机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N·m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’·i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求。
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
⑵ 机械设计课程设计设计题目:带式传输机的传动装置
设计—用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350N,运输带的速度V=1.6m/s卷筒直径D=260mm,两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96 一.传动方案分析: 如图所示减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级具有缓冲吸振能力和过载保护作用,带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势
二.选择电动机: (1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。 (2)电动机容量: ①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16kw ②电动机输出功率Pd=Pw/η 传动系统的总效率:η= 式中……为从电动机至卷筒之间的各传动机构和轴承的效率。 由表查得V带传动=0.96,滚动轴承=0.99,圆柱齿轮传动 =0.97,弹性连轴器=0.99,卷筒轴滑动轴承=0.96 于是η=0.96××0.97×0.99×0.96≈0.88 故: Pd=Pw/η=2.16/0.88≈2.45kw ③电动机额定功率由表取得=3kw (3)电动机的转速:由已知条件计算卷筒的转速 即: =60×1000V/πD=60×1000×1.6/3.14×260=118 r/min V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4 于是转速可选范围为==118×(2~4)×(2~4) =472~1888r/min 可见同步转速为500r/min和2000r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960×r/min的电动机 传动系统总传动比i==≈2.04 根据V带传动的常用范围=2-4取=4 于是单级圆柱齿轮减速器传动比==≈2.04
⑶ 机械设计课程设计---设计盘磨机传动装置!!!
我也在做这个题也 老兄
我只能提供样本给你哈 具体的还是得靠你自己啦
目 录
一 课程设计书 2
二 设计要求 2
三 设计步骤 2
1. 传动装置总体设计方案 3
2. 电动机的选择 4
3. 确定传动装置的总传动比和分配传动比 5
4. 计算传动装置的运动和动力参数 5
6. 齿轮的设计 8
7. 滚动轴承和传动轴的设计 19
8. 键联接设计 26
9. 箱体结构的设计 27
10.润滑密封设计 30
11.联轴器设计 30
四 设计小结 31
五 参考资料 32
一. 课程设计书
设计课题:
设计一用于带式运输机上的两级齿轮减速器.运输机连续单向运转,载荷有轻微冲击,工作环境多尘,通风良好,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限10年(300天/年),三班制工作,滚筒转速容许速度误差为5%,车间有三相交流,电压380/220V。
参数:
皮带有效拉力F(KN) 3.2
皮带运行速度V(m/s) 1.4
滚筒直径D(mm) 400
二. 设计要求
1.减速器装配图1张(0号)。
2.零件工作图2-3张(A2)。
3.设计计算说明书1份。
三. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 齿轮的设计
6. 滚动轴承和传动轴的设计
7. 键联接设计
8. 箱体结构设计
9. 润滑密封设计
10. 联轴器设计
1.传动装置总体设计方案:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,
要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。
其传动方案如下:
图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
选择V带传动和二级圆柱斜齿轮减速器。
传动装置的总效率
为V带的传动效率, 为轴承的效率,
为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)
为联轴器的效率, 为滚筒的效率
因是薄壁防护罩,采用开式效率计算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.电动机的选择
电动机所需工作功率为: P =P/η =3200×1.4/1000×0.760=3.40kW
滚筒轴工作转速为n= = =66.88r/min,
经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,
则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,
选定型号为Y112M—4的三相异步电动机,额定功率为4.0
额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。
方案 电动机型号 额定功 率
P
kw 电动机转速
电动机重量
N 参考价格
元 传动装置的传动比
同步转速 满载转速 总传动 比 V带传 动 减速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90
3.确定传动装置的总传动比和分配传动比
(1)总传动比
由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/66.88=17.05
(2)分配传动装置传动比
= ×
式中 分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步取 =2.3(实际的传动比要在设计V带传动时,由所选大、小带轮的标准直径之比计算),则减速器传动比为
= =17.05/2.3=7.41
根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为 =3.24,则 = =2.29
4.计算传动装置的运动和动力参数
(1) 各轴转速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各轴输入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
则各轴的输出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各轴输入转矩
= × × N•m
电动机轴的输出转矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
输出转矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
运动和动力参数结果如下表
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.40 22.55 1440
1轴 3.26 3.19 49.79 48.79 626.09
2轴 3.04 2.98 151.77 148.73 193.24
3轴 2.83 2.77 326.98 320.44 84.38
4轴 2.75 2.70 307.52 301.37 84.38
5.齿轮的设计
(一)高速级齿轮传动的设计计算
1. 齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24
高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
2.初步设计齿轮传动的主要尺寸
按齿面接触强度设计
确定各参数的值:
①试选 =1.6
查课本 图10-30 选取区域系数 Z =2.433
由课本 图10-26
则
②由课本 公式10-13计算应力值环数
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25为齿数比,即3.25= )
③查课本 10-19图得:K =0.93 K =0.96
④齿轮的疲劳强度极限
取失效概率为1%,安全系数S=1,应用 公式10-12得:
[ ] = =0.93×550=511.5
[ ] = =0.96×450=432
许用接触应力
⑤查课本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.设计计算
①小齿轮的分度圆直径d
=
②计算圆周速度
③计算齿宽b和模数
计算齿宽b
b= =49.53mm
计算摸数m
初选螺旋角 =14
=
④计算齿宽与高之比
齿高h=2.25 =2.25×2.00=4.50
= =11.01
⑤计算纵向重合度
=0.318 =1.903
⑥计算载荷系数K
使用系数 =1
根据 ,7级精度, 查课本由 表10-8得
动载系数K =1.07,
查课本由 表10-4得K 的计算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查课本由 表10-13得: K =1.35
查课本由 表10-3 得: K = =1.2
故载荷系数:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按实际载荷系数校正所算得的分度圆直径
d =d =49.53× =51.73
⑧计算模数
=
4. 齿根弯曲疲劳强度设计
由弯曲强度的设计公式
≥
⑴ 确定公式内各计算数值
① 小齿轮传递的转矩 =48.6kN•m
确定齿数z
因为是硬齿面,故取z =24,z =i z =3.24×24=77.76
传动比误差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允许
② 计算当量齿数
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初选齿宽系数
按对称布置,由表查得 =1
④ 初选螺旋角
初定螺旋角 =14
⑤ 载荷系数K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齿形系数Y 和应力校正系数Y
查课本由 表10-5得:
齿形系数Y =2.592 Y =2.211
应力校正系数Y =1.596 Y =1.774
⑦ 重合度系数Y
端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系数Y
轴向重合度 = =1.825,
Y =1- =0.78
⑨ 计算大小齿轮的
安全系数由表查得S =1.25
工作寿命两班制,8年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10
查课本由 表10-20c得到弯曲疲劳强度极限
小齿轮 大齿轮
查课本由 表10-18得弯曲疲劳寿命系数:
K =0.86 K =0.93
取弯曲疲劳安全系数 S=1.4
[ ] =
[ ] =
大齿轮的数值大.选用.
⑵ 设计计算
① 计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:
z = =25.097 取z =25
那么z =3.24×25=81
② 几何尺寸计算
计算中心距 a= = =109.25
将中心距圆整为110
按圆整后的中心距修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正.
计算大.小齿轮的分度圆直径
d = =51.53
d = =166.97
计算齿轮宽度
B=
圆整的
(二) 低速级齿轮传动的设计计算
⑴ 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30
速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBS z =2.33×30=69.9 圆整取z =70.
⑵ 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
⑶ 按齿面接触强度设计
1. 确定公式内的各计算数值
①试选K =1.6
②查课本由 图10-30选取区域系数Z =2.45
③试选 ,查课本由 图10-26查得
=0.83 =0.88 =0.83+0.88=1.71
应力循环次数
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由课本 图10-19查得接触疲劳寿命系数
K =0.94 K = 0.97
查课本由 图10-21d
按齿面硬度查得小齿轮的接触疲劳强度极限 ,
大齿轮的接触疲劳强度极限
取失效概率为1%,安全系数S=1,则接触疲劳许用应力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查课本由 表10-6查材料的弹性影响系数Z =189.8MP
选取齿宽系数
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 计算圆周速度
0.665
3. 计算齿宽
b= d =1×65.71=65.71
4. 计算齿宽与齿高之比
模数 m =
齿高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 计算纵向重合度
6. 计算载荷系数K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系数K =1
同高速齿轮的设计,查表选取各数值
=1.04 K =1.35 K =K =1.2
故载荷系数
K= =1×1.04×1.2×1.4231=1.776
7. 按实际载荷系数校正所算的分度圆直径
d =d =65.71×
计算模数
3. 按齿根弯曲强度设计
m≥
一确定公式内各计算数值
(1) 计算小齿轮传递的转矩 =143.3kN•m
(2) 确定齿数z
因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9
传动比误差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允许
(3) 初选齿宽系数
按对称布置,由表查得 =1
(4) 初选螺旋角
初定螺旋角 =12
(5) 载荷系数K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 当量齿数
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由课本 表10-5查得齿形系数Y 和应力修正系数Y
(7) 螺旋角系数Y
轴向重合度 = =2.03
Y =1- =0.797
(8) 计算大小齿轮的
查课本由 图10-20c得齿轮弯曲疲劳强度极限
查课本由 图10-18得弯曲疲劳寿命系数
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
计算大小齿轮的 ,并加以比较
大齿轮的数值大,选用大齿轮的尺寸设计计算.
① 计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
计算中心距 a= = =102.234
将中心距圆整为103
修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正
分度圆直径
d = =61.34
d = =143.12
计算齿轮宽度
圆整后取
低速级大齿轮如上图:
齿轮各设计参数附表
1. 各轴转速n
(r/min)
(r/min)
(r/min)
(r/min)
626.09 193.24 84.38 84.38
2. 各轴输入功率 P
(kw)
(kw)
(kw)
(kw)
3.26 3.04 2.83 2.75
3. 各轴输入转矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)
49.79 151.77 326.98 307.52
6.传动轴承和传动轴的设计
1. 传动轴承的设计
⑴. 求输出轴上的功率P ,转速 ,转矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圆周力F ,径向力F 及轴向力F 的方向如图示:
⑶. 初步确定轴的最小直径
先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取
输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号
查课本 ,选取
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径
⑷. 根据轴向定位的要求确定轴的各段直径和长度
① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取
② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.
D B
轴承代号
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 从动轴的设计
对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .
右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,
③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.
④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .
⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,
高速齿轮轮毂长L=50 ,则
至此,已初步确定了轴的各端直径和长度.
5. 求轴上的载荷
首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,
查《机械设计手册》20-149表20.6-7.
对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.
传动轴总体设计结构图:
(从动轴)
(中间轴)
(主动轴)
从动轴的载荷分析图:
6. 按弯曲扭转合成应力校核轴的强度
根据
= =
前已选轴材料为45钢,调质处理。
查表15-1得[ ]=60MP
〈 [ ] 此轴合理安全
7. 精确校核轴的疲劳强度.
⑴. 判断危险截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.
⑵. 截面Ⅶ左侧。
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅶ的右侧的弯矩M为
截面Ⅳ上的扭矩 为 =311.35
截面上的弯曲应力
截面上的扭转应力
= =
轴的材料为45钢。调质处理。
由课本 表15-1查得:
因
经插入后得
2.0 =1.31
轴性系数为
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以
综合系数为: K =2.8
K =1.62
碳钢的特性系数 取0.1
取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右侧
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅳ左侧的弯矩M为 M=133560
截面Ⅳ上的扭矩 为 =295
截面上的弯曲应力
截面上的扭转应力
= = K =
K =
所以
综合系数为:
K =2.8 K =1.62
碳钢的特性系数
取0.1 取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.键的设计和计算
①选择键联接的类型和尺寸
一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.
根据 d =55 d =65
查表6-1取: 键宽 b =16 h =10 =36
b =20 h =12 =50
②校和键联接的强度
查表6-2得 [ ]=110MP
工作长度 36-16=20
50-20=30
③键与轮毂键槽的接触高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
两者都合适
取键标记为:
键2:16×36 A GB/T1096-1979
键3:20×50 A GB/T1096-1979
9.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用 配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座壁厚
10
箱盖壁厚
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联接螺栓直径
M12
机盖与机座联接螺栓直径
=(0.5~0.6)
M10
轴承端盖螺钉直径
=(0.4~0.5)
10
视孔盖螺钉直径
=(0.3~0.4)
8
定位销直径
=(0.7~0.8)
8
, , 至外机壁距离
查机械课程设计指导书表4 34
22
18
, 至凸缘边缘距离
查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离
= + +(8~12)
50
大齿轮顶圆与内机壁距离
>1.2
15
齿轮端面与内机壁距离
>
10
机盖,机座肋厚
9 8.5
轴承端盖外径
+(5~5.5)
120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)125(2轴)
150(3轴)
10. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
11.联轴器设计
1.类型选择.
为了隔离振动和冲击,选用弹性套柱销联轴器.
2.载荷计算.
公称转矩:T=9550 9550 333.5
查课本 ,选取
所以转矩
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm
⑷ 设计一用于带式运输机上的单级圆柱齿轮减
我也在做这个,写不下的这么多,不过可以参考机械设计手册!这种设计 在学校帮忙做是200元
械设计课程设计任务书
班 级 姓 名
设计题目:带式运输机传动装置设计
布置形式:设计用于带式运输机的一级直齿圆柱齿轮减速器(Ⅰ)
传动简图
原始数据:
数据编号 1 2 3 4 5 6
运输带工作拉力F/N 800 850 900 950 1100 1150
运输带工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6
卷筒直径D/mm 250 260 270 240 250 260
工作条件:一班制,连续单向运转。载荷平稳,室内工作,有粉尘。
使用期限:10 年
生产批量:10 套
动力来源:三相交流电(220V/380V )
运输带速度允许误差:±5% 。
提问者: 浪人5 - 试用期 一级 其他回答 共 1 条
这个是我好不容易才找到的,一个东东啊,你可以自己看看啊,就差不多能自己理解了。。。给我你的邮箱发给你啊!我的是[email protected]
目 录
设计任务书…………………………………………………2
第一部分 传动装置总体设计……………………………4
第二部分 V带设计………………………………………6
第三部分 各齿轮的设计计算……………………………9
第四部分 轴的设计………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及数据………………………………21
设 计 任 务 书
一、 课程设计题目:
设计带式运输机传动装置(简图如下)
原始数据:
数据编号 3 5 7 10
运输机工作转矩T/(N.m) 690 630 760 620
运输机带速V/(m/s) 0.8 0.9 0.75 0.9
卷筒直径D/mm 320 380 320 360
工作条件:
连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。
二、 课程设计内容
1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。
每个学生应完成:
1) 部件装配图一张(A1)。
2) 零件工作图两张(A3)
3) 设计说明书一份(6000~8000字)。
本组设计数据:
第三组数据:运输机工作轴转矩T/(N.m) 690 。
运输机带速V/(m/s) 0.8 。
卷筒直径D/mm 320 。
已给方案:外传动机构为V带传动。
减速器为两级展开式圆柱齿轮减速器。
第一部分 传动装置总体设计
一、 传动方案(已给定)
1) 外传动为V带传动。
2) 减速器为两级展开式圆柱齿轮减速器。
3) 方案简图如下:
二、该方案的优缺点:
该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
计 算 与 说 明 结果
三、原动机选择(Y系列三相交流异步电动机)
工作机所需功率: =0.96 (见课设P9)
传动装置总效率: (见课设式2-4)
(见课设表12-8)
电动机的输出功率: (见课设式2-1)
取
选择电动机为Y132M1-6 m型 (见课设表19-1)
技术数据:额定功率( ) 4 满载转矩( ) 960
额定转矩( ) 2.0 最大转矩( ) 2.0
Y132M1-6电动机的外型尺寸(mm): (见课设表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:
⑸ 机械设计基础课程设计的题目是带式运输机传动装置设计
是指一个传送带吗,是横卧,还是有角度的。
⑹ 机械设计-课程设计-带式运输机传动装置-二级齿轮减速器
一、 设计题目:二级直齿圆柱齿轮减速器
1. 要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。
2. 工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。
3. 知条件:运输带卷筒转速 ,
减速箱输出轴功率 马力,
二、 传动装置总体设计:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。 其传动方案如下:
三、 选择电机
1. 计算电机所需功率 : 查手册第3页表1-7:
-带传动效率:0.96
-每对轴承传动效率:0.99
-圆柱齿轮的传动效率:0.96
-联轴器的传动效率:0.993
—卷筒的传动效率:0.96
说明:
-电机至工作机之间的传动装置的总效率:
2确定电机转速:查指导书第7页表1:取V带传动比i=2 4
二级圆柱齿轮减速器传动比i=8 40所以电动机转速的可选范围是:
符合这一范围的转速有:750、1000、1500、3000
根据电动机所需功率和转速查手册第155页表12-1有4种适用的电动机型号,因此有4种传动比方案如下:
方案 电动机型号 额定功率 同步转速
r/min 额定转速
r/min 重量 总传动比
1 Y112M-2 4KW 3000 2890 45Kg 152.11
2 Y112M-4 4KW 1500 1440 43Kg 75.79
3 Y132M1-6 4KW 1000 960 73Kg 50.53
4 Y160M1-8 4KW 750 720 118Kg 37.89
综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下:
额定功率kW 满载转速 同步转速 质量 A D E F G H L AB
4 960 1000 73 216 38 80 10 33 132 515 280
四 确定传动装置的总传动比和分配传动比:
总传动比:
分配传动比:取 则
取 经计算
注: 为带轮传动比, 为高速级传动比, 为低速级传动比。
五 计算传动装置的运动和动力参数:
将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴
——依次为电机与轴1,轴1与轴2,轴2与轴3,轴3与轴4之间的传动效率。
1. 各轴转速:
2各轴输入功率:
3各轴输入转矩:
运动和动力参数结果如下表:
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.67 36.5 960
1轴 3.52 3.48 106.9 105.8 314.86
2轴 3.21 3.18 470.3 465.6 68
3轴 3.05 3.02 1591.5 1559.6 19.1
4轴 3 2.97 1575.6 1512.6 19.1
六 设计V带和带轮:
1.设计V带
①确定V带型号
查课本 表13-6得: 则
根据 =4.4, =960r/min,由课本 图13-5,选择A型V带,取 。
查课本第206页表13-7取 。
为带传动的滑动率 。
②验算带速: 带速在 范围内,合适。
③取V带基准长度 和中心距a:
初步选取中心距a: ,取 。
由课本第195页式(13-2)得: 查课本第202页表13-2取 。由课本第206页式13-6计算实际中心距: 。
④验算小带轮包角 :由课本第195页式13-1得: 。
⑤求V带根数Z:由课本第204页式13-15得:
查课本第203页表13-3由内插值法得 。
EF=0.1
=1.37+0.1=1.38
EF=0.08
查课本第202页表13-2得 。
查课本第204页表13-5由内插值法得 。 =163.0 EF=0.009
=0.95+0.009=0.959
则
取 根。
⑥求作用在带轮轴上的压力 :查课本201页表13-1得q=0.10kg/m,故由课本第197页式13-7得单根V带的初拉力:
作用在轴上压力:
。
七 齿轮的设计:
1高速级大小齿轮的设计:
①材料:高速级小齿轮选用 钢调质,齿面硬度为250HBS。高速级大齿轮选用 钢正火,齿面硬度为220HBS。
②查课本第166页表11-7得: 。
查课本第165页表11-4得: 。
故 。
查课本第168页表11-10C图得: 。
故 。
③按齿面接触强度设计:9级精度制造,查课本第164页表11-3得:载荷系数 ,取齿宽系数 计算中心距:由课本第165页式11-5得:
考虑高速级大齿轮与低速级大齿轮相差不大取
则 取
实际传动比:
传动比误差: 。
齿宽: 取
高速级大齿轮: 高速级小齿轮:
④验算轮齿弯曲强度:
查课本第167页表11-9得:
按最小齿宽 计算:
所以安全。
⑤齿轮的圆周速度:
查课本第162页表11-2知选用9级的的精度是合适的。
2低速级大小齿轮的设计:
①材料:低速级小齿轮选用 钢调质,齿面硬度为250HBS。
低速级大齿轮选用 钢正火,齿面硬度为220HBS。
②查课本第166页表11-7得: 。
查课本第165页表11-4得: 。
故 。
查课本第168页表11-10C图得: 。
故 。
③按齿面接触强度设计:9级精度制造,查课本第164页表11-3得:载荷系数 ,取齿宽系数
计算中心距: 由课本第165页式11-5得:
取 则 取
计算传动比误差: 合适
齿宽: 则取
低速级大齿轮:
低速级小齿轮:
④验算轮齿弯曲强度:查课本第167页表11-9得:
按最小齿宽 计算:
安全。
⑤齿轮的圆周速度:
查课本第162页表11-2知选用9级的的精度是合适的。
八 减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座厚度
10
箱盖厚度
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联结螺栓直径
M12
盖与座联结螺栓直径
=(0.5 0.6)
M10
轴承端盖螺钉直径
=(0.4 0.5)
10
视孔盖螺钉直径
=(0.3 0.4)
8
定位销直径
=(0.7 0.8)
8
, , 至外箱壁的距离
查手册表11—2 34
22
18
, 至凸缘边缘距离
查手册表11—2 28
16
外箱壁至轴承端面距离
= + +(5 10)
50
大齿轮顶圆与内箱壁距离
>1.2
15
齿轮端面与内箱壁距离
>
10
箱盖,箱座肋厚
9
8.5
轴承端盖外径
+(5 5.5)
120(1轴)
125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)
125(2轴)
150(3轴)
九 轴的设计:
1高速轴设计:
①材料:选用45号钢调质处理。查课本第230页表14-2取 C=100。
②各轴段直径的确定:根据课本第230页式14-2得: 又因为装小带轮的电动机轴径 ,又因为高速轴第一段轴径装配大带轮,且 所以查手册第9页表1-16取 。L1=1.75d1-3=60。
因为大带轮要靠轴肩定位,且还要配合密封圈,所以查手册85页表7-12取 ,L2=m+e+l+5=28+9+16+5=58。
段装配轴承且 ,所以查手册62页表6-1取 。选用6009轴承。
L3=B+ +2=16+10+2=28。
段主要是定位轴承,取 。L4根据箱体内壁线确定后在确定。
装配齿轮段直径:判断是不是作成齿轮轴:
查手册51页表4-1得:
得:e=5.9<6.25。
段装配轴承所以 L6= L3=28。
2 校核该轴和轴承:L1=73 L2=211 L3=96
作用在齿轮上的圆周力为:
径向力为
作用在轴1带轮上的外力:
求垂直面的支反力:
求垂直弯矩,并绘制垂直弯矩图:
求水平面的支承力:
由 得
N
N
求并绘制水平面弯矩图:
求F在支点产生的反力:
求并绘制F力产生的弯矩图:
F在a处产生的弯矩:
求合成弯矩图:
考虑最不利的情况,把 与 直接相加。
求危险截面当量弯矩:
从图可见,m-m处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径:
因为材料选择 调质,查课本225页表14-1得 ,查课本231页表14-3得许用弯曲应力 ,则:
因为 ,所以该轴是安全的。
3轴承寿命校核:
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
按最不利考虑,则有:
则 因此所该轴承符合要求。
4弯矩及轴的受力分析图如下:
5键的设计与校核:
根据 ,确定V带轮选铸铁HT200,参考教材表10-9,由于 在 范围内,故 轴段上采用键 : ,
采用A型普通键:
键校核.为L1=1.75d1-3=60综合考虑取 =50得 查课本155页表10-10 所选键为:
中间轴的设计:
①材料:选用45号钢调质处理。查课本第230页表14-2取 C=100。
②根据课本第230页式14-2得:
段要装配轴承,所以查手册第9页表1-16取 ,查手册62页表6-1选用6208轴承,L1=B+ + + =18+10+10+2=40。
装配低速级小齿轮,且 取 ,L2=128,因为要比齿轮孔长度少 。
段主要是定位高速级大齿轮,所以取 ,L3= =10。
装配高速级大齿轮,取 L4=84-2=82。
段要装配轴承,所以查手册第9页表1-16取 ,查手册62页表6-1选用6208轴承,L1=B+ + +3+ =18+10+10+2=43。
③校核该轴和轴承:L1=74 L2=117 L3=94
作用在2、3齿轮上的圆周力:
N
径向力:
求垂直面的支反力
计算垂直弯矩:
求水平面的支承力:
计算、绘制水平面弯矩图:
求合成弯矩图,按最不利情况考虑:
求危险截面当量弯矩:
从图可见,m-m,n-n处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径:
n-n截面:
m-m截面:
由于 ,所以该轴是安全的。
轴承寿命校核:
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
则 ,轴承使用寿命在 年范围内,因此所该轴承符合要求。
④弯矩及轴的受力分析图如下:
⑤键的设计与校核:
已知 参考教材表10-11,由于 所以取
因为齿轮材料为45钢。查课本155页表10-10得
L=128-18=110取键长为110. L=82-12=70取键长为70
根据挤压强度条件,键的校核为:
所以所选键为:
从动轴的设计:
⑴确定各轴段直径
①计算最小轴段直径。
因为轴主要承受转矩作用,所以按扭转强度计算,由式14-2得:
考虑到该轴段上开有键槽,因此取
查手册9页表1-16圆整成标准值,取
②为使联轴器轴向定位,在外伸端设置轴肩,则第二段轴径 。查手册85页表7-2,此尺寸符合轴承盖和密封圈标准值,因此取 。
③设计轴段 ,为使轴承装拆方便,查手册62页,表6-1,取 ,采用挡油环给轴承定位。选轴承6215: 。
④设计轴段 ,考虑到挡油环轴向定位,故取
⑤设计另一端轴颈 ,取 ,轴承由挡油环定位,挡油环另一端靠齿轮齿根处定位。
⑥ 轮装拆方便,设计轴头 ,取 ,查手册9页表1-16取 。
⑦设计轴环 及宽度b
使齿轮轴向定位,故取 取
,
⑵确定各轴段长度。
有联轴器的尺寸决定 (后面将会讲到).
因为 ,所以
轴头长度 因为此段要比此轮孔的长度短
其它各轴段长度由结构决定。
(4).校核该轴和轴承:L1=97.5 L2=204.5 L3=116
求作用力、力矩和和力矩、危险截面的当量弯矩。
作用在齿轮上的圆周力:
径向力:
求垂直面的支反力:
计算垂直弯矩:
.m
求水平面的支承力。
计算、绘制水平面弯矩图。
求F在支点产生的反力
求F力产生的弯矩图。
F在a处产生的弯矩:
求合成弯矩图。
考虑最不利的情况,把 与 直接相加。
求危险截面当量弯矩。
从图可见,m-m处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径。
因为材料选择 调质,查课本225页表14-1得 ,查课本231页表14-3得许用弯曲应力 ,则:
考虑到键槽的影响,取
因为 ,所以该轴是安全的。
(5).轴承寿命校核。
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
按最不利考虑,则有:
则 ,
该轴承寿命为64.8年,所以轴上的轴承是适合要求的。
(6)弯矩及轴的受力分析图如下:
(7)键的设计与校核:
因为d1=63装联轴器查课本153页表10-9选键为 查课本155页表10-10得
因为L1=107初选键长为100,校核 所以所选键为:
装齿轮查课本153页表10-9选键为 查课本155页表10-10得
因为L6=122初选键长为100,校核
所以所选键为: .
十 高速轴大齿轮的设计
因 采用腹板式结构
代号 结构尺寸和计算公式 结果
轮毂处直径
72
轮毂轴向长度
84
倒角尺寸
1
齿根圆处的厚度
10
腹板最大直径
321.25
板孔直径
62.5
腹板厚度
25.2
电动机带轮的设计
代号 结构尺寸和计算公式 结果
手册157页 38mm
68.4mm
取60mm
81mm
74.7mm
10mm
15mm
5mm
十一.联轴器的选择:
计算联轴器所需的转矩: 查课本269表17-1取 查手册94页表8-7选用型号为HL6的弹性柱销联轴器。
十二润滑方式的确定:
因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度。
十三.其他有关数据见装配图的明细表和手册中的有关数据。
十四.参考资料:
《机械设计课程设计手册》(第二版)——清华大学 吴宗泽,北京科技大学 罗圣国主编。
《机械设计课程设计指导书》(第二版)——罗圣国,李平林等主编。
《机械课程设计》(重庆大学出版社)——周元康等主编。
《机械设计基础》(第四版)课本——杨可桢 程光蕴 主编。