丝线切割存在成本较高的现象,快走丝线切割存在加工精度相对低的问题。在现有技术水平的基础上,不断开发新工艺将是数控线切割加工技术发展方向。数控线切割机床在结构设计、脉冲电源的开发方面将朝更合理、更具优势化的方向全面发展;数控线切割加工在控制技术上将朝自动化、智能化方面的更高层次发展;数控线切割加工的网络管理技术在机床上已有初步应用,将逐步被推广及应用,获取更好的系统管理效果。总之,数控线切割加工技术以提高加工质量、提高加工效率、扩大加工范围及降低加工成本等为目标,在焊管模具工业中不断发展。
㈢ 数控系统与数控机床技术发展趋势是什么
一、数控系统发展趋势
从1952年美国麻省理工学院研制出首台试验性数控系统,到现在已走过了46年历程。数控系统由当初的电子管式起步,经历了以下几个发展阶段:
分立式晶体管式--小规模集成电路式--大规模集成电路式--小型计算机式--超大规模集成电路--微机式的数控系统。到80年代,总体发展趋势是:数控装置由NC向CNC发展;广泛采用32位CPU组成多微处理器系统;提高系统的集成度,缩小体积,采用模块化结构,便于裁剪、扩展和功能升级,满足不同类型数控机床的需要;驱动装置向交流、数字化方向发展;CNC装置向人工智能化方向发展;采用新型的自动编程系统;增强通信功能;数控系统可靠性不断提高。总之,数控机床技术不断发展,功能越来越完善,使用越来越方便,可靠性越来越高,性能价格比也越来越高。到1990年,全世界数控系统专业生产厂家年产数控系统约13万台套。国外数控系统技术发展的总体发展趋势是:
1、新一代数控系统采用开放式体系结构
进入90年代以来,由于计算机技术的飞速发展,推动数控机床技术更快的更新换代。世界上许多数控系统生产厂家利用PC机丰富的软硬件资源开发开放式体系结构的新一代数控系统。开放式体系结构使数控系统有更好的通用性、柔性、适应性、扩展性,并向智能化、网络化方向大大发展。近几年许多国家纷纷研究开发这种系统,如美国科学制造中心(NCMS)与*共同领导的“下一代工作站/机床控制器体系结构”NGC,欧共体的“自动化系统中开放式体系结构”OSACA,日本的OSEC计划等。开发研究成果已得到应用,如Cincinnati-Milacron公司从1995年开始在其生产的加工中心、数控铣床、数控车床等产品中采用了开放式体系结构的A2100系统。开放式体系结构可以大量采用通用微机的先进技术,如多媒体技术,实现声控自动编程、图形扫描自动编程等。数控系统继续向高集成度方向发展,每个芯片上可以集成更多个晶体管,使系统体积更小,更加小型化、微型化。可靠性大大提高。利用多CPU的优势,实现故障自动排除;增强通信功能,提高进线、联网能力。开放式体系结构的新一代数控系统,其硬件、软件和总线规范都是对外开放的,由于有充足的软、硬件资源可供利用,不仅使数控系统制造商和用户进行的系统集成得到有力的支持,而且也为用户的二次开发带来极大方便,促进了数控系统多档次、多品种的开发和广泛应用,既可通过升档或剪裁构成各种档次的数控系统,又可通过扩展构成不同类型数控机床的数控系统,开发生产周期大大缩短。这种数控系统可随CPU升级而升级,结构上不必变动。
2、新一代数控系统控制性能大大提高
数控系统在控制性能上向智能化发展。随着人工智能在计算机领域的渗透和发展,数控系统引入了自适应控制、模糊系统和神经网络的控制机理,不但具有自动编程、前馈控制、模糊控制、学习控制、自适应控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等功能,而且人机界面极为友好,并具有故障诊断专家系统使自诊断和故障监控功能更趋完善。伺服系统智能化的主轴交流驱动和智能化进给伺服装置,能自动识别负载并自动优化调整参数。直线电机驱动系统已实用化。
总之,新一代数控系统技术水平大大提高,促进了数控机床性能向高精度、高速度、高柔性化方向发展,使柔性自动化加工技术水平不断提高。
二、数控机床发展趋势
为了满足市场和科学技术发展的需要,为了达到现代制造技术对数控技术提出的更高的要求,当前,世界数控技术及其装备发展趋势主要体现在以下几个方面:
1、高速、高效、高精度、高可靠性
要提高加工效率,首先必须提高切削和进给速度,同时,还要缩短加工时间;要确保加工质量,必须提高机床部件运动轨迹的精度,而可靠性则是上述目标的基本保证。为此,必须要有高性能的数控装置作保证。
(1)高速、高效
机床向高速化方向发展,可充分发挥现代刀具材料的性能,不但可大幅度提高加工效率、降低加工成本,而且还可提高零件的表面加工质量和精度。超高速加工技术对制造业实现高效、优质、低成本生产有广泛的适用性。
新一代数控机床(含加工中心)只有通过高速化大幅度缩短切削工时才可能进一步提高其生产率。超高速加工特别是超高速铣削与新一代高速数控机床特别是高速加工中心的开发应用紧密相关。90年代以来,欧、美、日各国争相开发应用新一代高速数控机床,加快机床高速化发展步伐。高速主轴单元(电主轴,转速15000-100000r/min)、高速且高加/减速度的进给运动部件(快移速度60~120m/min,切削进给速度高达60m/min)、高性能数控和伺服系统以及数控工具系统都出现了新的突破,达到了新的技术水平。随着超高速切削机理、超硬耐磨长寿命刀具材料和磨料磨具,大功率高速电主轴、高加/减速度直线电机驱动进给部件以及高性能控制系统(含监控系统)和防护装置等一系列技术领域中关键技术的解决,应不失时机地开发应用新一代高速数控机床。
依靠快速、准确的数字量传递技术对高性能的机床执行部件进行高精密度、高响应速度的实时处理,由于采用了新型刀具,车削和铣削的切削速度已达到5000米~8000米/分以上;主轴转数在30000转/分(有的高达10万转/分)以上;工作台的移动速度:(进给速度),在分辨率为1微米时,在100米/分(有的到200米/分)以上,在分辨率为0.1微米时,在24米/分以上;自动换刀速度在1秒以内;小线段插补进给速度达到12米/分。根据高效率、大批量生产需求和电子驱动技术的飞速发展,高速直线电机的推广应用,开发出一批高速、高效的高速响应的数控机床以满足汽车、农机等行业的需求。还由于新产品更新换代周期加快,模具、航空、军事等工业的加工零件不但复杂而且品种增多。
(2)高精度
从精密加工发展到超精密加工(特高精度加工),是世界各工业强国致力发展的方向。其精度从微米级到亚微米级,乃至纳米级(<10nm),其应用范围日趋广泛。超精密加工主要包括超精密切削(车、铣)、超精密磨削、超精密研磨抛光以及超精密特种加工(三束加工及微细电火花加工、微细电解加工和各种复合加工等)。随着现代科学技术的发展,对超精密加工技术不断提出了新的要求。新材料及新零件的出现,更高精度要求的提出等都需要超精密加工工艺,发展新型超精密加工机床,完善现代超精密加工技术,以适应现代科技的发展。
当前,机械加工高精度的要求如下:普通的加工精度提高了一倍,达到5微米;精密加工精度提高了两个数量级,超精密加工精度进入纳米级(0.001微米),主轴回转精度要求达到0.01~0.05微米,加工圆度为0.1微米,加工表面粗糙度Ra=0.003微米等。
精密化是为了适应高新技术发展的需要,也是为了提高普通机电产品的性能、质量和可靠性,减少其装配时的工作量从而提高装配效率的需要。随着高新技术的发展和对机电产品性能与质量要求的提高,机床用户对机床加工精度的要求也越来越高。为了满足用户的需要,近10多年来,普通级数控机床的加工精度已由±10μm提高到±5μm,精密级加工中心的加工精度则从±3~5μm,提高到±1~1.5μm。
(3)高可靠性
是指数控系统的可靠性要高于被控设备的可靠性在一个数量级以上,但也不是可靠性越高越好,仍然是适度可靠,因为是商品,受性能价格比的约束。对于每天工作两班的无人工厂而言,如果要求在16小时内连续正常工作,无故障率P(t)=99%以上的话,则数控机床的平均无故障运行时间MTBF就必须大于3000小时。MTBF大于3000小时,对于由不同数量的数控机床构成的无人化工厂差别就大多了,我们只对一台数控机床而言,如主机与数控系统的失效率之比为10:1的话(数控的可靠比主机高一个数量级)。此时数控系统的MTBF就要大于33333.3小时,而其中的数控装置、主轴及驱动等的MTBF就必须大于10万小时。
当前国外数控装置的MTBF值已达6000小时以上,驱动装置达30000小时以上。
2、模块化、智能化、柔性化和集成化
(1)模块化、专门化与个性化
机床结构模块化,数控功能专门化,机床性能价格比显著提高并加快优化。为了适应数控机床多品种、小批量的特点,机床结构模块化,数控功能专门化,机床性能价格比显著提高并加快优化。个性化是近几年来特别明显的发展趋势。
(2)智能化
智能化的内容包括在数控系统中的各个方面:
--为追求加工效率和加工质量方面的智能化,如自适应控制,工艺参数自动生成;
--为提高驱动性能及使用连接方便方面的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;
--简化编程、简化操作方面的智能化,如智能化的自动编程,智能化的人机界面等;
--智能诊断、智能监控方面的内容,方便系统的诊断及维修等。
(3)柔性化和集成化
数控机床向柔性自动化系统发展的趋势是:从点(数控单机、加工中心和数控复合加工机床)、线(FMC、FMS、FTL、FML)向面(工段车间独立制造岛、FA)、体(CIMS、分布式网络集成制造系统)的方向发展,另一方面向注重应用性和经济性方向发展。柔性自动化技术是制造业适应动态市场需求及产品迅速更新的主要手段,是各国制造业发展的主流趋势,是先进制造领域的基础技术。其重点是以提高系统的可靠性、实用化为前提,以易于联网和集成为目标;注重加强单元技术的开拓、完善;CNC单机向高精度、高速度和高柔性方向发展;数控机床及其构成柔性制造系统能方便地与CAD、CAM、CAPP、MTS联结,向信息集成方向发展;网络系统向开放、集成和智能化方向发展。