㈠ 凝固点降低法测摩尔质量拜托各位了 3Q
凝固点降低法测摩尔质量 一、目的要求 1. 用凝固点降低法测定萘的摩尔质量。 2. 通过实验掌握凝固点降低法测定摩尔质量的原理, 加深对稀溶液依数性质的理解。 二、原理 稀溶液具有依数性,凝固点降低是依数性的一种表现。 稀溶液的凝固点降低与溶液成分关系的公式为: 式中,△Tf为凝固点降低值;Tf*为纯溶剂A的凝固点;△ fHm(A)为纯溶剂A的摩尔凝固热; XB为溶液中溶质的摩尔分数;MA是溶剂A的摩尔质量; bB是溶质的质量摩尔浓度, 是指每1千克溶剂中所含溶质的摩尔数,单位为mol·kg-1; Kf称质量摩尔凝固点降低常数,其数值只与溶剂的性质有关, 单位为K·kg·mol-1,下表给出部分溶剂的常数值: 溶剂 水 醋酸 苯 环己烷 环己醇 纯溶剂凝固点Tf* /K 273.15 289.75 278.65 279.65 297.05 凝固点降低常数Kf /K·Kg·mol-1 1.86 3.90 5.12 20.2 39.3 若已知某种溶剂的凝固点降低常数Kf ,并测得该溶液的凝固点降低值 ,以及溶剂和溶质的质量WA,WB, 就可以由上式推得如下的计算溶质B的摩尔质量的式子: MB=KfWB/△TfWA (2) 纯溶剂的凝固点是其液-固共存的平衡温度。将纯溶剂逐步冷却时, 在未凝固之前温度将随时间均匀下降, 开始凝固后由于放出凝固热而补偿了热损失,体系将保持液- 固两相共存的平衡温度不变,直到全部凝固,再继续均匀下降( 见图4-1a)。但在实际过程中经常发生过冷现象,其冷却曲线( 如图4-1b)所示。对溶液来说除温度外,尚有溶液的浓度问题。 与凝固点相应的溶液浓度,应该是平衡浓度,当有溶剂凝固析出时, 剩下溶液的浓度逐渐增大,因而溶液的凝固点也逐渐下降(见图4- 1c),考虑到溶剂较多,通过控制过冷程度,使析出的晶体很少, 就可以以过冷回升的温度作凝固点,用起始浓度代替平衡浓度, 一般不会产生大的误差。(见图4-1d)。如果过冷太甚, 凝固的溶剂过多,溶液的浓度变化过大,则出现图4-1e的情况, 这样就会使凝固点的测定结果偏低,但可采用外推法进行校正, 如图4-1(f)。 图4-1 冷却曲线图 图4-2 凝固点降低实验装置图 三、仪器和试剂 凝固点测定装置和数显贝克曼温度计各一套(见图1-1); 纯萘丸;环己烷(分析纯);硫酸纸两片,25ml移液管一支, 碎冰或颗粒冰。 四、实验步骤 1.按图4-2将凝固点测定装置安装、摆放好, 并插好数显贝克曼温度计的感温探头, 注意插入的深度要留有一点余地,以免将玻璃管捅破。 2.调节冰浴的温度为3.5℃左右。一般来讲,冬天宜水多于冰, 夏天宜冰、水各半,至于具体多少,要视当时的室内气温进行调节。 3.测定纯溶剂的凝固点。抽出数显贝克曼温度计的感温探头( 留心记下插入的深度记号), 用移液管取25ml环己烷加入口径小些的内凝固管中( 在它的外围已套有一个空气套管), 将装有内管的外管直接浸入冰浴中,插回贝克曼温度计的感温探头。 开启搅拌按钮、开启贝克曼温度计的电源和读数按钮,降温、 控制冷却速度,选择恰当的时刻开始计时读数(如有条件, 可两组使用一台电脑和显示器, 用该实验配套的软件进行机器自动读数和生成图形), 不要停止搅拌。若温度不再下降,反而略有回升, 说明此时晶体已开始析出,直到温度升至最高恒定一会儿时间, 记下最低时的温度和恒定温度。 用手温热凝固管,使环己烷晶体全部熔化,重新置凝固管于冰浴中, 如上法操作重复进行三次。如果在测量过程中过冷现象比较严重, 可加入少量环己烷的晶种,促使其晶体析出,温度回升( 也可采用留晶种的方法,即在晶体熔化时, 留一点晶体在管壁上不让其全部熔化, 待体系冷至粗测的最低温度时,再将其拨下)。 4.用分析天平和指定的硫酸纸准确称量萘丸片(约0.2g), 投入凝固管内,用玻璃棒捣碎、搅拌,使其溶解,注意: 不要将萘随便洒落、遗弃在台面和地上(升华熏人!)。 同上法测该溶液的凝固点,重复测定三次。 五、实验注意事项 注意控制过冷过程和搅拌速度; 注意冰水混合物不要积累得太多而从上面溢出; 高温、高湿季节不宜做此实验,因为水蒸气易进入体系中, 造成测量结果偏低;不要使环己烷在管壁结成块状晶体。 较简便的方法是将外套管从冰浴中交替地(速度较快)取出和浸入。 六、数据处理 1.用ρt/(g.cm-3)=0.7971-0.8879× 10-3t/℃计算室温t时环己烷的密度, 然后算出所取的环己烷的质量WA。 2.由测定的纯溶剂、溶液凝固点Tf*、Tf ,计算萘的摩尔质量。 【实验测定扩展】 Kf值和MB值的测定:配置一系列不同bB的稀溶液, 测定一系列△Tf 值,代入(1)或(2)式,计算出一系列Kf,然后作Kf- bB图。外推至bB=0的那个纵坐标就是准确的Kf值。反过来, 若已知Kf,则测定了△Tf就可求出溶质的摩尔质量。 也可由四个以上的实测值△Tf算出MB, 然后再作MB对bB的图,外推至 bB= 0的那个纵坐标就为 的准确值。还可配制一系列不同浓度CB的稀溶液(CB 的单位为 kg·m-3), 测定该稀溶液的透渗压∏(适当测定高分子化合物的平均摩尔质量) ,用∏/CB对CB作图得一直线,将直线外推到CB= 0的那个纵坐标就是 。 沸点升高常数Kb的测定类同Kf的测定。
㈡ 熔点测定的步骤和现象
熔点测定的步骤:
① 测试仪器
由带微型加热台的偏光显微镜、温度测量装置及光源等组成。微型加热台有加热电源,台板中间有一个作为光通路的小孔,靠近小孔处有温度测量装置可插入的插孔。加热台上面有热挡板和玻璃盖小室以供通入惰性气体保护试样。
熔点测定的现象:
“初熔”系指供试品在毛细管内开始局部液化出现明显液滴时的温度。
“全熔”系指供试品全部液化时的温度。测定熔融同时分解的供试品时,方法如上述,但调节升温速率使每分钟上升2.5~⒊0℃。
熔点测定的方法有毛细管测定法,显微镜热板测定法,自动熔点测定法(数字熔点测定仪)。
1、仪器因素:
a温度计要校正;
b 熔点管要干净,管壁要薄。
2、 操作因素:
a 样品必须干燥并研磨细、装填紧密;
b 严格控制升温速度观察准确。
㈢ 原油凝点测定方法
方法提要
将试样预热到足以使其流动的温度后,用冷却剂冷却,通过观察试样液面是否移动,用逼近法测定试样的凝点。
装置设备
圆底试管高度(160±10)mm,内径(20±1)mm,在距管底30mm的外壁处有一环形标线。
圆底玻璃套管高度(130±10)mm,内径(45±2)mm。
广口保温瓶或筒形容器装冷却剂用。高度不少于160mm,内径不少于120mm。可以用陶瓷、玻璃、木材或带有绝缘层的铁片制成。
水银温度计符合GB514—75《石油产品使用液体温度计技术条件》的规定,供测定凝点高于-35℃的石油产品使用。
液体温度计符合GB514—75的规定,供测定凝点低于-35℃的石油产品使用。
支架固定套管、冷却剂容器和温度计用。
水浴装置。
试剂
冷却剂试验温度在0℃以上时,用水和冰;在0~-20℃时用盐和碎冰或雪;在-20℃以下时用工业乙醇(溶剂汽油、直馏的低凝点汽油或直馏的低凝点煤油)和干冰(固体二氧化碳)。
操作步骤
1)在干燥、清洁的试管中注入试样至1.5~2.0cm高度,用软木塞将温度计固定在试管中央,使水银球距离管底8~10mm;将试管垂直地浸在(50±1)℃的水浴中,直至试样的温度达到(50±1)℃为止。
2)从水浴中取出试管,擦干。用软木塞将该试管牢固地装在套管中,使试管外壁与套管内壁处处距离相等。将套管垂直地固定在支架的夹子上,在室温中静置,至试管中的试样冷却至(35±5)℃后,改浸在冷却剂中(冷却剂的温度要比试样的预期凝点低7~8℃)。当试样温度冷却到预期的凝点时,将浸在冷却剂中的套管倾斜成45°,保持1min,观察试样液面有否移动。
3)当液面位置不移动时,从套管中取出试管,重新加热至试样温度(50±1)℃。然后,用比上次温度高4℃或更高的冷却温度重复步骤2),直至试验温度能使试样液面位置有移动为止。反之,当液面位置有移动,则用比上次温度低4℃或更低的冷却温度重复步骤2),直至试验温度能使试样液面停止移动为止。
4)找出试样的凝点温度范围(试样液面位置从移动到不移动或从不移动到移动的温度范围)之后,采用比试样液面移动的温度低2℃或比不移动的温度高2℃的试验温度重新进行测定,直至某温度能使试样的液面不发生移动,而提高2℃则发生移动时,取使试样液面不发生移动的试验温度作为试样的凝点。