① 汽车修理厂的动平衡装置是真的有用吗
除非很复垃圾的修理厂制动平衡机常年失修所以不准了,所以这跟修理厂没太大关系,还是看平衡机说话,一般的话也没你说的那么差劲,除非修理厂不想做生意了。 因为如果不起作用人家车主上一次高速就试出来了。所以说,一般都是真的。
所以说,动平衡不是忽悠人的,是很重要的。这个与驾驶习惯和路况有很大关系。如果平时不经常急加速急减速,转弯变向都很佛系,那有平衡可以保持很久。如果开着大马力车整天横冲直撞,经常地板油起步,出弯的时候大脚油门,又或者经常高速行驶,那几乎每年或者每半年,甚至几个月就要做一次。
② 动平衡机传感器有哪几种有什么区别
1.速度传感器
速度传感器是将物体振动的速度转化为电量输出的传感器。它是一种非接触式检测装置,能用机械、电气、磁、光和混合式等方式制造。普遍的速度传感器分成磁电感应式、光电效应式、霍尔效应式等几种。其优点是容易安装、不用外部电源、测中频范围特性好,较为适用于中等转速转子;其缺点是应用一段时间特性会有所下降,在低频预测的时候会有一定相位差。
2.加速度传感器
加速度传感器是一种可以检测加速力的电子设备。物理学中,当物体受到作用力会引起一个加速度,比如重力,加速力能够是个常量,比如g,能够是变量。加速度传感器就是依据这一原理设计的。普遍的有磁电式加速度传感器、压电式加速度传感器和光纤加速度传感器等。在不平衡检测中,较为普遍的是压电式加速度传感器,其优点是可靠性好、方便安装,比较适合检测高频的振动;缺点是无法检测低频振动,测量时需要外部直流电源。
3.转速传感器
转速传感器是将转动物体的转速转化为电量输出的传感器。它可以精准地检测出自动控制系统和自动化仪表中应用各种电机的瞬时速度。常用的转速传感器分成磁电感应式、光电效应式、磁阻效应式、电容式等。不平衡量的相位是以转速信号为标准的,转速检测的周期脉冲信号也由转速信号提供。
4.位移传感器
位移传感器也称线性传感器,普遍的有电感式位移传感器、电容式位移传感器、光电式位移传感器、超声波式位移传感器和霍尔式位移传感器等。位移传感器的工作原理是把待测对象引起的物理位移转化为相对电信号。位移传感器主要用于自动化装备生产线对模拟量的智能控制。其优点是检测信号的信噪比较为高,且检测频率范围较为广,可以直接检测振动位置,容易对其进行校准;其缺点是不方便安装,应用时需要外部直流电源。
广州卓玄金传感器是实现自动检测和自动控制的主要零部件,在转子动平衡机动平衡测量系统占有着很关键的位置,它能将测量的数据依照信息特征转化变成电信号或其它形式的数据输出,传感器测量振动信号的工作原理能够用三个过程表达,第一个过程是接收振动信号,第二个过程是将振动信号转换为电信号,第三个过程是将电信号转化成后续仪器可以处理的电压信号。
③ 万能试验机有什么分类组成
万能试验机,集拉伸、弯曲、压缩、剪切、环刚度等功能于一体的材料试验机,主要用于金属、非金属材料力学性能试验,是工矿企业、科研单位、大专院校、工程质量监督站等部门的理想检测设备。万能试验机是能进行拉伸、压缩、弯曲以及扭转等多种不同试验的力学试验机。最常见的有杠杆摆式和油压摆式两种。
万能材料试验机是由测量系统、驱动系统、控制系统及电脑(电脑系统型拉力试验机)等结构组成。
如果将现市面上的万能试验机按照用途分类,可划属为测定机械性能的试验机。按照试验机的用途可将所有试验机分为两类:
1、测定机械性能的试验机
与万能试验机同属测定机械性能的试验机这一大类的还有:A-静负荷试验机:包括拉力试验机、压力试验机、扭转试验机、复合应力试验机、蠕变试验机、持久强度试验机、松弛试验机以及硬度计中的布氏、洛式和维氏硬度计。B-动负荷试验机:包括冲击试验机、疲劳试验机以及硬度计中的冲击布氏和肖氏硬度计。
拉力试验机配套设备:高低温试验箱,高温炉、低温箱、各种制具。
拉伸试验高温炉:配套使用于液压万能试验机和电子万能试验机为其试样提供高温环境。电炉外壳采用不锈钢制作,炉胆采用上、中、下三段加热,三个温度控制器分别控制三组加热丝,炉膛内温度均匀。采用PID模糊控制方式,试验温度过冲小,控制精度高,是高等院校、科研机构、厂矿材料研究单位的高性能材料试验设备。可以根据使用环境要求与主机任意组合使用,可完成各种金属、非金属的高温拉伸试验,并能达到各种特殊行业(如塑料、橡胶)等的使用要求。做常温试验时只需把高温炉移开,可完全满足GB/T4338-2006,HB5195-1996中圆棒试样、矩形试样、管材等,在特殊环境温度下的强度检验。
2、工艺试验用试验机
万能试验机工艺试验用试验机:包括杯突试验机、弹簧试验机、弯曲试验机和线材扭转试验机。
力值测量
通过测力传感器、放大器和数据处理系统来实现测量,最常用的测力传感器是应变片式传感器。
所谓应变片式传感器,就是由应变片、弹性元件和某些附件(补偿元件、防护罩、接线插座、加载件组成),能将某种机械量变成电量输出的器件。应变片式的拉、压力传感器国内外种类繁多,主要有筒状力传感器、轮辐式力传感器、S双连孔型传感器、十字梁式传感器等类型。
从材料力学上得知,在小变形条件下,一个弹性元件某一点的应变ε与弹性元件所受的力成正比,也与弹性的变形成正比。以S型传感器为例,当传感器受到拉力P的作用时,由于弹性元件表面粘贴有应变片,因为弹性元件的应变与外力P的大小成正比例,故此将应变片接入测量电路中,即可通过测出其输出电压,从而测出力的大小。
对于传感器,一般采用差动全桥测量,即将所粘贴的应变片组成桥路,R1、R2、R3、R4,实际为阻值相等的4片(或8片)应变片,即R1=R2=R3=R4,当传感器受到外力(拉力或压力)作用时,传感器弹性元件产生应变而使各电阻值发生变化,其变化值分别为△R1、△R2、△R3、△R4,结果原来平衡的电桥,现不平衡了,桥路就有电压输出。
简单来说,外力P引起传感器内应变片的变形,导致电桥的不平衡,从而引起传感器输出电压的变化,我们通过测量输出电压的变化就可以知道力的大小了。
一般来说,传感器的输出信号都是非常微弱的,通常只有几个mV,如果我们直接对此信号进行测量,是非常困难的,并且不能满足高精度测量要求。因此必须通过放大器将此微弱信号放大,放大后的信号电压可达10V,此时的信号为模拟信号,这个模拟信号经过多路开关和A/D转换芯片转变为数字信号,然后进行数据处理,至此,力的测量告一段落。
形变测量:
通过形变测量装置来测量,它是用来测量试样在试验过程中产生的形变。该装置上有两个夹头,经过一系列传动机构与装在测量装置顶部的光电编码器连在一起,当两夹头间的距离发生变化时,带动光电编码器的轴旋转,光电编码器就会有脉冲信号输出。再由处理器对此信号进行处理,就可以得出试样的变形量。
横梁位移测量:其原理同变形测量大致相同,都是通过测量光电编码器的输出脉冲数来获得横梁的位移量。
④ 为什么工业上常采用动平衡试验机进行平衡校正他有什么好处
平衡机是测量旋转物体(转子)不平衡量大小和位置的机器。
任何转子在围绕其轴线旋转时,由于相对于轴线的质量分布不均匀而产生离心力。这种不平衡离心力作用在转子轴承上会引起振动,产生噪声和加速轴承磨损,以致严重影响产品的性能和寿命。电机转子、机床主轴、内燃机曲轴、汽轮机转子、陀螺转子和钟表摆轮等旋转零部件在制造过程中,都需要经过平衡才能平稳正常地运转。
根据平衡机测出的数据对转子的不平衡量进行校正,可改善转子相对于轴线的质量分布,使转子旋转时产生的振动或作用于轴承上的振动力减少到允许的范围之内。因此,平衡机是减小振动、改善性能和提高质量的必不可少的设备。
通常,转子的平衡包括不平衡量的测量和校正两个步骤,平衡机主要用于不平衡量的测量,而不平衡量的校正则往往借助于钻床、铣床和点焊机等其他辅助设备,或用手工方法完成。有些平衡机已将校正装置做成为平衡机的一个部分。
重力式平衡机和离心力式平衡机是两类典型的平衡机。重力式平衡机一般称为静平衡机。它是依赖转子自身的重力作用来测量静不平衡的。
如右图,置于两根水平导轨上的转子如有不平衡量,则它对轴线的重力矩使转子在导轨上滚动,直至这个不平衡量处于最低位置时才静止。
被平衡的转子放在用静压轴承支承的支座上,在支座的下面嵌装一片反射镜。当转子不存在不平衡量时,由光源射出的光束经此反射镜反射后,投射在不平衡量指示器的极坐标原点。如果转子存在不平衡量,则转子支座在不平衡量的重力矩作用下发生倾斜,支座下的反射镜也随之倾斜并使反射出的光束偏转,这样光束投在极坐标指示器上的光点便离开原点。根据这个光点偏转的坐标位置,可以得到不平衡量的大小和位置。
重力式平衡机仅适用于某些平衡要求不高的盘状零件。对于平衡要求高的转子,一般采用离心式单面或双面平衡机。
离心式平衡机是在转子旋转的状态下,根据转子不平衡引起的支承振动,或作用于支承的振动力来测量不平衡。其按校正平面数量的不同,可分为单面平衡机和双面平衡机。单面平衡机只能测量一个平面上的不平衡(静不平衡),它虽然是在转子旋转时进行测量,但仍属于静平衡机。双面平衡机能测量动不平衡,也能分别测量静不平衡和偶不平衡,一般称为动平衡机。
离心力式平衡机按支承特性不同,又可分为软支承平衡机和硬支承平衡机。平衡转速高于转子一支承系统固有频率的称为软支承平衡机。这种平衡机的支承刚度小,传感器检测出的信号与支承的振动位移成正比。平衡转速低於转子一支承系统固有频率的称为硬支承平衡机,这种平衡机的支承刚度大,传感器检测出的信号与支承的振动力成正比。
平衡机的主要性能用最小可达剩余不平衡量,和不平衡量减少率两项综合指标表示。前者是平衡机能使转子达到的剩余不平衡量的最小值,它是衡量平衡机最高平衡能力的指标;后者是经过一次校正后所减少的不平衡量与初始不平衡量之比,它是衡量平衡效率的指标,一般用百分数表示。
在现代机械中,由于挠性转子的广泛应用,人们研制出了挠性转子平衡机。这类平衡机必须在转子工作转速范围内进行无级调速;除能测量支承的振动或振动力外,还能测量转子的挠曲变形。挠性转子平衡机有时安装在真空防护室内,以适合汽轮机之类转子的平衡,它配备有抽真空系统、润滑系统、润滑油除气系统和数据处理用计算机系统等庞大的辅助设备。
根据大批量生产的需要,对特定的转子能自动完成平衡测量和平衡校正的自动平衡机,以及平衡自动线,现代已大量的装备在汽车制造、电机制造等工业部门。
⑤ 螺旋浆动平衡测试机
作为船舶的重要推进装置,螺旋桨是的平衡问题在很大程度上影响着船舶运行的安全可靠程度。为了确保螺旋桨的制造质量,国家技术监督局发布了有关金属螺旋桨技术要求的国家标准,对包括螺旋桨动平衡等许多技术指标进行了规范,具体由申曼动平衡机厂整理相关知识资料供大家参考。
我国以往对船用螺旋桨大多只作静平衡试验,但是随着高速艇的不断发展,螺旋桨转速越来越高,对转速接近2000r/min的螺旋桨,若不作动平衡试验,则很有可能发生振动。因此,螺旋桨生产制造过程中静平衡试验非常重要。目前,螺旋桨动平衡测试主要应用动平衡测量机进行。
申曼平衡机螺旋桨动平衡校验
动平衡机必须有一根固定螺旋桨的工艺轴,进行动平衡测试时此工艺轴与螺旋桨进行组合,测量过程既要消除由悬臂安装的螺旋桨质量所产生的力矩,又要克服由螺旋桨叶转动而产生的轴向推力,同时工艺轴要具有一定的刚度。平衡测量机所配置的检测仪器是具有两个光点矢量瓦特表的显示仪,利用在极坐标上显示的光点位置,同时指示左右两个校正面的不平衡量大小和位置,其光点离圆心的距离表示不平衡量的大小,而所对应的相位即为不平衡的轻点或重点位置。
国内一些学者对螺旋桨动平衡的检测方法进行了研究李风春和王树青介绍了现场动平衡技术并研究应用VBlOOOb现场动平衡仪对螺旋桨进行现场动平衡的实施;吴鸿舟对动平衡过程中的频谱进行了研究;高冰等通过传感器选用、测量参量转换、振动信号提取、转子重心方位提取等方面的技术分析,提出了用数字计算方法实现测量参数转换,用离散Fourier变换算法提取被测信号的现场动平衡的高精度测量方法。这些螺旋桨动平衡检测方法效率低下、检测困难、费时费力不能适应目前的螺旋桨制造的要求,特别是对大型快速螺旋桨,因此,提出一种快速有效的、新的动平衡自动检测方法是必须的,对螺旋桨的生产制造有着重要的意义。
本发明是有关螺旋桨动平衡的自动检测。本发明提出的螺旋桨动平衡检测新方法是利用图像的方法进行螺旋桨的非接触式和数字化检测。利用本发明提出的检测方法可以方便、快捷地进行螺旋桨动平衡的自动检测。由于本发明提出的是非接触数字化测量方法,与现有螺旋桨动平衡检测的原理不同,因此可以解决现有螺旋桨动平衡检测的不足。以本发明提出的螺旋桨动平衡检测新方法为基础,可以进行螺旋桨动平衡的自动检测。
利用数字投影仪将计算机自动生成的投影点阵投射在待测螺旋桨表面,利用CCD摄像机获得螺旋桨的图像,对螺旋桨图像进行数字化处理,得到所有投影点的二维图像坐标系像素坐标,利用经过标定的摄像机模型进行螺旋桨表面所有投影点二维像素坐标向三维现实世界坐标系的映射,根据双目视觉理论计算得到所有投影点在三维现实世界坐标系的三维坐标,构建螺旋桨的三维坐标模型,计算每个桨叶的质量力矩,并利用计算机进行螺旋桨动平衡的检测。
本发明包括投影点阵的计算机生成及螺旋桨图像的采集、所有投影点二维图像坐标系像素坐标获取、所有投影点三维现实世界坐标系坐标计算、螺旋桨三维坐标模型的构建以及螺旋桨动平衡的检测等几个步骤。本发明包括的步骤如下:
1)投影点阵的计算机生成及螺旋桨图像的采集根据螺旋桨形状通过计算机编程生成点阵,利用投影仪将点阵投射在待测螺旋桨表面,利用2个(XD摄像机建立双目视觉图像采集系统,必要时采用适当照明,分别采集包含投影点的螺旋桨表面和背面图像各2幅。
2)投影点二维图像坐标系像素坐标获取针对采集到的螺旋桨表面和背面的图像,进行图像的数字化处理,以此获取所有投影点的二维图像坐标系像素坐标。
3)投影点三维现实世界坐标系坐标计算根据摄像机成像模型、摄像机坐标系和三维现实世界坐标系之间的变换关系,建立反映螺旋桨表面和背面所有投影点像素坐标与三维现实世界坐标关系的投影矩阵,通过投影矩阵的标定建立以像素坐标为基础的所有投影点三维现实世界坐标系坐标的计算模型。利用双目视觉原理计算得到所有投影点的三维现实世界坐标系坐标。
4)螺旋桨三维坐标模型的构建以螺旋桨表面投影点的三维现实世界坐标系坐标为基础,对螺旋桨背面投影点的三维坐标进行变换,使其与螺旋桨表面投影点的三维现实世界坐标系坐标形成一一对应的相对位置关系,构建螺旋桨的三维坐标模型。
5)螺旋桨动平衡的检测以构建的螺旋桨三维坐标模型为基础,分别计算每个桨叶上单位正方体的质量力矩,并累加得到每个桨叶的质量力矩,据此利用计算机进行螺旋桨动平衡的检测。本发明的优点本发明是以图像为基础进行螺旋桨动平衡的自动检测,因此本发明具有非接触式和数字化测量方法的优点。本发明不需要直接接触螺旋桨的金属表面,不需要借助动平衡分析仪等进行操作。利用该方法可以方便地实现螺旋桨动平衡的自动检测,因此本发明可以为缩短螺旋桨加工周期、降低生产成本提供有效检测手段。
⑥ 轮胎动平衡机操作流程
一、安装车轮时,首先将弹簧和选择好的与被平衡车轮钢圈孔相对的锥体装到匹配器上,再将车轮装到锥体上,装好后盖,然后用快速螺母锁紧;
二、操作时,严格按规定程序进行操作,一定要注意保护匹配器及轴部,装卸车轮时,要轻拿轻放;
三、用卡规测量钢圈到机箱的距离,旋转对立的旋钮,使之对应于测量值;
四、打开机箱前右上方的电源开关,当显示板显示GB-10后,可按下“START”键,此时平衡采样开始,传动部分带动车轮旋转,自动停稳后,其结果显示在显示板上;
五、用手缓慢转动车轮,其不平衡位置字符“∧”或“∨”会移动,如测量显示出现“点陈符”,同时会听到制动的声音,即停止转动车轮,这时垂直于轴线上方的外测钢圈位置,即是外侧应配重的位置,同样方法对于左侧,找出相对应配重的平衡位置,先在失重大的一侧进行平衡;
六、经过几次的配重,当不平衡量小于5克时,显示OK,说明已达满意效果;
七、试验结束时,关掉电源。