导航:首页 > 装置知识 > 筛板精馏塔实验装置图

筛板精馏塔实验装置图

发布时间:2025-03-28 09:36:17

A. 精馏塔工作原理

原理:利用混合物中各组分具有不同的挥发度,即在同一温度下各组分的蒸气压不同这一性质,使液相中的轻组分(低沸物)转移到气相中,而气相中的重组分(高沸物)转移到液相中,从而实现分离的目的。

无论是平衡蒸馏还是简单蒸馏,虽然可以起到一定的分离作用,但是并不能将一混合物分离为具有一定量的高纯度产品。在石油化工生产中常常要求获得纯度很高的产品,通过精馏过程可以获得这种高纯度的产品。


(1)筛板精馏塔实验装置图扩展阅读

精馏塔产品质量指标选择有两类:直接产品质量指标和间接产品质量指标。精馏塔最直接的产品质量指标是产品成分。成分检测仪表发展很快,特别是工业色谱仪的在线应用,出现了直接控制产品成分的控制方案,此时检测点就可以放在塔顶或塔底。

然而由于成分分析仪表价格昂贵,维护保养麻烦,采样周期较长(即反应缓慢,滞后较大)而且应用中有时也不太可靠,所以成分分析仪表的应用受到了一定的限制。因此,精馏塔产品质量指标通常采用间接质量指标。

B. 关于食品工程原理里的精馏塔实验该如何设计

实验8 筛板精馏塔实验
一、实验目的
1.了解筛板式精馏塔的结构流程及操作方法。
2.测取部分回流或全回流条件下的总板效率。
3.观察及操作状况。
二、实验原理
在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多种表示方法,本实验主要测取二元物系的总板效率Ep :

板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度 以及回流比 并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。
三、实验装置与流程
实验装置分两种:
(1)用于全回流实验装置
精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热 器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用 以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。
(2)用于部分回流实验装置
装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示,
塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔 身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。
在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。
塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。
产品贮槽上方设有观测罩,用于检测产品。
回流量、产品量及供料量分别由转子流量计计量。料液从料液槽用液下泵输送。釜液进料液和馏出液分别可由采出取样,此外在塔身上、中、下三部分各在二块上设有取样口,只要用针筒穿取样口中的硅胶板即可取样品,因此本装置不但可以进精馏操作性能的训练和塔冲总效率的测定,而且还可以进行全回流下单板效率的测定。
四、实验方法
(一)全回流操作实验方法
1、熟悉了解装置,检查加热釜中料液量是否适当,釜中液面必须浸没电加热器(为液面计高1/2以上,约5升0釜内料液组成乙醇10-25%(重量)左右的水溶液。
2、打开电源和加热器开关,控制加热功率在700W左右,打开冷却水,注意观察塔顶、塔釜情况,当上升蒸汽开始回流时此时塔顶冷凝器内冷却水流量应控制好使蒸汽基本处于全凝状况(50-100升/小时范围)若流量过小会使蒸汽从塔顶喷出,过大塔板上泡沫层不均,温度变低。
3、当塔板上泡沫层正常各泡沫层高度大体相等,且各点温度基本保持稳定、操作稳定持续一段时间(20分钟以上)后即可开始取样。
4、由塔顶取样管和釜底取样考克用烧瓶接取试样(150mι左右)取样前应取少许试样冲洗烧瓶,取样后用塞子塞好,并用水冲瓶外部,使其冷却到常温。
5、将常温试样用比重天平称出相对密度,然后用相对密度与质量百分数对照表查出质量百分数。
6、可加大加热电流(5安培左右)观察到液泛现象,此时塔内压力明显增加,观察后,将加热电流缓慢减到零,关闭电源开关。
(二)部分回流时操作方法
1、配制4~5%(体积)洒精水溶液,注入蒸馏釜(或由供料泵注入)至液位计上的标记为止。
2、在供料槽中配制15~20%(体积)洒精水溶液。
3、通电启动加热釜液,先可将可调变压器达到额定电压,开冷却水,观察塔各部情况。
4、进行全回流操作,控制蒸发量“灵敏板”温度应在80℃左右。
5、开加料泵,控制流量(需经几度调节才能适宜流量)
6、为了首先满足回流要求、故在回流分配器中的产品管(φ8)管口高于回流管的管口,应调小回流量(过一段时间即可馏出产品)进行部分回流并控制一定回比,使产品达到 要求的浓度94~95%(体积)
7、控制釜底排料量,使釜液面保持不变。
8、控制好冷却水用量(即塔顶冷凝器冷流体)便塔顶蒸汽基本处于全凝状态。
9、操作均达到稳定后,进行样品采集,可按进料、塔釜、塔顶、顺序采集。并记录进料回流、馏出各流量及温度等有关数据。
10、将样品降到常温后,在教师指导下用液体比重天平测定相对密度,再用对照关系曲线,查出质量百分数。
11、可加大加热电流观察液泛现象。
12、注意观察操作条件不同对结果的影响。
五、数据处理
1、用作图法确定实验条件下理论板数,并进一步得出总板效率。
2、对结果的可靠性进行分析。

六、实验讨论题
1、在实验中应测定哪些数据?如何测得?
2、比重天平如何使用?应注意什么问题?
3、全回流和部分回流在操作上有何差异?
4、塔顶回流液浓度在实验过程中有否改变?
(全回流及部分回流两种情况)
5、怎样采集样品才能合乎要求?
6、比较两种装置在内容和操作方面的不同?
7、在操作过程中各塔板上泡沫层状态有何不同?各发生过怎样的变化?为什么?
8、塔釜内压强由何决定?为会么会产生波动?
9、塔顶和塔底温度和什么条件有关?
10、精馏塔板效率都有几种表示方法,试讨论如何以板效率?
11、全回流操作是否为稳定操作?当采集塔顶样品时,对全回流操作可能有何影响?
12、塔顶冷凝器内冷流体用量大小,对精馏操作有何影响?
13、如何判别部分回流操作已达到稳定操作状态?

C. 筛板塔板效率的验算

一、筛板精馏实验装置筛板的流体力学验算
1.气体通过筛板压强相当的液柱高度hp
(1)干板压降相当的液柱高度,查干筛孔的流量系数图得,C0=0.84
(2)气体穿过板上液层压降相当的液柱高度由充气系数与关联图查得板上液层充气系数﹦0.62
(3)克服液体表面张力压降相当的液柱高度,故单板压降
二、筛板精馏实验装置筛板的流体力学验算
1、干板压降相当的液柱高度,查干筛孔的流量系数图得,C0=0.84
2、气体穿过板上液层压降相当的液柱高度,由充气系数与关联图查得板上液层充气系数﹦0.73
3、克服液体表面张力压降相当的液柱高度,故单板压降
二、雾沫夹带量的验算
1、筛板精馏实验装置雾沫夹带量的验算
故在设计负荷下不会发生过量雾沫夹带。
2、筛板精馏实验装置雾沫夹带量的验算
故在设计负荷下不会发生过量雾沫夹带。
三、筛板精馏实验装置漏液的验算
1、筛板精馏实验装置漏液的验算
筛板的稳定性系数 故在设计负荷下不会产生过量漏液。
2、筛板精馏实验装置漏液的验算
筛板的稳定性系数 故在设计负荷下不会产生过量漏液。
四、液泛验算
1、筛板精馏实验装置液泛验算 为防止降液管液泛的发生,应使降液管中清液层高度,则故在设计负荷下不会发生液泛。
2、筛板精馏实验装置液泛验算
为防止降液管液泛的发生,应使降液管中清液层高度,则故在设计负荷下不会发生液泛。根据以上塔板的各项液体力学验算,可认为此精馏塔塔径及各项工艺尺寸是适合的

D. 应用化学开题报告

应用化学开题报告

论文题目:苯-氯苯分离过程连续精馏塔的工艺设计

一 文献综述与调研报告 :(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)

1. 课题的背景

设计是工程建设的灵魂,对工程建设起着主导和决定性的作用,决定着工业现代化的水平。工程设计是科研成果转化为现实生产力的桥梁和纽带,工业科研成果只有通过设计,才能转化为现实的工业化生产力。化工设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业及多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。在化工设计中,化工单元设备的设计是整个化工过程和装置设计的核心和基础,并贯穿于设计过程的始终,因此作为化工类的本科生,熟练掌握化工单元设备的设计方法是十分重要的。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。精馏过程在能量剂的驱动下(有时加质量剂),使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。该过程是同时进行传质、传热的过程。

本次设计任务为设计一定处理量的精馏塔,实现苯-氯苯的分离。鉴于设计任务的处理量不大,苯-氯苯体系比较易于分离,待处理料液清洁的特点,设计决定选用筛板塔。本课程设计的主要内容是过程的物料衡算、热量衡算,工艺计算,结构设计和校核。限于作者的水平,设计中难免有不足和谬误之处,恳请老师和读者批评指正。

筛板塔是生产中最常用的板式塔之一。板式塔具有结构简单,制造和维修方便,生产能力大,塔板压降小,板效率较高等优点。其早在1832年问世,长期以来,一直被误以为操作范围狭窄,筛孔容易堵塞而收到冷遇。但是筛孔板结构结构简单,造价低廉,在经济上有很大的吸引力。因此,从20世纪50年代以来,许多研究者对筛孔板塔重新进行了研究。研究结果表明,造成筛板塔操作范围狭窄的原因是设计不良(主要是设计点偏低、容易漏液),而设计良好的筛板塔是具有足够宽的操作范围的。至于筛孔容易堵塞的问题,可采用大孔径筛板一得到圆满的解决。

20世纪60年代初,美国精馏研究公司(FRI)又以工业的规模,使用不同物系,在不同操作压强下,广泛地改变了筛孔直径、开孔率、堰高等结构参数,对筛板塔进行了系统研究。这些研究成果,使筛板塔的设计更加完美善,其中关于大孔径筛板的设计方法属于专利。国内对大孔径筛板也做过某些研究。

FRI研究工作表明,设计良好的筛板是一种效率高、生产能力大的塔板,对筛板的推广应用起了很大的促进作用,目前,筛板已发展成为应用最广的通用塔板。在我国,筛板的应用也日益普通。

可以说,筛板精馏塔是一种传统的精馏塔。早期由于设计方面的原因,曾一度被工业生产所忽视。但由于计算技术的发展,设计水平的提高,筛板塔越来越受到厂家的关注和使用,其优点是设备简单,操作简便,维修方便,制造成本低。

2. 课题研究的现状及发展趋势

气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。目前从国内外实际使用情况看,主要的塔板类型为筛板塔、浮阀塔及泡罩塔,而前者使用尤为广泛。

筛板塔是板式塔的一种,其设计意图是一方面使汽液两相在塔板上充分接触,以减小传质阻力,另一方面是在总体上使两相保持逆流流动,而在塔板上使两相呈均匀的错流接触,以获得更大的传质推动力。其内装若干层水平塔板,板上有许多小孔,形状如筛;并装有溢流管或没有溢流管。操作时,液体由塔顶进入,经溢流管(一部分经筛孔)逐板下降,并在板上积存液层。气体(或蒸气)由塔底进入,经筛孔上升穿过液层,鼓泡而出,因而两相可以充分接触,并相互作用。泡沫式接触气液传质过程的一种形式,性能优于泡罩塔。为克服筛板安装水平要求过高的困难,发展了环流筛板;克服筛板在低负荷下出现漏液现象,设计了板下带盘的筛板;减轻筛板上雾沫夹带缩短板间距,制造出板上带挡的的筛板和突孔式筛板和用斜的增泡台代替进口堰,塔板上开设气体导向缝的林德筛板。筛板塔普遍用作H2S-H2O双温交换过程的冷、热塔,应用于蒸馏、吸收和除尘等。

筛板塔是传质过程常用的塔设备,它的主要优点有:

(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2)处理能力大,比同塔径的泡罩塔可增加10~15%。

(3)塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:

(1)塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3)小孔筛板容易堵塞。

目前应用比较广泛的是林德筛板,它由美国联合碳化物公司的林德子公司开发 ,最早应用于要求低压降的空分装置的精馏塔 ,1963 年后开始应用于乙苯-苯乙烯等精馏装置中。20 世纪70 年代有多家公司的120余台减压蒸馏塔采用了林德筛板,其中超过5.0 m 塔径的就有45 台,最大的塔径为11.5 m。林德筛板在普通筛板上有2 点重要改进:一是在降液管液体出口处将塔板向上凸起,二是在塔板上增设了百叶窗导向孔(国内称之为导向筛板)。这种改进增大了有效鼓泡面积,使塔板操作由鼓泡型变为喷射型,在降低液面梯度的同时使气体分布均匀,从而使干板压降减小、雾沫夹带减少、传质效率提高。目前,国内已有10余套装置使用了中运行林德筛板。

精馏是应用最广的传质分离操作,其广泛应用促使其技术已相当成熟,但是技术的成熟并不意味着今后不再需要发展而停滞不前。成熟技术的发展往往要花费更大的精力,但由于其应用的广泛,每一个进步,哪怕是微小的,也会带来巨大的经济效益。正因为如此,蒸馏的研究仍受到广泛的重视,不断取得进展。

提高精馏过程的热力学效率、节省能耗是一贯受到重视的研究领域,分离序列的合成,在用热集成概念和夹点分析方法开发节能的分离过程和优化换热网络,在具体分离过程中合理地应用热泵、多效精馏、中间再沸器和中间冷凝器等实现节能,一直是得到广泛重视的活跃的研究领域。

对于普通精馏难以(或不能)分离的物料,开发萃取精馏和恒沸精馏的分离工艺,将精馏与反应结合开发反应精馏也是个值得重视的研究领域,这对于拓宽精馏的应用范围,提高经济效益有较大意义。

随着精细化工的发展,间歇精馏应用也更加广泛,其研究也得到了应有的重视。开发各种新的操作模式,对于节省能耗和缩短操作时间有明显的效果。塔中持液量的间歇精馏膜模拟计算研究有一定进展,对于设计和指导操作有较大意义。

为开发更可靠的效率和压降等的模型,当前应强调实测数据,尤其是工业规模的测试数据,这是建立和验证模型的基础。六七十年代,美国精馏研究公司等进行了一系列工业规模试验,取得了十分有价值的实测数据,为各种模型的建立和现象认识的深化奠定了重要基础。

精馏的研究工作一直十分活跃,而且不断取得成果。在各种新分离方法得到不断开发和取得工业应用之际,在石油、天然气、石油化工、医药和农产品化学等工业中所起的重要作用不会改变,作为主要分离方法的地位不会动摇。正如费尔在1987年国际精馏会议上指出的:“如果混合物可以应用精馏分离,那么经济上可能有吸引力的方法是精馏。”随着科学技术和工业生产水平的提高,精馏的应用天地十分广阔,重要的通过不断努力,使其技术水平得到进一步提高,使其日趋完善。

3 课题研究的意义和价值

本设计采用连续精馏分离苯-氯苯二元混合物的方法。连续精馏塔在常压下操作,被分离的苯-氯苯二元混合物由连续精馏塔中部进入塔内,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯,其中氯苯纯度不低于99.5%。

高径比很大的设备称为塔器。塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。常见的可在塔设备中完成的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工或炼油厂中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。因此,塔设备的设计和研究,受到化工炼油等行业的`极大重视。

作为主要用于传质过程的塔设备,首先必须使气(汽)液两相充分接触,以获得较高的传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项要求:

(1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。

(2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作。并且塔设备应保证能长期连续操作。

(3)流体流动的阻力小。即流体通过塔设备的压力降小。这将大大节省生产中的动力消耗,以及降低经常操作费用。对于减压蒸馏操作,较大的压力降还使系统无法维持必要的真空度。

(4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。

(5)耐腐蚀和不易堵塞,方便操作、调节和检修。

事实上,对于现有的任何一种塔型,都不可能完全满足上述所有要求,仅是在某些方面具有独到之处。

根据设计任务书,此设计的塔型为筛板塔。筛板塔是很早出现的一种板式塔。五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。从而一反长期的冷落状况,获得了广泛应用。近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。

筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分。工业塔常用的筛孔孔径为3-8mm,按正三角形排列,空间距与孔径的比为2.5-5。近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,只是漏夜点低,操作弹性小。

该课题使理论教学与实际应用相结合,有助于提高处理实际问题的能力。通过对该课题的研究,可以加深对精馏过程基本原理的理解,熟练筛板精馏塔的工艺设计方法,培养设计能力。

该过程构造简单,造价低廉,具有足够操作弹性,且具有较强的工程使用价值。该过程的推广和普及,将加速我国工业生产过程节能技术的进步,带动一大批的相关技术和产业的发展。

参考文献:

[1] 蒋维钧,雷良恒,刘茂林.化工原理(下册) [M].北京:清华大学出版社,1993,264-340

[2] 陈敏恒,从德滋,方图南,齐鸣斋.化工原理(下册)[M].北京:化学工业出版社,2006,49-104

[3] 柴诚敬等。化工原理课程设计[M].天津:天津科学技术出版社,1994,75-109

[4] 吴俊生,邵惠鹤.精馏设计、操作和控制[M].北京:中国石化出版社,1997,3-4

[5] 史贤林,田恒水,张平.化工原理实验[M].上海:华东理工大学出版社,2005,121-122

[6] 刘兴高.精馏过程的建模、优化与控制[M].北京:科学出版社,2007,1-2

[7] 林爱娇,王良恩,邱挺,黄诗煌,李南芳,邓友娥. 甲醛吸收塔填料层高度的计算[M]. 福州:福州大学学报(自然科学版)1996年2月,第24卷第1期

[8]董谊仁,张剑慈.填料塔液体再分布器的设计[M].化工生产与技术,1998年第3期

[9] 张前程, 简丽.填料吸收塔中适宜液气比的确定[M]. 内蒙古工业大学学报,第20卷,第1期

[10] 李忠玉,徐松. 吸收塔填料层高度的解析计算[M].化工设计,1998 年第 5 期

[11] 董谊仁,侯章德.现代填料塔技术(三)填料塔气体再分布器和其他塔内件[M].化工生产与技术,1996年第四期

[12] Torbjgrn Pettersen,http://www.51lunwen.com/benkekaiti/ Andrew Argo,Richard D. Noble, Carl A. Koval,Design of combined membrane and distillation processes[M]. Separations Technology 6 (1996) 175-187

;

E. 化工原理课程设计 分离丙酮-水混合液的填料精馏塔 有满意答案,追加100分

这个你要计算的,你可以在网络里面找个模板,文库里有,我是学化工的,上个月设计的,是填料塔,算估计要花两天吧,画图三四天就够了,豆丁文库也有

F. 自动化与仪表工程师手册的目录

第1篇基础知识
第1章 自动控制系统2
1.1 自动控制基本原理与组成2
1.1.1 自动控制系统的组成2
1.1.2 传递函数与方框图4
1.1.3 频率特性与单位阶跃7
1.1.4 影响自动控制系统的因素13
1.2 自动控制的分类13
1.3 自动控制系统性能指标16
1.3.1 自动控制系统的状态16
1.3.2 自动控制系统的过渡过程17
1.3.3 控制过程的性能指标18
1.4 自动控制系统各环节特性分析20
1.4.1 典型被控对象特性21
1.4.2 广义对象各环节特性对控制品质的影响22
1.5 常用PID控制算法特性24
1.5.1 比例控制算法24
1.5.2 比例积分控制算法25
1.5.3 比例微分控制算法27
1.5.4 比例积分微分控制算法PID28
1.6 PID控制参数整定方法30
1.7 单回路控制系统投用33
第2章 流程工业常用工艺知识36
2.1 流程工业物流、能源流平衡关系计算方法36
2.1.1 物料衡算算式362.1.2 物料衡算方法37
2.1.3 物料衡算步骤38
2.1.4 物料衡算种类38
2.1.5 能量衡算基本方法与步骤41
2.2 流程工业中的传热原理及示例43
2.2.1 热传导43
2.2.2 对流传热44
2.2.3 辐射传热45
2.2.4 蒸发45
2.3 流程工业分离原理、方法及示例47
2.3.1 气固分离48
2.3.2 液固分离49
2.3.3 吸收49
2.3.4 萃取52
2.3.5 精馏55
2.4 流程工业化学反应原理及示例61
2.4.1 化学反应过程分类61
2.4.2 化学反应过程主要技术指标61
2.4.3 化学反应过程中的催化剂64
第3章 流程工业常用设备66
3.1 流体输送设备及特性66
3.1.1 流体输送设备分类66
3.1.2 流体输送设备主要性能参数68
3.1.3 离心泵70
3.1.4 往复泵73
3.1.5 旋涡泵74
3.1.6 轴流泵75
3.1.7 流程工业常用泵比较76
3.1.8 离心式通风机77
3.1.9 罗茨鼓风机77
3.1.1 0往复式压缩机78
3.1.1 1离心式压缩机79
3.1.1 2真空泵81
3.2 换热设备及特性82
3.2.1 换热器分类82
3.2.2 换热器主要参数83
3.2.3 蒸发器85
3.3 分离设备及特性87
3.3.1 概述87
3.3.2 板式塔87
3.3.3 填料塔92
3.3.4 萃取设备95
3.3.5 结晶设备97
3.3.6 气固分离设备98
3.4 化学反应设备及特性99
3.4.1 化学反应器的分类99
3.4.2 化学反应器的形式与特点100
3.4.3 烃类热裂解——管式裂解炉101
3.4.4 氨合成塔106
3.4.5 均相反应器109
3.4.6 气液相反应器110
3.4.7 气固相固定床反应器110
3.4.8 流化床反应器112
第4章 流程工业安全与保护系统114
4.1 流程工业安全与保护基本知识114
4.1.1 爆炸114
4.1.2 燃烧122
4.1.3 静电123
4.2 危险性划分及安全措施125
4.2.1 爆炸性物质及危险场所划分125
4.2.2 石油、化工企业火灾危险性及危险场所分类127
4.2.3 化学反应危险性评价131
4.2.4 常见危险性及安全措施133
4.2.5 储罐安全135
4.3 压力容器和电气设备安全136
4.3.1 压力容器分类136
4.3.2 压力容器事故危害137
4.3.3 防爆电器分类与通用要求141
4.3.4 防爆电气设备防爆类型及原理144
4.4 工业防腐147
4.4.1 腐蚀机理147
4.4.2 金属腐蚀分类147
4.4.3 防腐方法148
4.4.4 耐腐蚀材料性能150
4.5 流程工业安全保护方法及示例159
4.5.1 安全仪表系统159
4.5.2 TRICON三重化冗余控制166
第5章 环境工程170
5.1 流程工业对环境污染及防治概述170
5.1.1 流程工业固体废弃物来源及污染特征170
5.1.2 大气排放标准171
5.1.3 污水排放标准171
5.1.4 流程工业过程污染排放及控制实例177
5.2 废水检测与处理177
5.2.1 表示水质的名词术语177
5.2.2 水体污染的危害177
5.2.3 水质检测与分析179
5.2.4 废水处理182
5.3 废气控制与处理184
5.3.1 气体监测中常用的术语和定义184
5.3.2 废气监测185
5.3.3 废气处理186
5.4 废渣处理189
5.4.1 化工废渣分类189
5.4.2 化工废渣常用处理方法189
5.4.3 铬渣处理190
5.5 清洁生产与自动化193
5.5.1 清洁生产的定义193
5.5.2 清洁生产的主要内容193
5.5.3 清洁生产与自动化198
参考文献200
第2篇测量仪表与执行器
第6章 测量技术基础202
6.1 测量的基本概念202
6.1.1 概述202
6.1.2 测量方法202
6.2 误差分析及测量不确定度203
6.2.1 误差的定义及分类203
6.2.2 测量不确定度204
6.2.3 测量不确定度与测量误差的联系与区别204
第7章 测量仪表205
7.1 温度测量205
7.1.1 概述205
7.1.2 膨胀式温度计206
7.1.3 压力式温度计208
7.1.4 热电偶温度计210
7.1.5 热电阻温度计218
7.1.6 新型测温方式221
7.1.7 测温元件及保护套管的选择222
7.2 压力测量222
7.2.1 概述222
7.2.2 液柱式压力表223
7.2.3 弹性式压力表224
7.2.4 物性式压力表(固态测压仪表)226
7.2.5 压力信号的电测法227
7.3 流量测量227
7.3.1 概述227
7.3.2 节流式流量计230
7.3.3 转子流量计(又称浮子流量计)232
7.3.4 动压式流量计232
7.3.5 容积式流量计233
7.3.6 电磁流量计234
7.3.7 流体振动式流量计(又称旋涡式流量计)235
7.3.8 涡轮流量计235
7.3.9 超声波流量计236
7.3.10 质量流量计236
7.4 物位测量237
7.4.1 概述237
7.4.2 浮力式液位计237
7.4.3 差压式液位计238
7.4.4 电容式物位计239
7.4.5 超声波物位计239
7.4.6 现代物位检测技术239
第8章 在线分析仪表240
8.1 概述240
8.1.1 特点及应用场合240
8.1.2 分类240
8.1.3 仪表的组成241
8.1.4 主要性能指标241
8.2 气体分析仪241
8.2.1 热导式气体分析仪241
8.2.2 红外气体分析仪245
8.2.3 流程分析仪247
8.3 氧分析仪247
8.3.1 热磁式氧分析仪247
8.3.2 氧化锆氧分析仪249
8.4 气相色谱分析仪250
8.4.1 测量原理250
8.4.2 气相色谱仪的分类251
8.4.3 检测器252
8.4.4 气相色谱仪的结构253
8.5 工业质谱仪及色谱?质谱联用仪253
8.5.1 质谱仪的测量原理254
8.5.2 质谱仪的组成255
8.5.3 色谱?质谱联用仪255
8.6 石油物性分析仪表256
8.6.1 馏程在线分析仪256
8.6.2 在线闪点分析仪257
8.6.3 在线倾点(浊点)分析仪257
8.6.4 在线辛烷值分析仪258
8.7 工业电导仪259
8.7.1 测量原理259
8.7.2 电导法的使用条件260
8.7.3 溶液电导的测量260
8.8 pH计261
8.8.1 测量原理261
8.8.2 参比电极和指示电极261
第9章 显示仪表263
9.1 概述263
9.2 自动平衡式显示仪表264
9.2.1 自动电子电位差计记录仪264
9.2.2 自动平衡电桥记录仪266
9.3 数字式显示仪表267
9.3.1 普通数字式显示仪表268
9.3.2 智能式数字显示仪表271
9.4 数字模拟混合记录仪271
9.5 无纸记录仪272
9.5.1 仪表结构272
9.5.2 主要的功能特点273
第10章 特殊测量及仪表275
10.1 微小流量的测量275
10.1.1 热式质量流量计275
10.1.2 微小流量变送器277
10.1.3 浮子流量计278
10.1.4 容积流量计278
10.2 大流量的测量279
10.2.1 明渠的流量测量279
10.2.2 大口径管道的液体流量测量280
10.2.3 大口径管道的气体流量测量282
10.3 多相流体的流量测量284
10.3.1 固液两相流量的测量284
10.3.2 气液两相流量的测量285
10.3.3 固气两相流量的测量286
10.4 腐蚀性介质的流量测量288
10.5 脉动流量的测量289
10.6 介质含水量的测量292
10.7 溶液浓度的测量295
10.7.1 光学式浓度计295
10.7.2 电磁式浓度计296
10.8 其他的物性测量296
10.8.1 自动密度计296
10.8.2 浊度计297
第11章 执行器300
11.1 概述300
11.2 电动执行机构300
11.2.1 工作原理301
11.2.2 伺服放大器301
11.2.3 伺服电动机302
11.3 气动执行机构302
11.3.1 薄膜式执行机构的工作原理302
11.3.2 薄膜式执行机构的输出力303
11.3.3 阀门定位器304
11.3.4 活塞式执行机构305
11.4 调节阀306
11.4.1 工作原理306
11.4.2 调节阀的流量特性307
11.4.3 调节阀的可调比308
11.4.4 调节阀的分类308
11.5 执行器的选型原则312
11.5.1 执行器的结构形式312
11.5.2 调节阀阀芯的选择313
11.5.3 调节阀材料的选择313
11.5.4 流体对阀芯的流向选择314
参考文献315
第3篇 计算机控制系统
第12章 计算机控制系统概述317
12.1 计算机控制系统的概念和分类317
12.1.1 概念317
12.1.2 分类320
12.2 计算机控制系统的设计与实施323
12.2.1 设计323
12.2.2 实施324
第13章 集散控制系统325
13.1 概述325
13.1.1 集散控制系统的构成325
13.1.2 集散控制系统的厂商325
13.2 国内集散控制系统产品326
13.2.1 HOLLiAS?MACS集散控制系统(北京和利时)326
13.2.2 ECS?100X控制系统333
13.2.3 系统性能指标334
13.2.4 系统特点335
13.2.5 系统技术336
13.2.6 ECS?100X系统应用339
13.3 国外集散控制系统产品341
13.3.1 CS3000集散控制系统(日本横河)341
13.3.2 TPS集散控制系统(美国霍尼威尔)363
13.3.3 SIMATICPCS7集散控制系统(德国西门子)372
第14章 可编程控制器(PLC)376
14.1 国内可编程控制器产品376
14.1.1 HOLLiAS?LECG3可编程控制器(杭州和利时)376
14.1.2 RD200系列可编程控制器(兰州全志电子有限公司)379
14.1.3 FC系列可编程控制器(无锡信捷科技电子有限公司)380
14.2 国外可编程控制器产品382
14.2.1 SIMATICS7?400可编程控制器(德国西门子)382
14.2.2 ModiconTSXQuantum可编程控制器(美国施耐德)387
14.2.3 SYSMACCP1H系列可编程控制器(日本欧姆龙)390
第15章 现场总线控制技术393
15.1 现场总线的构成393
15.2 国内现场总线产品394
15.2.1 NCS3000现场总线(沈阳中科博威)394
15.2.2 ie?FCSTMFB6000现场总线(北京华控技术)396
15.2.3 STI?VC2100MA系列控制插件(上海船舶运输科学研究所)400
15.2.4 EPA分布式网络控制系统402
15.3 国外现场总线产品408
15.3.1 FF基金会现场总线(美国埃默生)408
15.3.2 PROFIBUS过程总线(德国西门子)416
15.3.3 LonWorks现场总线(美国埃施朗公司)420
第16章 工业计算机(IPC)技术425
16.1 概述425
16.1.1 工业计算机的构成425
16.1.2 工业计算机的厂商425
16.2 国内工业计算机425
16.2.1 IPC800系列工业计算机(北京联想)425
16.2.2 NORCO工业计算机(深圳华北工控)426
16.2.3 PCI总线工业计算机(北京康拓)428
16.2.4 IPC系列工业计算机(台湾研华)430
16.3 国外工业计算机432
16.3.1 IPC?H系列P4工业计算机(日本康泰克)432
16.3.2 APRE?4200工业计算机(美国APPRO国际公司)433
参考文献434
第4篇 先进控制与综合自动化
第17章 过程动态特性与系统建模436
17.1 系统建模一般原则436
17.2 典型过程特性437
17.3 机理建模方法及举例439
17.3.1 化工过程机理建模例子440
17.3.2 生物反应器建模447
17.3.3 机电系统建模例子450
17.4 基于过程数据的实验建模453
17.4.1 系统辨识建模方法概述453
17.4.2 基于线性或非线性回归方法的建模453
17.4.3 由阶跃响应曲线辨识模型456
第18章 复杂控制系统460
18.1 串级控制系统460
18.1.1 串级控制基本原理和结构460
18.1.2 串级控制系统设计461
18.1.3 串级控制系统举例462
18.2 前馈及比值控制463
18.2.1 前馈控制系统的原理和特点463
18.2.2 前馈控制系统的几种结构形式465
18.2.3 比值控制系统470
18.3 特殊控制系统473
18.3.1 均匀控制系统473
18.3.2 选择性控制系统474
18.3.3 分程控制系统476
18.3.4 阀位控制(VPC)系统477
18.4 系统关联与解耦控制477
18.4.1 系统关联478
18.4.2 相对增益478
18.4.3 解耦控制设计方法482
第19章 软测量技术及应用486
19.1 软测量概述486
19.2 软仪表构建方法487
19.3 机理建模软测量方法及应用489
19.3.1 催化裂化反应再生系统的软测量模型489
19.3.2 汽油饱和蒸气压软测量492
19.3.3 气力输送固相流量的软测量494
19.3.4 生物反应中生物参数软测量模型497
19.4 基于回归分析的软测量方法及应用501
19.4.1 回归分析方法502
19.4.2 喷射塔中SO2吸收传质系数的软测量504
19.4.3 轻柴油365℃含量软测量模型506
19.4.4 筛板精馏塔板效率的软测量508
19.5 基于神经网络软测量模型及应用509
19.5.1 神经网络模型简介509
19.5.2 粗汽油干点和轻柴油倾点软测量建模512
19.5.3 维生素C发酵过程软测量模型514
第20章 先进控制技术516
20.1 先进PID控制516
20.1.1 数字PID控制516
20.1.2 专家PID控制和模糊PID控制520
20.1.3 模型PID控制523
20.2 纯滞后补偿控制526
20.3 内模控制528
20.4 推断控制532
20.5 模型预测控制534
20.6 自适应控制541
20.7 非线性过程控制545
20.8 智能控制551
20.8.1 引言551
20.8.2 专家控制551
20.8.3 模糊控制553
20.8.4 神经网络控制555
第21章 监督控制558
21.1 实时优化558
21.1.1 最优化概念559
21.1.2 实时优化的基本要求560
21.1.3 最优操作条件分析561
21.2 实时优化控制的实施技术563
21.2.1 实时优化控制建模563
21.2.2 在计算机控制中实施实时优化控制566
21.3 最优化算法567
21.3.1 优化中的约束问题567
21.3.2 线性规划568
21.3.3 二次规划和非线性规划569
21.4 统计过程控制570
21.4.1 统计过程控制的基本原理571
21.4.2 过程变量限值检查法571
21.4.3 一般过程监控方法572
21.5 统计过程控制技术578
21.5.1 过程能力指数578
21.5.2 6?Sigma方法578
21.5.3 多元统计技术579
21.5.4 过程控制和统计过程控制的关系581
第22章 企业综合自动化582
22.1 计算机综合集成控制概述582
22.1.1 流程工业生产过程运作特点582
22.1.2 计算机综合集成控制583
22.2 信息源与信息集成系统584
22.2.1 企业信息和数据来源584
22.2.2 信息分类与编码585
22.2.3 企业信息系统综合集成技术586
22.3 数据校正技术587
22.3.1 概述587
22.3.2 数据校正原理587
22.3.3 过失误差的侦破原理588
22.3.4 过程数据校正技术的工程应用实施588
22.3.5 炼油厂的物流数据校正工业应用实例589
22.4 信息(数据)驱动下流程工业的运作590
22.4.1 企业运行概述591
22.4.2 企业决策功能591
22.4.3 期望目标(运行)实施593
22.4.4 数据驱动下的企业运行594
22.5 炼油企业综合自动化应用示例595
22.5.1 某炼油企业信息化概况595
22.5.2 实时数据库系统596
22.5.3 实验室信息管理(LIMS)系统600
22.5.4 罐区自动化系统601
22.5.5 无铅汽油管道自动调和系统602
22.5.6 集中控制与先进控制603
22.5.7 数据调理与整合604
22.5.8 流程模拟软件的应用605
参考文献608
第5篇 工业生产过程自动控制应用示例
第23章 化工单元过程控制610
23.1 流体输送过程控制610
23.1.1 容积式泵的控制610
23.1.2 离心泵的控制610
23.1.3 离心式压缩机的控制611
23.1.4 离心式压缩机的防喘振控制611
23.1.5 离心式压缩机的三重冗余容错紧急停车系统612
23.2 传热设备的控制614
23.2.1 传热设备的类型614
23.2.2 换热器的控制614
23.2.3 蒸汽加热器的控制615
23.2.4 冷凝冷却器的控制616
23.2.5 加热炉的控制616
23.3 精馏过程控制617
23.3.1 精馏塔的控制目标617
23.3.2 精馏塔的主要干扰因素618
23.3.3 精馏塔被控变量的选取618
23.3.4 精馏塔基本控制方案618
23.3.5 精馏塔的先进控制方案621
23.4 化学反应过程控制624
23.4.1 化学反应器的类型和特性624
23.4.2 化学反应器的基本控制方案625
23.4.3 反应器的新型控制方案626
23.4.4 乙烯裂解炉的先进控制方案628
23.5 间歇生产过程控制630
23.5.1 间歇生产过程特点630
23.5.2 间歇生产过程的控制要求631
23.5.3 间歇生产过程的自动控制632
23.5.4 间歇生产过程操作和调度优化634
23.5.5 间歇生产过程监控635
第24章 炼油工业生产过程控制639
24.1 炼油工业概述639
24.2 常减压蒸馏生产过程控制641
24.2.1 加热炉的控制641
24.2.2 常压塔塔底液位非线性区域控制642
24.2.3 支路平衡控制643
24.2.4 常减压蒸馏装置的先进控制644
24.3 催化裂化生产过程控制648
24.3.1 反应?再生系统的控制648
24.3.2 主分馏塔的控制649
24.3.3 催化裂化先进控制实例651
24.4 催化重整生产过程控制654
24.4.1 原料预处理控制654
24.4.2 重整反应器控制655
24.4.3 重整反应器的先进控制656
24.5 延迟焦化生产过程控制659
24.5.1 延迟焦化装置的工艺特点659
24.5.2 焦化炉控制660
24.5.3 塔顶急冷温度控制660
24.5.4 焦炭塔切换扰动前馈控制661
24.5.5 延迟焦化装置的先进控制661
24.6 油品调和663
24.6.1 油品调和工艺663
24.6.2 油品调和控制664
第25章 火力发电过程控制668
25.1 锅炉设备的控制668
25.1.1 锅炉汽包水位控制668
25.1.2 蒸汽过热系统的控制668
25.1.3 锅炉燃烧过程的控制669
25.2 汽轮机控制670
25.3 汽轮机转速控制671
25.3.1 汽轮机转速控制的概况671
25.3.2 汽轮机转速控制673
25.4 机炉协调控制676
25.4.1 汽轮机控制系统对锅炉汽压对象动态特性的影响676
25.4.2 机炉协调控制系统679
25.4.3 机炉协调控制系统的完善以及自动发电控制681
25.4.4 机炉协调控制系统AGC控制中值得深思的问题684
25.5 负荷频率控制(loadfrequencycontrol)685
25.5.1 负荷频率控制方法及实施方案686
25.5.2 多区域互联电力系统的PI滑模负荷频率控制690
第26章 钢铁行业自动控制系统692
26.1 钢铁生产工艺及自动化简述692
26.2 炼铁生产自动控制697
26.2.1 原料场自动控制697
26.2.2 烧结自动控制700
26.2.3 球团自动控制705
26.2.4 炼焦自动化708
26.2.5 高炉炼铁自动控制713
26.2.6 非高炉炼铁自动控制723
26.3 炼钢生产自动控制727
26.3.1 铁水预处理自动控制727
26.3.2 转炉炼钢自动化730
26.3.3 电弧炉炼钢自动控制738
26.3.4 炉外精炼自动控制742
26.3.5 连续铸钢自动控制745
26.4 轧钢生产自动化749
26.4.1 轧钢生产工艺流程及自动控制概述749
26.4.2 轧钢过程主要自动控制系统755
第27章 轻工造纸生产典型过程控制769
27.1 制浆过程的自动控制770
27.1.1 间歇蒸煮过程自动控制系统770
27.1.2 连续蒸煮过程自动控制系统771
27.1.3 洗涤、筛选、漂白过程控制773
27.2 碱回收过程的自动控制776
27.2.1 蒸发控制典型控制系统777
27.2.2 燃烧过程控制778
27.2.3 绿液苛化和石灰回收过程控制779
27.3 造纸过程的自动控制781
27.3.1 打浆控制782
27.3.2 配浆控制784
27.3.3 流浆箱控制786
27.3.4 纸页质量控制788
参考文献793
第6篇 仪表控制系统设计基础
第28章 设计概论796
28.1 设计条件及资料796
28.2 标准规范796
28.3 工程设计程序及质量保证体系799
28.4 设计质量保证体系800
第29章 流程工业过程控制及工程设计802
29.1 单回路反馈控制回路802
29.2 串级控制回路802
29.3 前馈?反馈控制回路803
29.4 均匀控制回路803
29.5 比值控制回路804
29.6 分程控制回路804
29.7 选择性控制回路(取代控制)805
29.8 多变量介耦控制回路806
29.9 非线性控制回路806
29.10 先进控制回路807
第30章 仪表控制系统选择808
30.1 控制系统发展动向808
30.2 影响控制系统品质的几个因素809
30.3 仪表控制系统选择810
30.3.1 模拟式仪表控制系统810
30.3.2 集散型控制系统(DCS)810
30.3.3 现场总线控制系统(FCS)815
30.3.4 PC控制系统(IPC)817
30.3.5 数据采集及监控系统(SCADA)817
30.3.6 过程安全控制系统818
30.3.7 企业综合自动化解决方案826
第31章 测量方法选择828
31.1 测量精度及误差828
31.2 温度测量方法的选择828
31.2.1 温度测量方法的比较829
31.2.2 温度测量方法选择829
31.3 压力测量方法选择831
31.4 流量测量方法选择834
31.4.1 流量测量误差分析834
31.4.2 流量测量方法使用特点及比较835
31.4.3 流量仪表的设计选型839
31.5 物位测量方法的选择843
31.5.1 物位测量技术发展动向843
31.5.2 物位测量方法的选择844
31.6 在线组分分析方法的选择850
31.6.1 在线分析技术发展动向850
31.6.2 在线气体成分分析技术850
31.6.3 在线气体成分分析技术应用特点853
31.6.4 液体特性在线分析技术854
31.6.5 液体特性分析仪表应用特点856
31.6.6 在线分析采样系统设计856
31.6.7 现场分析器室设计856
31.6.8 可燃气体/毒性气体检测报警系统设计857
31.7 控制阀的选择857
第32章仪表控制系统设计及设计文件861
32.1 仪表控制室设计861
32.2 仪表控制系统供电设计862
32.3 仪表供气系统设计863
32.4 仪表控制系统的接地设计863
32.5 电气仪表在危险区域内的安全设计865
32.6 现场仪表防护设计869
32.7 仪表及测量管线安装设计872
32.8 仪表控制系统检验876
32.9 仪表询价、报价及技术评估877
32.10 仪表、控制系统工程设计文件877
32.10.1 仪表、控制系统工程设计文件组成877
32.10.2 生产装置自控设计程序878
32.10.3 仪表、控制系统工程设计文件内容892
参考文献898

阅读全文

与筛板精馏塔实验装置图相关的资料

热点内容
市政接入管口加什么阀门 浏览:457
老年康复机械装置视频 浏览:645
断桥铝窗内开内倒五金件安装方法 浏览:935
阀门REF代表什么 浏览:227
面部仪器检测都有哪些方面 浏览:434
深圳制冷加热控温系统作用是什么 浏览:625
石油化工企业生产装置电力设计 浏览:883
钢板轧技压下装置设计 浏览:428
autocad怎么画圆锥滚子轴承 浏览:654
哪个阀门厂可以承包 浏览:172
怎么制作艾灸的仪器 浏览:521
漳州盛赛尔消防报警器材哪里有 浏览:356
直线作用动力装置 浏览:934
小懒器电动工具厂家 浏览:71
设备的预付款怎么做账 浏览:91
手动仪表改气动仪表需要什么 浏览:51
踏板船传动装置 浏览:664
西亚特制冷机怎么开车 浏览:319
轴承磨床用的防锈液叫什么名字 浏览:980
工具箱的维护 浏览:630