导航:首页 > 装置知识 > 论文中实验装置图

论文中实验装置图

发布时间:2025-03-19 21:18:33

⑴ 大学物理实验论文!!!!急急急!!!!注意,是小论文,不是实验心得体会

大学物理实验报告-弗兰克赫兹实验
大学物理试验 2009-02-26 18:59:30 阅读17868 评论14 字号:大中小 订阅
大学物理实验报告
实验题目:弗兰克赫兹实验
实验器材:F-H实验管、恒温加热电炉、F-H实验装置、示波器。
实验内容:
1.熟悉实验装置,掌握实验条件。
该实验装置由F-H管、恒温加热电炉及F-H实验装置构成,其装置结构如下图所示:

F-V管中有足够的液态汞,保证在使用温度范围内管内汞蒸气总处于饱和状态。一般温度在100 ºC至250 ºC。并且由于Hg对温度的灵敏度高,所以温度要调好,不能让它变化太大。灯丝电压控制着阴极K发射电子的密度和能量分布,其变化直接影响曲线的形状和每个峰的位置,是一个关键的条件。
2.测量Hg的第一激发电位。
1)起动恒温控制器,加热地F-H管,使炉温稳定在157 ºC,并选择合适的灯丝电压,VG1K=2.5V,VG2p=1.5V,Vf=1.3V。
2)改变VG2k的值,并记录下对应的Ip值上(每隔0.2V记录一个数据)。
3)作数据处理,作出对应的Ip-VG2k图,并求出Hg的第一激发电位(用逐差法)。
3.测Ar原子的第一激发电位。
1)调节好相关的数据:Vp=8.36V,VG1=1.62V,VG2k=0~100V,Vf=2.64V;
2)将相关档位调到自由档位,在示波器上观看得到的Ip-VG2k图,是否符合实验要求(有六个以上的波峰)。再将相关档位调到手动档位。
3)手动改变VG2k的值,并记录下对应的Ip值上(每隔0.05V记录一个数据)。
4)作数据处理,作出对应的Ip-VG2k图,并求出Hg的第一激发电位(用逐差法)。
4.得出结论。

原始数据:
1. Vf=1.3V VG1K=2.5V VG2p=1.5V T=157ºC
求汞原子的第一激发电位的数据表

⑵ 欧姆定律的实验验证

欧姆第一阶段的实验是探讨电流产生的电磁力的衰减与导线长度的关系,其结果于1825年5月在他的第一篇科学论文中发表。在这个实验中,他碰到了测量电流强度的困难。在德国科学家施威格发明的检流计启发下,他把斯特关于电流磁效应的发现和库仑扭秤方法巧妙地结合起来,设计了一个电流扭力秤,用它测量电流强度。欧姆从初步的实验中发出,电流的电磁力与导体的长度有关。其关系式与今天的欧姆定律表示式之间看不出有什么直接联系。欧姆在当时也没有把电势差(或电动势)、电流强度和电阻三个量联系起来 。
在欧姆之前,虽然还没有电阻的概念,但是已经有人对金属的电导率(传导率)进行研究。欧姆很努力,1825年7月,欧姆也用上述初步实验中所用的装置,研究了金属的相对电导率。他把各种金属制成直径相同的导线进行测量,确定了金、银、锌、黄铜、铁等金属的相对电导率。虽然这个实验较为粗糙,而且有不少错误,但欧姆想到,在整条导线中电流不变的事实表明电流强度可以作为电路的一个重要基本量,他决定在下一次实验中把它当作一个主要观测量来研究。
在以前的实验中,欧姆使用的电池组是伏打电堆,这种电堆的电动势不稳定,使他大为头痛。后来经人建议,改用铋铜温差电偶作电源,从而保证了电源电动势的稳定。
1826年,欧姆用上面图中的实验装置导出了他的定律。在木质座架上装有电流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盘,s是观察用的放大镜,m和m'为水银杯,abb'a'为铋框架,铋、铜框架的一条腿相互接触,这样就组成了温差电偶。A、B是两个用来产生温差的锡容器。实验时把待研究的导体插在m和m'两个盛水银的杯子中,m和m'成了温差电池的两个极 。

欧姆准备了截面相同但长度不同的导体,依次将各个导体接入电路进行实验,观测扭力拖拉磁针偏转角的大小,然后改变条件反复操作,根据实验数据归纳成下关系:
x=q/(b+l)式中x表示流过导线的电流的大小,它与电流强度成正比,A和B为电路的两个参数,L表示实验导线的长度。1826年4月欧姆发表论文,把欧姆定律改写为:x=ksa/ls为导线的横截面积,K表示电导率,A为导线两端的电势差,L为导线的长度,X表示通过L的电流强度。如果用电阻l'=l/ks代入上式,就得到X=a/I'这就是欧姆定律的定量表达式,即电路中的电流强度和电势差成正比而与电阻成反比。

⑶ α粒子散射实验详细资料大全

α粒子散射实验( Geiger–Marsden experiment(s) )又称金箔实验、Geiger-Marsden实验或卢瑟福α粒子散射实验。是1909年 汉斯·盖革和恩斯特·马斯登(Jishi.Y)在欧内斯特·卢瑟福指导下于英国曼彻斯特大学做的一个著名物理实验。

基本介绍

发展历史,实验内容,实验理论,实验目的,实验结果,最终结论,

发展历史

实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆生模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆森模型说明。1911年卢瑟福提出原子的有核模型(又称原子的核式结构模型),与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出α粒子散射公式,说明了α粒子的大角散射。卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。根据大角散射的数据可得出原子核的半径上限为 米,此实验开创了原子结构研究的先河。这个实验推翻了J.J.汤姆森在1903年提出的原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动,为建立现代原子核理论打下了基础。

实验内容

实验理论

直线运动的α 和β 粒子在碰到物质原子时,运动方向会发生偏转。β 粒子的散射数目要比α 粒子更多,因为β 粒子的动量和能量要小得多。似乎已没有疑问,如此迅速移动的粒子以其原来的路径穿过了原子,而观察到的偏转是由于遍布于原子系统内强电场作用的结果。一般假设,一束α 或β 粒子射线在通过薄片物质时的散射,是物质原子来回多次小散射的结果。然而,Geiger 和 Marsden 对α射线散射的观察显示,某些α 粒子在单次碰撞时,一定会发生大于正常角度的偏转。例如,他们发现,一小部分入射α 粒子,大约 20000 个中有1 个,在穿过厚度约为 0.00004cm的金箔时平均偏转了 90°的角度,如此厚度的金箔阻止α 粒子的能力相当于1.6mm厚度的空气。Geiger 接着指出,一束α 粒子穿过以上厚度金箔最可能偏转的角度是 0.87°。基于机率理论的一个简单计算表明,粒子偏转 90°的机会是微乎其微的。此外,稍后可以看出,如果这种大角度偏转是由许多小的偏转组成,那么,这种大角度偏转的α 粒子对各种角度的分布并不遵守预期的机率定律。大角度偏转是由于单次原子碰撞的构想似乎是有道理的,因为第二次同样碰撞而产生大角度偏转的机率在大多数情况下是很小的。一个简单的计算显示,原子必须具有强电场的核心,才能在单次碰撞中产生如此大的偏转。 钋元素散射实验 J. J. Thomson(汤姆森)提出了一种理论来解释带电粒子在通过很薄的物质时产生的散射。他假设原子是由带 N个负电荷的粒子构成,伴随着相同数量的正电荷,均匀地分布在整个球内。负电荷粒子(如β 粒子)在穿过原子时的偏转归结为两个原因——(1)分布在原子内负电荷的斥力, (2)原子内正电荷的吸引力。粒子在经过原子时的偏转假设是很小的,尽管在与一个很大质量m碰撞后的平均角度为 m θ ⋅ , 其中θ是对于单个原子的平均偏转。这表明,原子内部的电子数N可以通过观察带电离子的散射推断出来。这个混合散射理论的精确性在后来 Crowther 的一篇论文中做了实验检验。 Crowther 的实验结果明显地确认了Thomson(汤姆森)理论的主要结论,而且 Crowther 基于正电荷的连续性假设推导出,原子中的电子数大约是原子重量的三倍。 约瑟夫约翰汤姆森 J. J. Thomson(汤姆森)理论是基于“单次原子碰撞产生的散射是很小的”这个假设。而且对原子特殊结构的假设也不允许α 粒子在穿过单个原子时有很大的偏转,除非假设正电荷球的直径与原子球的直径相比是极小的。 由于α 和β 粒子穿过了原子,通过对偏转本质的密切研究而形成关于原子结构的某些看法,从而产生观察到的效应,这是很有可能的。事实上,高速带电粒子被物质原子散射就是解决这个问题最有希望的方法之一。开发出为单个α 粒子计数的闪烁法就提供了独特的研究优势,而 H.Geiger 正是通过这种方法的研究,已经为我们增加了很多关于α射线被物质散射的知识。

实验目的

卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。在此基础上,卢瑟福提出了原子核式结构模型。 为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。卢瑟福和他的助手用α粒子轰击金箔来进行实验,如图是这个实验装置的示意图。 α粒子散射实验示意图 在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。当α粒子穿过金箔后,射到萤光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。为了避免α粒子和空气中的原子碰撞而影响实验结果,整个装置放在一个抽成真空的容器内,带有萤光屏的显微镜能够围绕金箔在一个圆周上移动。

实验结果

实验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹回来,这就是α粒子的散射现象。 发生极少数α粒子的大角度偏转现象是出乎意料的。根据汤姆孙模型的计算,α粒子穿过金箔后偏离原来方向的角度是很小的,因为电子的质量不到α粒子的1/7400,α粒子碰到它,就像飞行着的子弹碰到一粒尘埃一样,运动方向不会发生明显的改变。正电荷又是均匀分布的,α粒子穿过原子时,它受到原子内部两侧正电荷的斥力大部分相互抵消,α粒子偏转的力就不会很大。然而事实却出现了极少数α粒子大角度偏转的现象。卢瑟福后来回忆说:“这是我一生中从未有的最难以置信的事,它好比你对一张纸发射出一发炮弹,结果被反弹回来而打到自己身上……”卢瑟福对实验的结果进行了分析,认为只有原子的几乎全部质量和正电荷都集中在原子中心的一个很小的区域,才有可能出现α粒子的大角度散射。由此,卢瑟福在1911年提出了原子的核式结构模型,认为在原子的中心有一个很小的核,叫做原子核(nucleus),原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。 铜原子结构 按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转。 根据α粒子散射实验,可以估算出原子核的直径约为10^-15米~10^-14米,原子直径大约是10-10皮米,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。

最终结论

结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。 结论:正电荷集中在原子中心。 大多数α粒子穿透金箔:原子内有较大空间,而且电子质量很小。 一小部分α粒子改变路径:原子内部有一微粒,而且该微粒的体积很小,带正电。 极少数的α粒子反弹:原子中的微粒体积较小,但质量相对较大。

⑷ 二氧化碳制取装置

二氧化碳(carbon dioxide),一种碳氧化合物,化学式为CO2,化学式量为44.0095[1],常温常压下是一种无色无味[2]或无色无嗅而其水溶液略有酸味[3]的气体,也是一种常见的温室气体[4],还是空气的组分之一(占大气总体积的0.03%-0.04%[5])。在物理性质方面,二氧化碳的熔点为-56.6℃,沸点为-78.5℃,密度比空气密度大(标准条件下),溶于水。在化学性质方面,二氧化碳的化学性质不活泼,热稳定性很高(2000℃时仅有1.8%分解),不能燃烧,通常也不支持燃烧,属于酸性氧化物,具有酸性氧化物的通性,因与水反应生成的是碳酸,所以是碳酸的酸酐。[2][3]

二氧化碳一般可由高温煅烧石灰石或由石灰石和稀盐酸反应制得,主要应用于冷藏易腐败的食品(固态)、作致冷剂(液态)、制造碳化软饮料(气态)和作均相反应的溶剂(超临界状态)等。[2]关于其毒性,研究表明:低浓度的二氧化碳没有毒性,高浓度的二氧化碳则会使动物中毒。[6]

中文名
二氧化碳
外文名
carbon dioxide
别名
碳酸气、碳酸酐、干冰(固态)等[7]
化学式
CO2
分子量
44.0095[1]
快速
导航
分子结构

理化性质

产生途径

制备方法

主要应用

计算化学数据

安全措施

相关法规
研究简史
原始社会时期,原始人在生活实践中就感知到了二氧化碳的存在,但由于历史条件的限制,他们把看不见、摸不着的二氧化碳看成是一种杀生而不留痕迹的凶神妖怪而非一种物质。[10]
3世纪时,中国西晋时期的张华(232年-300年)在所著的《博物志》一书记载了一种在烧白石(CaCO3)作白灰(CaO)过程中产生的气体,这种气体便是如今工业上用作生产二氧化碳的石灰窑气。[10]
17世纪初,比利时医生海尔蒙特(即扬·巴普蒂斯塔·范·海尔蒙特,Jan Baptista van Helmont,1580年-1644年)发现木炭燃烧之后除了产生灰烬外还产生一些看不见、摸不着的物质,并通过实验证实了这种被他称为“森林之精”的二氧化碳是一种不助燃的气体,确认了二氧化碳是一种气体;还发现烛火在该气体中会自然熄灭,这是二氧化碳惰性性质的第一次发现。不久后,德国化学家霍夫曼(即弗里德里希·霍夫曼,Friedrich Hoffmann,1660年-1742年)对被他称为“矿精(spiritus mineralis)”的二氧化碳气体进行研究,首次推断出二氧化碳水溶液具有弱酸性。[10]
1756年,英国化学家布莱克(即约瑟夫·布莱克,Joseph Black,1728年-1799年)第一个用定量方法研究了被他称为“固定空气”的二氧化碳气体,二氧化碳在此后一段时间内都被称作“固定空气”。[11]
1766年,英国科学家卡文迪许(即亨利·卡文迪许,Henry Cavendish,1731年-1810年)成功地用汞槽法收集到了“固定空气”,并用物理方法测定了其比重及溶解度,还证明了它和动物呼出的和木炭燃烧后产生的气体相同。[12]
1772年,法国科学家拉瓦锡(即安托万-洛朗·拉瓦锡,Antoine-Laurent de Lavoisier,1743年-1794年)等用大火镜聚光加热放在汞槽上玻罩中的钻石,发现它会燃烧,而其产物即“固定空气”。同年,科学家普里斯特利(即约瑟夫·普里斯特利,Joseph Priestley,1733年-1804年)研究发酵气体时发现:压力有利于“固定空气”在水中的溶解,温度增高则不利于其溶解。这一发现使得二氧化碳能被应用于人工制造碳酸水(汽水)。[12]
1774年,瑞典化学家贝格曼(即托贝恩·奥洛夫·贝格曼,Torbern Olof Bergman,1735年-1784年)在其论文《研究固定空气》中叙述了他对“固定空气”的密度、在水中的溶解性、对石蕊的作用、被碱吸收的状况、在空气中的存在、水溶液对金属锌、铁的溶解作用等的研究成果。[11]
1787年,拉瓦锡在发表的论述中讲述将木炭放进氧气中燃烧后产生的“固定空气”,肯定了“固定空气”是由碳和氧组成的,由于它是气体而改称为“碳酸气”。同时,拉瓦锡还测定了它含碳和氧的质量比(碳占23.4503%,氧占76.5497%),首次揭示了二氧化碳的组成。[10] [11]
1797年,英国化学家坦南特(即史密森·坦南特,Smitbson Tennant,1761年-1815年,[13] 又译“台耐特”[14] 等)用分析的方法测得“固定空气”含碳27.65%、含氧72.35%。[10]
1823年,英国科学家法拉第(即迈克尔·法拉第,Michael Faraday,1791年-1867年)发现加压可以使“碳酸气”液化。同年,法拉第和戴维(即汉弗里·戴维,Humphry Davy,1778年-1829年,又译“笛彼”)首次液化了“碳酸气”。[15] [16] [17]
1834年或1835年,德国人蒂罗里尔(即阿德里安·让·皮埃尔·蒂罗里尔,Adrien-Jean-Pierre Thilorier,1790年-1844年,又译“蒂洛勒尔”、“狄劳里雅利”[18] 、“奇洛列”[19] 等)成功地制得干冰(固态二氧化碳)。[20] [21]
1840年,法国化学家杜马(即让-巴蒂斯特·安德烈·杜马,Jean-Baptiste André Dumas,1800年-1884年)把经过精确称量的含纯粹碳的石墨放进充足的氧气中燃烧,并且用氢氧化钾溶液吸收生成的“固定空气”,计算出“固定空气”中氧和碳的质量分数比为72.734:27.266。此前,阿伏伽德罗(即阿莫迪欧·阿伏伽德罗,Amedeo Avogadro,1776年8月9日—1856年7月9日)于1811年提出了假说——“在同一温度和压强下,相同体积的任何气体都含有相同数目的分子。”化学家们结合氧和碳的原子量得出“固定空气”中氧和碳的原子个数简单的整数比是2:1,又以阿伏伽德罗于1811年提出的假说为依据,通过实验测出“固定空气”的分子量为44,从而得出“固定空气”的化学式为CO2,与此化学式相应的名称便是“二氧化碳”。[11]

⑸ 最大气泡法测表面张力

1.毛细管的尖端要平整?选择毛细管直径大小时应该注意什么?
答:实验中默认鼓出的气泡为半球形,其曲率半径R和毛细管的半径r相等时达到最小值,而附加压力达到最大值,以此测出液体的表面长力。如果毛细管尖端不平整,就不能得到半球形气泡。选择毛细管时,其直径不宜太大,因为毛细管半径较小的时候才能保证其形成的气泡基本上是球星的。

2.如果气泡出的很快对结果有何影响?
答:气泡出的很快会使气泡不能一个一个鼓出而几个气泡聚集在一起,使得数据变大。
3.用最大气泡法测表面张力时,为什么要取一标准物质?本实验中若不用水作标准物质行不行?最大气泡法的使用范围怎么样?
答:用最大起泡法测定表面张力时,毛细管的直径很小,故要通过获得其半径来计算液体的表面张力难度较大,但仪器的半径是不会改变的,故认为它是一个常数,因而需要取一标准物质,通过其已知的表面张力来推算出这个常数。本实验中可以不用水作为标准物质。最大气泡法因为与接触角无关,装置简单,测定快速,故使用的范围很广,经过适当的设计可以用于熔融金属和熔盐的表面张力测量。

⑹ 阿司匹林的制备

阿司匹灵药片通常由约0.32克乙酰水杨酸与少量淀粉混合并压紧而成。淀粉的作用在于使其粘合成片。加过缓冲剂的阿司匹灵通常含有一种碱性缓冲剂,以减少对胃壁粘膜的酸性刺激作用,因为乙酰化后的产物并非毫无刺激性。一种称为Bufferin的药片含阿司匹灵5谷、二羟胺基乙酸铝0.75谷和碳酸镁1.5谷。复合解痛片通常含阿司匹灵,非那西汀和咖啡因。例如,Empirin即是一号一种典型的APC(取Aspirin,Phenactin和Caffein三者之字首并合而成),它含有阿司匹灵0.233克,非那西汀0.166克,咖啡因0.03克。

阿司匹灵乃是现代生活中最大众化的万应药(冶百病的药)之一,而且,尽管它的奇妙历史开始于200年前,关于这个不可思议的药我们仍有许多东西该学。虽然至今仍然无人确切知道它究竟怎样或为什么会起作用,美国每年消耗的阿司匹灵量却在二千万磅以上。

阿司匹灵的历史开始于1763年6月2日,当时一位名叫Edward Stone的牧师在伦敦皇家学会宣读一篇论文,题为“关于柳树治愈寒颤病成功的报告”。Stone 所指的寒颤病实为现在所称的疟疾,但他用”治愈”这两个字则是乐观主义的;他的柳树皮提出物真正所起的作用是缓减这种疾病的发烧症状,几乎一世纪以后,一位苏格兰医生想证实这种柳树皮提出物是否也能缓和急性风湿病。最终,发现这种提出物是一种强效的止痛、退热和抗炎(消肿)药。

此后不久,从事研究柳树皮提出物和绣线菊属植物的花(它含同样的要素)的有机化学家分离和鉴定了其中的活性成分,称之为水杨酸(Salicylic Acid);Salicylic取自拉丁文Salix,即柳树的拉丁文植物名。随后,此化合物便能用化学方法大规模生产以供医学上的使用。不久以后,水杨酸作为一种药物使用受到它的酸性的严重限制,这一点巳变得极其明显。

水杨酸

这个物质严重刺激口腔、食道和胃壁的粘膜。设法克服这个问题的第一个尝试是改用酸性较小的钠盐(水杨酸钠),但这个办法仅仅取得部分成功。水杨酸钠的刺激性虽然小些,但却有令人极为不愉快的甜味,以致大多数病人不愿服用它。直到接近十九世纪初期(1893年)才出现一个突破,当时在Bayer公司德国分行工作的化学师Felix Hoffmann发明了一条实际可行的合成乙酰水杨酸的路线。乙酰水杨酸被证明能体现与水杨酸钠相同的所有医学上的性质,但没有令人不愉快的味道或对粘膜的高度刺激性。Bayer公司德国分行遂把它的这个新产品称为阿司匹灵(Aspirin),这个名称是从A(指Acetyl,即乙酰基)和字根spir(绣线菊属植物的拉丁文名spirea)导出的。阿司匹灵的来历是目前使用的许多药品的典型。许多医药品开始时都以植物的提出物或民间药物出现,然后由化学家分离出其中的活性成分,测定其结构并加以改良,结果才变成为比原来更好的药物。

阿 司 匹 林

阿司匹灵的作用方式在最近几年方始逐渐得到阐明。一组崭新的叫做前列腺素的化合物巳被证明与身体的免疫反应有关联。当身体功能的正常运行受到外来物质或受到不习惯的刺激时,会激发前列腺素的合成。这类物质与范围广泛的生理过程有关联,并被认为是负责引起疼痛、发烧和局部发炎的。

最近,已经证实阿司匹灵能阻碍体内合成前列腺素,因而能减弱身体的免疫反应(也就是一些让你知道什么地方出现了毛病的反应)的症状(发烧、疼痛、发炎)。一个更为惊人的发现是,前列腺素F2a能引起子宫平滑肌收缩,从而导致流产。事实上,根据革一假设,IUD(控制生育的子宫内避孕器)是由于避孕使子宫膜受到微弱刺激,激起局部连续不断地合成前列遥素而奏效的。前列腺素之间的联系,不免使人怀疑经常服用阿司匹灵的妇女也许不应再信任IUD这种避孕法了。然而,直到目前,还没有发现服用阿司匹灵和IUD失败之间的肯定的联系。

实验4- 3 阿司匹林的制备
实验原理

水杨酸 乙酸酐 乙酰水杨酸 乙酸
(阿司匹林)
水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物。

实验用品
仪器:三颈瓶(100mL) 、球形冷凝管 、 减压过滤装置、电炉与调压器、表面皿、水浴锅、温度计(100℃)
药品:水杨酸(C.P.)、乙酸酐(C.P.) 、浓硫酸 、盐酸溶液(1∶2)、 饱和碳酸氢钠溶液
实验装置图

图4-3-2减压过滤装置
实验步骤
(1) 酰化
实验装置:普通回流装置
加料量:
水杨酸: 4g
乙酸酐(新蒸馏): 10mL
浓硫酸: 7滴

反应温度 :75~80℃
水浴温度 :80~85℃
反应时间 :20min
(2) 结晶、抽滤
实验装置:减压过滤装置
试剂用量:
蒸 馏 水:100mL
冰-水浴冷却
放置20min
(3) 初步提纯
实验装置; 减压过滤装置
试剂用量:
饱和碳酸钠溶液:50mL
盐酸溶液:30mL
结晶析出:冰-水浴冷却

(4) 重结晶
实验装置; 普通回流装置
减压过滤装置
试剂用量: 95%乙醇
适量水

(5) 称量、计算收率

注意事项
(1)乙酸酐有毒并有较强烈的刺激性,取用时应注意不要与皮肤直接接触,防止吸入大量蒸气。加料时最好于通风橱内操作,物料加入烧瓶后,应尽快安装冷凝管,冷凝管内事先接通冷却水。
(2)反应温度不宜过高,否则将会增加副产物的生成。
(3)由于阿司匹林微溶于水,所以洗涤结晶时,用水量要少些,温度要低些,以减少产品损失。
(4)浓硫酸具有强腐蚀性,应避免触及皮肤或衣物。

阿司匹林化学名称为乙酰水杨酸,是白色晶体,熔点135℃,微溶于水(37℃时,1g/100gH20)。
早在18世纪时,人们就已从柳树中提取了水杨酸,并发现它具有解热、镇痛和消炎作用,但其刺激口腔及胃肠道黏膜。水杨酸可与乙酸
酐反应生成乙酰水杨酸,即阿司匹林,它具有与水杨酸同样的药效。近年来,科学家还新发现了阿司匹林具有预防心脑血管疾病的作用,因而得到高度重视。
本实验以浓硫酸为催剂,使水杨酸与乙酸酐在75℃左右发生酰化反应,制取阿司匹林。

阿司匹林可与碳酸氢钠反应生成水溶性的钠盐,而作为杂质的副产物则不能与碱作用,可在用碳酸氢钠溶液进行纯化时将其分离除去。

于干燥的圆底烧瓶中加入4g水杨酸和10mL新蒸馏的乙酸酐,在振摇下缓慢滴加7 滴浓硫酸,参照图4-3-1安装普通回流装置。通水后,振摇反应液使水杨酸溶解。然后用水浴加热,控制水浴温度在80~85℃之间,反应20min。
撤去水浴,趁热于球形冷凝管上口加入2mL蒸馏水,以分解过量的乙酸酐。
稍冷后,拆下冷凝装置。在搅拌下将反应液倒入盛有100mL冷水的烧杯中,并用冰-水浴冷却,放置20min。待结晶析出完全后,减压过滤。
将粗产品放入100mL烧杯中,加入50mL饱和碳酸钠溶液并不断搅拌,直至无二氧化碳气泡产生为止。减压过滤,除去不溶性杂质。滤液倒入洁净的烧杯中,在搅拌下加入30mL盐酸溶液,阿司匹林即呈结晶析出。将烧杯置于冰-水浴中充分冷却后,减压过滤。用少量冷水洗涤滤饼两次,压紧抽干,称量粗产品
将粗产品放入100mL锥形瓶中,加入95%乙醇和适量水(每克粗产品约需3mL95%乙醇和5mL水),安装球形冷凝管,于水浴中温热并不断振摇,直至固体完全溶解。拆下冷凝管,取出锥形瓶,向其中缓慢滴加水至刚刚出现混浊,静止冷却。结晶析出完全后抽滤。
将结晶小心转移至洁净的表面皿上,晾干后称量,并计算收率。

⑺ 气垫导轨实验时调节导轨下面的螺钉,使气垫导轨水平,在不增加其他仪器的情况下,如何判定调节到位

您好:【实验题目】
气垫导轨研究简谐运动的规律
【实验目的】
1.通过实验方法验证滑块运动是简谐运动。
2.通过实验方法求两弹簧的等效弹性系数和等效质量。
实验装置如图所示。

说明:什么是两弹簧的等效弹性系数?

说明:什么是两弹簧的等效质量?

3.测定弹簧振动的振动周期。
4.验证简谐振动的振幅与周期无关。
5.验证简谐振动的周期与振子的质量的平方根成正比。
【实验仪器】
气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架。
【实验要求】
1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 )。
由滑块所受合力表达式证明滑块运动是谐振动。
给出不计弹簧质量时的T。
给出考虑弹簧质量对运动周期的影响,引入等效质量时的T。
实验中,改变滑块质量5次,测相应周期。由此,如何计算k和m0 ?
(2)列出实验步骤。
(3)画出数据表格。
2.测量
3.进行数据处理并以小论文形式写出实验报告
(1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据 处理和计算过程。
(2)明确给出实验结论。
两弹簧质量之和M= 10-3㎏ = N/m = 10-3㎏
i m
10-3㎏ 30T
s T2
s2 m0
10-3㎏ i m
10-3㎏ 20T
s T2
s2 m0
10-3㎏ K
N/m
1 4
2 5
3 6

4.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值 M0=(1/3)M( M为两弹簧质量之和)比较, 计算其相对误差 。
究竟选取哪种数据处理方法自定.书中提示了用计算法求k和 m0的方法。若采用,应理解并具体化

阅读全文

与论文中实验装置图相关的资料

热点内容
五金件的安装步骤 浏览:544
女机械用什么装备和武器好 浏览:549
抖音轴承多少钱 浏览:562
自动换刀装置怎么实现自动换刀的 浏览:546
cad怎么使用贱人工具箱 浏览:619
多功能精馏实验装置安装了两个塔 浏览:118
小于等于50给水管道用什么阀门 浏览:570
有名的机床设备回收怎么选 浏览:67
雅马哈快艇仪表怎么调中文 浏览:905
汽车上一般用什么轴承型号 浏览:300
制冷剂过少会出现发生什么现象 浏览:66
跳水比赛评委用什么仪器打分 浏览:269
自制电动工具图片 浏览:481
保定轴承油多少钱 浏览:667
小写转大写如何设备进表格中 浏览:35
自动感应洗车装置 浏览:329
轿厢上行超速保护装置的作用 浏览:896
自己暖气阀门打开 浏览:916
河南豫信致诚机械设备怎么样 浏览:663
发电机原理的实验装置 浏览:417