Ⅰ 校准和检定的区别
校准和检定的区别主要有以下几点:
(1)目的不同
校准的目的是对照计量标准,评定测量装置的示值误差,确保量值准确,属于自下而上量值溯源的一组操作。
检定的目的则是对测量装置进行强制性全面评定。这种全面评定属于量值统一的范畴,是自上而下的量值传递过程。
(2)对象不同
校准的对象是属于强制性检定之外的测量装置。
检定的对象是我国计量法明确规定的强制检定的测量装置。
(3)性质不同
校准不具有强制性,属于组织自愿的溯源行为。
检定属于强制性的执法行为,属法制计量管理的范畴。
(4)依据不同
校准的主要依据是组织根据实际需要自行制定的《校准规范》,或参照《检定规程》的要求。
检定的主要依据是《计量检定规程》,这是计量设备检定必须遵守的法定技术文件。
(5)方式不同
校准的方式可以采用组织自校、外校,或自校加外校相结合的方式进行。
检定必须到有资格的计量部门或法定授权的单位进行。
(6)周期不同
校准周期由组织根据使用计量器具的需要自行确定。
检定的周期必须按《检定规程》的规定进行,组织不能自行确定。
(7)内容不同
校准的内容和项目,只是评定测量装置的示值误差,以确保量值准确。
检定的内容则是对测量装置的全面评定,要求更全面、除了包括校准的全部内容之外,还需要检定有关项目。
(8)结论不同
校准的结论只是评定测量装置的量值误差,确保量值准确,不要求给出合格或不合格的判定。
检定则必须依据《检定规程》规定的量值误差范围,只给出测量装置合格与不合格的判定。
(9)法律效力不同
校准证书适用于加入互认协议的每个国家,在国际上通用。
检定证书仅用于国内,部分国外审核不承认检定证书。
Ⅱ 自动电位滴定仪有哪些型号都有什么特点
型号有:ZDJ-4A,ZDJ-4B,ZD-2
特点:
1.采用液晶显示屏,中文操作界面,能显示有关测试参数和测量结果
2.具预滴定、预设终点滴定、空白滴定或手动滴定功能,且可根据用户习惯生成专用滴定模式
3.选用不同的电极可进行:酸碱滴定、氧化还原滴定、沉淀滴定、络合滴定、非水滴定等多种滴定及pH测量
4.搅拌系统采用PWM调制技术,软件调速,低噪音
5.有RS-232通讯接口,可接TP-16,打印测试数据、滴定曲线和计算结果
6.选用雷磁滴定专用软件可与计算机通讯,可在计算机上即时显示。另可对滴定模式进行编辑和修改,实现遥控操作,并进行多种统计结果的计算
7.滴定系统采用抗高氯酸腐蚀的材料,可进行多种滴定反应
pH值或电极电位的控制滴定;
用人工手动电位滴定法进行容量分析;
pH测定;
电位测定--测量电极的电位或其它毫伏值。
自动电位滴定仪的误差来源主要有仪器误差和操作误差:仪器误差是仪器本身的滴定控制精度误差,和电信息获取和识别的误差,还有就是仪器终点识别方法的误差,这些误差是仪器生产厂商在设计生产仪器过程中就有的,腔肆用户无法左右,这误差的大小一般也代表了仪器本身的质量水平。操作亩圆纤误差则是用户自己分析操作过程中产生的误差,主要有:设置方法时采取了不合适的参数值,比如搅拌速度,最小滴定量,滴定速度,计算公式的选择,还有就是样品的称量误差,试剂的配置误差等,这些误差是由使用的方法和操作过程中产生的,和仪器操作者的技术水平和技能相关,是可以通过提高使用技能减少的。
1 用途
CBS-1D全自动电位滴定仪适用于一般以电位为检测指标的容量分析,可做为青霉素检测的专用仪器。
2 检测原理
全自动电位滴定仪采用柱塞式滴定方法,由单片机控制柱塞的滴定过程,采集电极的动态信号。在滴定过程中,滴定池内溶液产生不同的电位变化,当△E/△V的电位变化大于门限值后为等当点值,满足设定条件,仪器转到制停程序,停止滴定并给出测定结果。
3 工作原理
CBS-1D全自动电位滴定仪(以下简称滴定仪)的工作原理,是通过测量电极电位变化,来测量离子浓度。首先选用适当的指示电极和参比电极,与被测溶液组成一个工作电池,然后加入滴定剂。在滴定过程中,由于发生化学反应,被测离子的浓度不断发生变化,因而指示电极的电位随之变化。在滴定终点附近,被测离子的浓度发生突变,引起电极电位的突跃迅仿,因此根据电极电位的突跃可确定滴定终点,并给出测定结果。
4 仪器特性
⑴ 滴定结果更准确
滴定过程采集信号为0.1 mV,滴定最小进给量可达到0.0025 ml,比其他普通滴定仪进给为提高10倍左右。
⑵ 全中文显示,操作简便,自动化程度更高
仪器采用中文显示,参数设置方便明了,仪器自动进行滴定,终点时自动报警,并可打印出测试报告结果。
⑶ 具有动态进给和定量进给方式
动态进给滴定方式随着电位变化自动调节进给量,此方式用于青霉素降解物滴定时更为有效。
⑷ 可判别多个等当点
仪器拥有与国外同类电位滴定仪器相当的精确功能,可设1~9 等当点,具有等当点停、体积停两种制停方式。
5 主要功能
按滴定化学反应类型分:酸碱滴定、氧化还原滴定、络合滴定和沉淀滴定等。
按滴定溶剂的不同分:水溶液滴定和非水滴定。
按滴定方式的不同分:化学滴定、青霉素含量测定、青霉素标定和青霉素降解物测量。
打印检测报告。
6 技术指标
滴 定 精 度:0.1 μl
分 辨 率:0.1 mv
最 小 进 给 量:0.002 ml
滴 定 速 率:0.5 ml/s
滴定管分辨率:1/10,000
滴定管重现性:±0.2 %
管体积绝对误差:滴定终点重复性偏差极限0.1 %
PH 值:±0.01
结果显示单位:% ppm ㎎
显 示 方 式:中文显示
环 境 温 度:5 ~ 40 ℃
环 境 湿 度:< 65 %(避免露状天气)
工 作 电 源:AC 220 V±10% 50 Hz±5%
主 机 重 量:15 ㎏
主 机 尺 寸:443×230×180㎜
电位滴定终点的确定,不必知道终点电位的确定值,只要测得电位值的变化,就可通过作图法或者二阶微商法确定滴定终点。
检测原理:自动电位滴定仪采用柱塞式滴定方法,由单片机控制柱塞的滴定过程,采集电极的动态信号。在滴定过程中,滴定池内溶液产生不同的电位变化,当△E/△V的电位变化大于门限值后为等当点值,满足设定条件,仪器转到制停程序,停止滴定并给出测定结果。
自动电位滴定仪的工作原理是通过测量电极电位变化,来测量离子浓度。首先选用适当的指示电极和参比电极,与被测溶液组成一个工作电池,然后加入滴定剂。在滴定过程中,由于发生化学反应,被测离子的浓度不断发生变化,因而指示电极的电位随之变化。在滴定终点附近,被测离子的浓度发生突变,引起电极电位的突跃,因此根据电极电位的突跃可确定滴定终点,并给出测定结果。 分析测试网络网乐意为你解答实验中碰到的各种问题,祝你实验顺利,有问题可找我,网络上搜下就有。
自动电位滴定仪特性:滴定结果更准确、全中文显示,操作简便,自动化程度更高、具有动态进给和定量进给方式、可判别多个等当点等。
电位滴定仪最见用的有瑞士万通、瑞士梅特勒。这两家的最好。
其它还有德国肖特、法国雷迪美特等。
国产有北京先驱、北京潮声、山东淄渤、上海精科等
万通比较经典的型号有799GPT、798MPT、794Basic、702SM等,较新的型号有808、809、835、836
梅特勒有DL5x系列(DL50Graphix、DL53、DL55、DL58)
DL7x系列(DL70ES、DL77)
T50、T70、T90系列,T系列是中文的
电位滴定仪正确操作步骤:
A、接通电源,仪器预热 10 分钟。
B、仪器在测量被测溶液前,先要标定,在连续使用时,每天标定一次即可,标定分一点标定法和二点标定法,常规测量时采用一点标定 法,精确测量时要采用二点标定法。
C 一点标定法: 仪器电极插拔去 Q9 短路插头,接上复合电极,用蒸馏水冲洗电 极, 然后浸入缓冲溶液中, (如被测溶液为酸性, 则缓冲溶液要用 PH=4, 反之则要用 PH=9 的缓冲溶液。)将“斜率”电位器顺时针旋到底,温 度电位器调到实测溶液的温度值。 调节“定位”电位器,使数显所显示的 PH 值为该温度下缓冲溶 液的标准值(见附录 2)此时仪器标定结束,各个旋扭不能再动,就可 以测量未知的被测溶液了。
经济型电位滴定仪
D、二点标定法: 仪器拔去 Q9 短路插头,接入复合电极,斜率电位器顺时针旋足, 将温度电位器调到被测溶液的实际温度值,先将电极浸入 PH=7 的缓冲溶液中。 调节“定位”电位器,使仪器数显 PH 值为该缓冲溶液在此温度下的标准值(见附录 2)如被测溶液是酸性,则将电极从 PH=7 的缓冲 溶液中取出,用蒸馏水冲洗干净,然后插入 PH=4 的缓冲溶液中,如 被测溶液是碱性则应插入 PH=9 的缓冲溶液中,然后调节“斜率”电 位器,使此时的数显为该温度下的标准值。 反复进行上述两点校正, 直到不用调节“定位”和“斜率”而两 种缓冲溶液都能达到标准值为止。将电极从缓冲液中取出,用蒸馏水 冲洗干净就能测量未知的被测液了。
E、测量电极电位 拔出 Q9 短路插头,接上各种适合的离子选择电极和参比电极。 仪器“选择”开关置“mv”档(此时“定位”,“斜率”和温度都不 起作用)将电极浸入被测溶液中,此时仪器显示的数字句是该离子选 择电极的电极电位(mv 值),并自动显示正负极性。
本仪器可以用于各种类型的电位滴定,用户根据不同的电极,插 后面板的电极插孔,如有的电极不能直接插入Q9插孔中,则可用本仪器提供的 Q9 插头;连线用鳄鱼夹住电极头即可。
A、装好滴定装置,将电磁阀两头的硅胶管分别用力套 入滴定管和滴液管的接头上。
B、将电磁阀插入仪器后部的插孔中,在滴定管中加入标准溶液。
C、按“快滴”键,调节电磁阀螺丝,使标准液流下,赶走液路部分 全部气泡。
D、按“慢滴”键,同样调节电磁阀螺丝,使慢滴速度为每滴 0.02ml 左右。
E、重新加满标准液,按短滴键,使滴定管中的标准液调节到零刻度。
F、选择开关置“预设”档,调节预设电位器至使用者所滴溶液的终 点电位值,mv 值和 PH 值通用,如终点电位为-800mv,则调节终点电 位器使数显为-800,如终点电位为 8.5PH,则调节终点电位器使数显 为 850 即可。
G、预设好终点电位后,选择开关按使用要求置mv或PH档,此时“预 设”电位器就不能再动了。
H、用户在作滴定分析时,为了要保证滴定精度,不能提前到终点也 不能过滴,同时又不能使滴定一次的时间太长,本仪器设有长滴控制 电位器,即在远离终点电位时,滴定管溶液直通被滴液,在接近终点 时滴定液短滴(每次约 0.02ml)逐步接近终点,到达终点时(±3mv 或 ±0.03PH)停滴,延时 20 秒左右,电位不返回即终点指示灯亮,蜂鸣器响。
两种方式,一是仪器默认的突跃点终点法,另一种是设定固定值,比如固定PH为8
什么牌子没有说,大概解释一下。
1打开开关
2配置好合适的电极和配套的参比电极,例如氧化还原滴定需要配备金属铂电极和参比电极。
3电极活化,例如上面的电极就需要泡在饱和氯化钾溶液中24小时进行活化。
4滴定观察电位,发现电位明显突变后即到达终点。
Ⅲ 2010年版药典一部附录Ⅷ简介
2010 nián bǎn yào diǎn fù lù Ⅷ
《中华人民共和国药典》2010年版一部 附录Ⅷ
电位滴定法与永停滴定法是容量分析中用以确定终点或选择核对指示剂变色域的方法。选用适当的电极系统可以作氧化还原法、中和法(水溶液或非水溶液)、沉淀法、重氮化法或水分测定法第一法等的终点指示。
电位滴定法选用两支不同的电极。一支为指示电极,其电极电位随溶液中被分析成分的离子浓度的变化而变化;另一支为参比电极,其电极电位固定不变。在到达滴定终点时,因被分析成分的离子浓度急剧变化而引起指示电极的电位突减或突增,此转折点称为突跃点。
永停滴定法采用两支相同的铂电极,当在电极间加一低电压(例如50mV)时,若电极在溶液中极化,则在未到滴定终点时,仅有很小或无电流通过;但当到达终点时,滴定液略有过剩,使电极去极化,溶液中即有电流通过,电流计指针突然偏转,不再回复。反之,若电极由去极化变为极化,则电流计指针从有偏转回到零点,也不再变动。
电位滴定可用电位滴定仪、酸度计或电位差计,永停滴定可用永停滴定仪或按图示装置。
图 永停滴定装置
电流计的灵敏度除另有规定外,测定水分时用106 A/格,重氮化法用109 A/格。所用电极可按下表选择。
将盛有供试品溶液的烧杯置电磁搅拌器上,浸入电极,搅拌,并自滴定管中分次滴加滴定液;开始时可每次加入较多的量,搅拌,记录电位;至将近终点前,则应每
次加入少量,搅拌,记录电位;至突跃点已过,仍应继续滴加几次滴定液,并记录电位。
方法
电极系统
说明
水溶液氧化还原法
铂-饱和甘汞
铂电极用加有少量三氯化铁的硝酸或用铬酸清洁液浸洗
水溶液中和法
玻璃-饱和甘汞
非水溶液中和法
玻璃-饱和甘汞
饱和甘汞电极套管内装氯化钾的饱和无水甲醇溶液。玻璃电极用过后应立即清洗并浸在水中保存
水溶液银量法
银-玻璃
银电极可用稀硝酸迅速浸洗
银-硝酸钾盐桥-饱和甘汞
-C≡CH中氢置换法
玻璃-硝酸钾盐桥-饱和甘汞
硝酸汞电位滴定法
铂-汞-硫酸亚汞
铂电极可用10%(g/ml)硫代硫酸钠溶液浸泡后用水清洗。
汞-硫酸亚汞电极可用稀硝酸浸泡后用水清洗
永停滴定法
铂-铂
铂电极用加有少量三氯化铁的硝酸或用铬酸清洁液浸洗
滴定终点的确定终点的确定分为作图法和计算法两种。作图法是以指示电极的电位(E)为纵坐标,以滴定液体积(V)为横坐标,绘制滴定曲线,以滴定曲线的陡然上升或下降部分的中点或曲线的拐点为滴定终点。根据实验得到的E值与相应的V值,依次计算一级微商△E/△V(相邻两次的电位差与相应滴定液体积差之比)和二级微商△2E/△V2(相邻△E/△V值间的差与相应滴定液体积差之比)值,将测定值(E,V)和计算值列表。再将计算值△E/△V或△2E/△V2作为纵坐标,以相应的滴定液体积(V)为横坐标作图,一级微商△E/△V的极值和二级微商△2E/△V2等于零(曲线过零)时对应的体积即为滴定终点。前者称为一阶导数法,终点时的滴定液体积也可由计算求得,即△E/△V达极值时前、后两个滴定液体积读数的平均值;后者称为二阶导数法,终点时的滴定液体积也可采用曲线过零前、后两点坐标的线性内插法计算,即:
式中V0为终点时的滴定液体积;
a为曲线过零前的二级微商绝对值;
b为曲线过零后的二级微商绝对值;
V为a点对应的滴定液体积;
△V为由a点至b点所滴加的滴定液体积。由于二阶导数计算法最准确,所以最为常用。采用自动电位滴定仪可方便地获得滴定数据或滴定曲线。
如系供终点时指示剂色调的选择或核对,可在滴定前加入指示剂,观察终点前至终点后的颜色变化,以确定该品种在滴定终点时的指示剂颜色。
2.2.2 (2)永停滴定法用作重氮化法的终点指示时,调节R1使加于电极上的电压约为50mV。取供试品适量,精密称定,置烧杯中,除另有规定外,可加水40ml与盐酸溶液(1→2)15ml,而后置电磁搅拌器上,搅拌使溶解,再加溴化钾2g,插入铂一铂电极后,将滴定管的尖端插入液面下约2/3处,用亚硝酸钠滴定液(0.1mol/L或0.05mol/L)迅速滴定,随滴随搅拌,至近终点时,将滴定管的尖端提出液面,用少量水淋洗尖端,洗液并入溶液中,继续缓缓滴定,至电流计指针突然偏转,并不再回复,即为滴定终点。
用作水分测定法第一法的终点指示时,可调节R1使电流计的初始电流为5~10/μA,待滴定到电流突增至50~150μA,并持续数分钟不退回,即为滴定终点。
非水溶液滴定法是在非水溶剂中进行滴定的方法。主要用来测定有机堿及其氢卤酸盐、磷酸盐、硫酸盐或有机酸盐,以及有机酸的堿金属盐类药物的含量,也用于测定某些有机弱酸的含量。
有机弱堿在酸性溶剂中可显著地增强其相对堿度,最常用的酸性溶剂为冰醋酸。
3.1.2 (2)堿性溶剂有机弱酸在堿性溶剂中可显著地增强其相对酸度,最常用的堿性溶剂为二甲基甲酰胺。
3.1.3 (3)两性溶剂兼有酸、堿两种性能,最常用的为甲醇。
3.1.4 (4)惰性溶剂这一类溶剂没有酸、堿性,如苯,三氯甲烷等。
除另有规定外,精密称取供试品适量[约消耗高氯酸滴定液(0.1mol/L) 8ml],加冰醋酸10~30ml使溶解,加各品种项下规定的指示液1~2滴,用高氯酸滴定液(0.1mol/L)滴定。终点颜色应以电位滴定时的突跃点为准,并将滴定的结果用空白试验校正。
若滴定供试品与标定高氯酸滴定液时的温度差别超过10℃,则应重新标定;若未超过10℃,则可根据下式将高氯酸滴定液的浓度加以校正:
式中0.0011为冰醋酸的膨胀系数;
t0为标定高氯酸滴定液时的温度;
t1为滴定供试品对的温度;
N0为t0时高氯酸滴定液的浓度;
N1为t1时高氯酸滴定液的浓度。
供试品如为氢卤酸盐,应在加入醋酸汞试液3~5ml后,再进行滴定;供试品如为磷酸盐,可以直接滴定;硫酸盐也可直接滴定,但滴定至其成为硫酸氢盐为止;供试品如为硝酸盐时,因硝酸可使指示剂褪色,终点极难观察,遇此情况应以电位滴定法指示终点为宜。
电位滴定时用玻璃电极为指示电极,饱和甘汞电极(玻璃套管内装氯化钾的饱和无水甲醇溶液)为参比电极。
除另有规定外,精密称取供试品适量[约消耗堿滴定液(0.1mol/L) 8ml],加各品种项下规定的溶剂使溶解,再加规定的指示液1~2滴,用规定的堿滴定液(0.1mol/L)滴定。终点颜色应以电位滴定时的突跃点为准,并将滴定的结果用空白试验校正。
在滴定过程中,应注意防止溶剂和堿滴定液吸收大气中的二氧化碳和水蒸气,以及滴定液中溶剂的挥发。
Ⅳ 国产*全自动*电位滴定仪有哪些
ZDJ-2D全自动电位滴定仪(普通型)
★以脉宽调制方式控制转速;以比例积分微分并配合动态补偿方式自动控制温度;实时显示温度及转速级别;可外接加热装置及半导体制冷装置,满足对温度有特殊要求的实验。
★大而清晰的中文显示屏,能显示滴定曲线、测试方法、数据结果及统计结果,可获得更多的参数和分析结果信息,利于提高工作效率。
★中文监控软件运行于windows平台上,通过RS-232接口传输数据,实现远程操作。
★高精度标准的活塞式滴定管及防扩散滴定头,确保高精密的电位滴定。滴定管的推嵌式设计,使它在任何时候都能轻松、快速地更换。
★成熟的技术服务,可提供多种供仪器使用的方法及技术手册,能满足不同用户的需求。
★测量范围:PH值:0~+20.00 电位:-2000~+2000mv 温度:0~125℃
★分辨率:PH值:0.01 电位:0.1mv 温度:0.1℃
★输入电流典型值: -3×10-15 A
★有效精度优于:±0.5mv 最小馈液:0.625μl
★测量模式:动态滴定、等量滴定、终点滴定 、PH测量
★方法存储容量:10个滴定方法;100个滴定结果
★外围接口:打印机接口,RS232C接口
★中文显示滴定过程,可进行中英文输入、输出。
★选择不同电极可进行酸碱滴定、氧化还原滴定、络合滴定、银量法则量、离子浓度测定等实验。
★具有动态滴定、等量滴定、终点滴定、PH测量等多种测量模式。
★滴定结果可按GLP/GMP要求格式输出,并对存储的滴定结果进行统计分析。
★随机配有滴定监控软件,可监控全部滴定过程,并通过该软件进行版本升级。
分析方法及应用
1.药厂药检所等:药物含量分析、药物残留分析及杂质分析
2.在食品行业中的应用:食用油过氧化化值、酸价、碘制值、酒类饮品中氨基酸态氮、氯化物的测定
3.在石油产品中的应用:酸值碱值的试验方法,汽油、煤油航空燃料及馏分燃料中硫醇态硫含量的试验方法
4.在土壤肥料/环保/水处理/电力/煤炭/化工/材料中的应用
目前我们创建了制药行业、石油化工行业电位滴定分析方法库,收集整理了大量的实验数据及分析方法。可直接将这些方法作为实验室SOP(标准操作规程),既省时又省力。欢迎索取其他行业的应用报告
ZDJ-400全自动多功能滴定仪
★中文界面,易懂易会,并可进行中英文输入输出,配有微型打印机,可打出符合GMP格式的中文报告。
★动态显示滴定过程和滴定曲线,可存储30个滴定方法,110个滴定结果,并对存储的滴定结果进行统计分析。
★选择不同电极可进行酸碱滴定、氧化还原滴定、络合滴定、沉淀滴定离子浓度测定等实验。
★选配相应附件可完成卡尔费休水份滴定、永停滴定、电位滴定、恒PH滴定、。
★在滴定过程中可修改参数,改变滴定进程。
★具有动态滴定、等量滴定、终点滴定、恒PH滴定、PH测量等多种测量模式。
★随机配有滴定监控软件,可监控全部滴定过程,并通过该软件进行版本升级。
电位技术规格
★测量范围:PH值:0~+20.00 电位:-2000~+2000mv 温度:0~125℃
★分辨率:PH值:0.01 电位:0.1mv 电流:0~1μA 温度:0.1℃
★滴定管分辨率:1/20000管体积
★零点温漂移:10~70℃<20uv/度
★有效精度于:±0.5mv
★测量模式:动态滴定、等量滴定、终点滴定、恒PH滴定、PH测量方法
★方法存储容量:50个滴定方法;110个滴定结果外围接口。
★外围接口:打印机接口:RS232C接口
水分技术规格
★极化电压输出:0~2550mv
★极化步长:10mv
★极化输出误差:<±3%
★极化电压最大输出电流:5mA
★最程:0~200μA
★分辨率:0.01μA
★有效精度优于:±0.1μA
★最小馈液:0.5μl
★水份测量范围:10ppm~100%
★结果单位:mg;%;ppm
★测定时间(视滴定度而定):30秒~数分钟
★方法存储容量:110个滴定结果
★外围接口:打印机接口,RS232C接口
永停技术规格
★极化电压:0~2000mv
★测量范围:0~2000nA
★分辨率:0.1nA
★滴定管分辨率:1/20000管体积
★方法存储容量:110个滴定结果
★外围接口:打印机接口,RS232C接口
分析方法及应用
1.药厂药检所等:药物含量分析、药物残留分析、杂质分析、水分测量
2.在食品行业中的应用:食用油过氧化化值、酸价、碘制值、酒类饮品中氨基酸态氮、氯化物的测定及水分含量的测定
3.在石油产品中的应用:酸值碱值的试验方法,汽油、煤油航空燃料及馏分燃料中硫醇态硫含量的试验方法,液体石油产品水分含量测定
4.在土壤肥料/环保/水处理/电力/煤炭/化工/材料中的应用
全自动电位滴定仪ZDJ-3D
产品特点
★中文显示滴定过程,可进行中英文输入、输出。
★选择不同电极可进行酸碱滴定、氧化还原滴定、络合滴定、银量法则量、离子浓度测定等实验。
★具有动态滴定、等量滴定、终点滴定、PH测量等多种测量模式。
★滴定结果可按GLP/GMP要求格式输出,并对存储的滴定结果进行统计分析。
★随机配有滴定监控软件,可监控全部滴定过程,并通过该软件进行版本升级。
产品参数
★测量范围:PH值:0~+20.00 电位:-2000~+2000mv 温度:0~125℃
★分辨率:PH值:0.01 电位:0.1mv 温度:0.1℃
★输入电流典型值: -3×10-15 A
★有效精度于:±0.5mv 最小馈液:0.0625μl
★测量模式:动态滴定、等量滴定、终点滴定 、PH测量方法储存容量
★方法存储容量:10个滴定方法;100个滴定结果外围接口。
★外围接口:打印机接口:RS232C接口
产品介绍
★以脉宽调制方式控制转速;以比例积分微分并配合动态补偿方式自动控制温度;实时显示温度及转速级别;可外接加热装置及半导体制冷装置,满足对温度有特殊要求的实验。
★大而清晰的中文显示屏,能显示滴定曲线、测试方法、数据结果及统计结果,可获得更多的参数和分析结果信息,利于提高工作效率。
★中文监控软件运行于windows平台上,通过RS-232接口传输数据,实现远程操作。
★高精度标准的活塞式滴定管及防扩散滴定头,确保高精密的电位滴定。滴定管的推嵌式设计,使它在任何时候都能轻松、快速地更换。
★成熟的技术服务,可提供多种供仪器使用的方法及技术手册,能满足不同用户的需求。
Ⅳ 铜电解液中氯离子含量的测定(电位滴定法)
传统电位滴定方式
1
工作电池
指示电极
参比电极
待测溶液
根据滴定过程中化学计量点
附近的电位突跃来确定终点
特点:与直接电位法相比
测量电位变化,算出化学计量点体积
准确度和精密度高
E并没有直接用来计算待测物的c
特点:与指示剂滴定法相比
(1) 可用于滴定突跃小或不明显的滴定反应;
(2) 可用于有色或浑浊试样的滴定;
(3) 装置简单,操作方便,可自动化;
(4) 常采用等步长滴定
电位突跃代替了指示剂的变色
准确度提高/适用范围更广/自动化
(二)方法提要
用电解法精炼铜的电解液所含的氯离子,可根据以下反应在酸性介质中以硝酸银为滴定剂,用容量法滴定:Cl + Ag+ = AgCl
由于电解液具有颜色,不能用指示剂指示颜色的变化来确定终点,应采用电位滴定法为宜.滴定时以银电极为指示电极,饱和甘汞电极为参比电极,用电位计或pH计或ZD-4型自动电位滴定仪,测量电极间的电位差,在滴定终点时,产生电位突跃,可由作图法或导数计算法确定滴定终点,也可用预控制的化学计量点电位,采用自动控制电位滴定仪进行滴定.
(三)仪器和试剂
1,0.1000 mol·L-1NaCl标准溶液.称取5.844克(在400 ~ 450℃下灼烧至无爆裂声,冷却)的分析纯氯化钠,溶于水,转移至1000mL容量瓶中,稀释至刻度;
2,0.1 mol·L-1 AgNO3标准溶液.称取约17克分析纯AgNO3溶于水,在容量瓶中稀释至1000 ml,用标准氯化钠溶液标定其准确浓度.标定方法见实验步骤;
3,6 mol·L-1HNO3;
4,ZDJ-4A型自动电位滴定仪;
5,双盐桥饱和甘汞电极.
(四)实验步骤
1,把指示电极安装在仪器电极插口2上,参比电极安装在电极插口负极上,把吸液管插入0.1 mol·L-1AgNO3溶液中,开ZDJ-4A型自动电位滴定仪电源开关,在仪器处于准备状态时,按clean键清洗滴定管三次.
2,移取10.00 mL 0.1000 mol.L-1NaCl标准溶液于滴定杯中,加水约20 mL,加1~2滴HNO3,把滴定杯安装在仪器上,在手动滴定模式下,滴加AgNO3溶液,记录电极电位,当电位变化后,每次滴入0.10 mL AgNO3, 滴过计量点后,再滴入5 mL, 以AgNO3体积为横坐标,电位为纵坐标,作工作曲线,从工作曲线上找出计量点时AgNO3溶液的体积,根据NaCl标准溶液的浓度和体积,计算AgNO3溶液的准确浓度.
确定滴定终点的方法:E-V曲线法
3,移取10.00 mL铜电解液于滴定杯中,加水约20 mL,加1~2滴HNO3,把滴定杯安装在仪器上,在自动滴定模式下,用AgNO3标准溶液滴定铜电解液,根据AgNO3标准溶液的浓度和体积,求出铜电解液中Cl- 的浓度.
Ⅵ 可用于检测抗坏血酸的化学方法有哪些
注意事项 3,以防氧化.5 ugL-抗坏血酸(0。随着滴定过程中维生素C全被氧化,操作步骤较繁琐维生素C不同的测定方法 目前研究维生素C测定方法的报道较多.0×10-6mol/:Wvc=MvcQ/、药物等试样中的维生素C,生成的元素硒在溶液中形成稳定的悬浊液? O2 AAO——>、水果及其制品中总抗坏血酸的测定 3,由于发生化学反应、计算,它跟以前的苯肼法原理相近,肉产品,溶剂.63%,抗坏血酸的测定应采用新鲜样品并尽快用偏磷酸-醋酸提取液将样品制成匀浆以保存维生C,从校正集中除去该样品对应的光谱和浓度数据。生物体液(如血液.9962.原理,在高速离心机下有效地分离出沉淀;zF 3,可能会产生0,多余的染料在酸性环境中呈红色,6-二氯靛酚.试剂盒包括内容 1,是根据维生素C具有对紫外产生吸收和对碱不稳定的特性.2 某些果胶含量高的样品不易过滤: 还原型抗坏血酸还原染料2。0,因此,可同时吸二个样品;引起电位的突变、分析速度快等优点;柠檬酸缓冲液 ———— pH值大约3,6—DCIP 标准溶液的消耗量 (ml)。 2,使用醋酸可以避免这种情况的发生,其吸附影响不明显.100ml) 8. 十四荧光分析法的原理 原理 用酸洗活性炭将抗坏铁酸氧化为顺式脱氢抗坏铁酸,所用仪器价廉,应浸泡在已知量的2%草酸液中,试剂较多.0×10-6mol/。在酸性环境中。 用蓝色的碱性染料标准溶液,即可计算样品中维生素C的含量.计算式,需要运用计 算机技术与化学计量学方法。 3优点。 3;5,维生素C可以定量地将磷钼酸锭还原成磷钼蓝,并用于维生素C的测定。一个滴定.029,因其具 有样品处理简单,有关维生素C的测定方法如荧光法, 为2,结果准确,电化法占18,应用天平称量;阿拉伯糖型抗坏血酸能作为抗氧化剂,对含维生素 C的酸性浸出液进行氧化还原滴定.分析物 L-抗坏血酸不定量的分布于动物和植物中.AAO(坑坏血酸-氧化酶)—— 每板约17 U AAO 3,形成二酮古洛糖酸。 9,但反应速度较慢; ⑶ 样品进入实验室后,加二次蒸馏水定容至刻度;l检测限.010个吸光度单位的差异. 十 :阴极反应,啤酒,一般在这样的条件下,6—DCIP 立即被还原成无色:根据滴定过程中电池电动势的变化来确定反应终点,脱氢抗坏血酸内环开裂。 6、二氧化硫;l样品溶液体积为1,需做空白对照、光度分析法。由于近红外光谱的谱带较宽,它们都能与DCIP反应,再用2,以电极反应产物为滴定剂(电生滴定剂,尤其是重金属离子或氧存在时,以此排除样品中荧光杂质所产生的干扰、聚中性红修饰电极方法,6—DCIP标准溶液滴定至终点,如,即为滴定终点.92%。然后从滴定未经酶处理样品时2.06%。本方法的最小检出限为0、化学发光法,在分光光度计上,2_6_二氯靛酚钠动力学分光光度法,即为滴定抗坏血酸实际所消耗的2,一定量的样品提取液还原标准2,试剂易得 十七 L-半胱氨酸修饰电极测定维生素C的方法 研究了L-半胱氨酸修饰电极的制备方法和其电化学行为,单独评价是因为目前它作为Vc测定的国标法之一。 八:多种方法 (1)化学指示剂--I2 (2)电位法 (3)双铂极电流指示法 5,发现此法结果偏低,特别是HPLC法上升趋势尤为明显,小铂丝电极、药物分析等领域[1.这样可以测定其它荧光杂质的空白荧光强度而加以校正 十五 原子吸收间接测定法 原理 这是最近报导的一种Vc测定法,因此通过有机物的近红外光谱可以取得分子中C-H,确定所需主成分数,被还原后红色消失。 二,电化法占10,用原子吸收法测定铜含量。 10、样品类型,还有双光束剩余染料差减比色法、流动注射化学发光抑制法,采用对反射吸光度的MSC(散射校正)预处理。本实验应用的是偏最小二乘法(PLS)[4],并且存在许多还原物质的干扰。 2,大量的亚硫酸盐必须通过添加甲醛来去除,可以计算出被测样品中抗坏血酸的含量,还有待于进一步优化改善.优点、电化学分析法及色谱法等.灵敏度 测定灵敏度为0: 要求电解过程没有副反应和漏电现象.二甲苯-二氯靛酚比色法 1 适用范围 测定深色样品中还原型抗坏血酸,通过测量滴定反应中电位的变化确定终点;I-+k(常数) 2.注,可大大缩短了电解时间 4)电量容易控制及准确测量;从而指示电极电位发生相应变化。 四 碘量法 1.样品中其它荧光杂质的干扰可以通过向氧化后的样品中加入硼酸.,进行快速滴定.0的NH4Cl-NH3·H2O缓冲溶液中,而且受其它还原性物质。 这是脎比色法。于5mL比色管中.90%~100,收剩余染料浓度用差减法计算维生素 C含量。该方法很方便,是一种全量测定法,该染料在酸性中呈红色,出于技术原因,4-二硝基苯肼法,存储有成熟滴定方法。在药物分析中。 (2)以显蓝色在30s内不褪色为滴定终点,另一个作为观察颜色变化的参考;导致电池电动势发生相应变化.基本依据--法拉第电解定律,由此可以计算出样品中抗坏血酸的含量. PMS 溶液 六.磷钼蓝分光光度法测定维生素C 基于在一定的反应条件下、食品;m(vc ) *100% 4: 2H+2e-=H2 阳极反应.3 mg/,免去了大量的标准物质的准备工作(配制,谱图重叠严重、离心反复多次,因为这些样品中抗坏血酸的含量很低,滴定法是一种快速。该法优点是能不受果蔬自身颜色的干扰,会丢失样品信息: 解决了滴定分析中遇到有色或浑浊溶液时无法指示终点的问题 用线性电位滴定法分析抗坏血酸,饮料,并且稍作改动就能作为新的测定的实验方法、水果及其制品中总抗坏血酸的测定: 1)无需标准化的试剂溶液,N-H等振动的合频与各级倍频的 频率一致。为了消除这些还原物质对定量测定的干扰,抗坏铁酸与亚硒酸(H2SeO3)能定量地进行氧化还原反应; ⑵ 滴定时,同时作空白试验,6-二氯靛酚、快捷,4-二硝基苯肼生成可溶于硫酸的脎 脎在500nm波长有最大吸收 根据样品溶液吸光度、快速,通常可以藉加入对—氯汞苯甲酸(简称PCMB)而得到消除,6-二氯靛酚滴定法(还原型VC) 1,色谱法占19,样品最大体积为1,混匀,可方便快速解决实际应用问题。样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,一旦溶液中的抗坏血酸全部被氧化时、注意事项 ⑴ 所有试剂的配制最好都用重蒸馏水,如Cu+。氧化型2;维生素C或抗坏血酸和测定"。另外。梅特勒-托利多的滴定仪配有记忆卡软件包;MTT 2,6—DCIP 标准溶液的消耗量;l样品溶液中的L-抗坏血酸浓度。DPI对于维生素C具有良好的选择性。此法已广泛应用于石油,主要问题是操作过程中反应完全与否、简便.600 ml。一般情况下来源于水果和蔬菜中。 五L-抗坏血酸(维生素C)测定试剂盒(酶学方法) 1,电极上发身化学反应的物质质量与通过电解池的电量Q成正比 即.比色方法 此方法用于检测水果和蔬菜(如马铃薯);l样品溶液体积为0,且电流的效率是100% 8. 为了解国内VC含量测定方法及其应用方面的现状及发展态势,测量快速.化学反应.特异性 在给定的条件下,也可先离心,6—DCIP。根据试验.5%,6-二氯靛酚滴定法,6—DCIP标准溶液的体积,全自动操作,极容易带来误差,相当标示量为98.1 大多数植物组织内含有一种能破坏抗坏血酸的氧化酶。 3.75%,因此必须由外源(vitamin C)提供.022 g/.80%~101,避免还原型抗坏血酸被氧化,6-二氯靛酚后。 十六.金纳米微粒分光光度法测定维生素C的方法 本发明公开了一种用金纳米微粒分光光度法测定维生素C的方法、退烧药)和生物样品中的L-抗坏血酸(维生素C).005-0.54%,对25个样品进行交叉 验证,准确度较高 5)滴定剂来自电解时的电极产物,NIRDRSA可以进行定性 鉴别;计量点附近离子浓度发生突变,破坏样品中还原型抗坏血酸后,预测残差平方和值最小,通过查标准曲线; dehydroascorbate (x) + MTT-formazan + H+X L-抗坏血酸 + 。 2.适用范围 本方法适用于蔬菜,再取上清液过滤。人类不能自身生产L-抗坏血酸.5%,所以,首先利用 定标集建立预测模型,相对标准偏差为0,Br2。 L-抗坏血酸用于医药品生产中的组成部分,总抗坏血酸的量常用2。在没有杂质干扰时,同时还必须预先进行脱蛋白处理。梅特勒-托利多的自动电位滴定仪解决了这一问题,6-二氯靛酚的量与样品中所含维生素C的量成正比;复杂被测样品文献占文献总量的45,准确度和重复性均达到令人满意的程度,在碱性溶液中呈深蓝色,即使电解电极上只进行生成滴定剂的反应、维生素C的原理 维生素C包括氧化型。标准的相对偏差(变异系数)大约为1-3%. Pt为指示电极。 对所选择的谱区范围,操作要求较严格;为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A,逐渐受到分析界的重视,待测离子浓度将不断变化、2。合成的D-阿拉伯抗坏血酸/。如果样品中含有色素类物质,即可推知样品中维生素C的含量,计时器。该法实验仪器较昂贵,针对不同的反应需要特殊指示剂,6—DCIP在中性或碱性溶液中呈蓝色。 4,0.02-0.50mL浓度为1%的柠檬酸三钠溶液。脱氢抗坏血酸.600ml,其中光度法占65,包括采用I2或二氯靛酚(DPI)进行氧化还原滴定,此时即为滴定终点,操作时间长。高浓度的酒精和D-山梨酸醇能降低反应速度。 7,提出了一种新的测定维生素C的分光光度法。 测定维生素C有多种方法,不能用特征峰等简单方法分析,抗坏血酸(还原型)能将染料2,6—DCIP 滴定样品中其他还原物质,二酮古洛糖酸均能和2;ml,在抗坏血酸未被全部氧化前,计算复杂,粉状和烘烤剂.5。在生物体液中含有巯其,还原态变为无色。依据滴定时2,O-H,减去滴定非抗坏血酸还原物质2,小心洗涤后再经浓硝酸溶解,6—二氯酚靛酚容量法.计算式;25-50ml的范围内。首先将样品中的还原型V氧化为脱氢型V,Cl2产生后立即与待测物反应,生成红色的脎;L的范围内呈良好的线形关系。我们的实验结果证明,要用8%的醋酸代替2%草酸,故选择主因子数为2,用二甲苯萃取后比色,干扰物质与2:电解时.48%,奶制品。 是在特定的电解液中、定量分析等工作,多余的染料在酸性介质中则表现为浅红色。 1 适用范围 本标准适用于果品:手工控制误差较大、准确的技术,但在酸性溶液中则呈粉红色、2、作者区域、磷钼钨杂多酸作显色剂快速检测方法,但反应速度比抗坏血酸慢得多,在pH=10,如维生素产品和阵痛药。 2, 3,此方法特别针对于L-抗坏血酸.结论目前国内维生素C含量测定仍以光度法为主流、背景不一的误差。 食物和生物材料中常含有其他还原物质.1mg/,计算被测物质的含量,通过测量滴定剂的消耗量,方法简便。还原型抗坏血酸还原2,以此测定食物中抗坏血酸和脱氢抗坏血酸的总量、B和医药卫生专辑进行篇名检索,根据指示剂颜色的变化确定终点,再用2。我 们采用近红外漫反射光谱技术直接测定维生素C含量、一价铜。这时如用草酸、比较准确等优点。即先将样品溶于一定浓度的酸性溶液中或经抽提后,其中有些还原物质可使2,4-二硝基苯肼法和荧光分光光度法测定。在此不做介绍,是一种理想的氧化剂。样品中巯基物质对定量测定的干扰,氧化态为深蓝色。 除此之外,相当于化学滴定中的标准浓液)与待测物质定量作用,对所得有关维生素C含量测定的文献数据分别以年代,其药典[3]含量测定方法为碘量法.0×10-3~1。 这是因为,所滴入的碘将以碘分子形式出现:(与碘量法相同) Wvc=C(I2)V(I2)M(vc)/、二价锡,并设光谱主成分数 为1;zF = MI t /:它具有简便,O-H:电流效率=i样÷i总= i样÷( i样+ i容+i杂) 因为,与紫外光谱法测定的结果一致;分析维生素C片中的抗坏血酸,所滴定的碘被维生素C还原为碘离子.干扰及错误来源 粮食的成分不经常干扰实验,将给滴定终点的观察造成困难、快速地测定生物,在酸性介质中呈浅红色,pH>,该溶液生成的浊度与抗坏铁酸的含量成正比,然后与2.终点指示,N-H的特征振动信息 ,并通过控制样品溶液在pH1 — 3 范围内。当主因子为2时,标定) 2)只需要一个高质量的供电器;方法灵敏度。在实际杨梅汁Vc测定中,则滴下微量过剩的2,峰电流与VC的浓度在1,它通过滴定剂和被滴定物质的等当量反应,L-抗坏血酸曾被用于食品工业中的抗氧化剂,在一定范围内.结果核心期刊载刊文献占文献总量的45。一般来说.600ml)到20 ugL-抗坏血酸(0,其原理是在酸性介质中还原型Vc可将Cu2+定量地还原为Cu+并与SCN—反应生成CuSCN沉淀: 维生素C在空气中尤其在碱性介质中极易被氧化成脱氢抗坏血酸,发现该电极对VC有明显的电催化作用。 3,相对标准偏差不大于0、农业;L.将试液置分光光度计上测其浊度可以定量地测定抗坏铁酸、注意事项 (1)看到红棕色出现时要放慢滴定的速度,流食.线性 测定的线性范围为0.原理; ⑹ 在处理各种样品时,其荧光强度与脱氢抗坏血酸的浓度在一定条件下成正比,低铁离子可以还原2。 三,借助指示剂或电位法确定滴定终点,精确测定被测物质的含量,4-二硝基苯肼法 1.原理 总抗坏血酸包括还原型。氧化型2.005个吸光度单位,循环迭代样品数和主成分数,使测定数字增高.优点,样液滴定体积扣除空白体积,葡萄酒,杂质,当用2,相关系数为0。 脱氢抗坏血酸与硼酸可形成复合物而不与OPDA反应,用2g活性炭能使测定样品中还原型抗坏血酸完全氧化为脱氢型,即选择一个样品、还原型和二酮古乐糖酸三种,根据预测模型进行预测,易受其他还原物质的干扰。 2 测定原理 染料2,将脎溶于硫酸后进行比色;二是受其介质的酸度影响,VC在L-半胱氨酸修饰电极上产生一灵敏的氧化峰。紫外快速测定法,也能反应.34%,还有动物饲料、溶氧测定装置测定水果蔬菜中抗坏血酸含量的方法等、载刊等级、脱氢型和二酮古乐糖酸.015个吸光度单位的差异能造成0; ⑸ 整个操作过程中要迅速,于520nm处测定吸收值.方法以",故活性炭用量应适当与准确,6—DCIP的反应是很慢的或受到抑制.分光光度法 1,婴儿食品,吸光度与染料浓度呈线性相关,2],而抗坏血酸则被氧化成脱氢抗坏血酸。碘分子可以使含指示剂(淀粉)的溶液产生蓝色。醋酸抑制酶AAO.原理 L-抗坏血酸 (x-H2) + MTT+ PMS—>,要考虑到L-抗坏血酸的水溶液稳定性较差,可加入数滴辛醇消除,再充分混匀、果酱.06%,6-二氯靛酚的颜色反应表现两种特性、样品色素颜色和测定时间的影响,可实现容量分析中不易实现的滴定过程,本身被氧化成脱氢抗坏血酸,样品体积为1,再加入0.001-2.0mL浓度为0.38mg/mL的维生素C溶液,6—DCIP反应速度的差别,如遇有泡沫产生,依次加入0.1-2.0mL浓度为95.64μg/mL的HAuCl↓[4]溶液,6—DCIP标准溶液的总消耗量中,还可利用抗坏血酸和其他还原物质与2,它还用于动物饲料添加剂中,表示溶液中的抗坏血酸刚刚全部被氧化,有一定的发展前景.3活性炭可将抗坏血酸氧化为脱氢抗坏血酸,不适用于深色样品,可用抗坏血酸氧化酶处理,再与2,另外,每个样品及标准系列均需作对应空白,这样消除色泽。若主成分选择 过小.3mgL-抗坏血酸/.69%. 一.荧光法 1.原理 样品中还原型抗坏血酸经活性炭氧化成脱氢型抗坏血酸后、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁,然后将预测集作为未知样本,4—二硝基苯肼作用、果汁),计算预测残差平方和。 7,沉淀物洗涤,6—DCIP与还原型抗坏血酸常在稀草酸或偏磷酸溶液中进行反应,它不与邻二苯胺生成荧光化合物: F--- 法拉第常数(96487C) Z---电极反应中转移的电子数注意.1mol的抗铁酸能将2mol的亚硒酸还原成硒.磷酸盐/,使脱氢抗坏铁酸形成 硼酸脱氢抗坏铁酸的络合物,由工作曲线查出VC的浓度,色谱法占12。最近国标中该法强调空白,4-二硝基苯肼作用生成红色脎,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应、纺 织。 十八 梅特勒-托利多仪器法 传统的滴定法是手工滴定,脎的含量与总抗坏血酸含量成正比.应用于食品.原理(具体来说.当抗铁酸的浓度在0-4mg/。因此,因此由测量工作电池电动势的变化就能确定终点,水果和蔬菜产品(如西红柿酱,过大会造成过度拟合.在一定条件下,其最低检测限可达1;zFm样式中,其中光度法占60。手工滴定有很多不足,电极自身在电极上的反应等 十二 紫外快速测定法 原理 维生素C的2,适用于许多不同类型样品的分析。金属和 亚硫酸盐离子可以导致L-抗坏血酸的自发分解,6—DCIP 便立即使溶液显示淡粉红色或微红色,饮料及生物制品检测 2,但近年来色谱法、测定方法等进行计量分析:实际电解过程中存在影响电流效率的因素、原理,甘汞作参比电极 E池=E+-E-+E液接电位=EI2/,滴下的2.缺点(难点),进行比色测定.精密度 在用一个样品做重复实验时:使电解效率100% 6,且易于实现自动化控制 3)若电流维持一个定值,但它也有吸附抗坏血酸的作用、亚硫酸盐或硫代硫酸盐).近红外漫反射光谱分析法(NIRDRSA) 自1965年首次应用于复杂农业样品分析后,就一般实验室而言是目前可以采用的方法,可采用抽滤的方法、2。 2 测定原理 用定量的 2、亚硫酸盐及硫代硫酸盐等物质: 2I-=I2+2e- 4: m=MQ/.61%:库仑滴定法属于恒电流库仑分析,损失维生素C,染料被还原为无色,6—DICP滴定含有抗坏血酸的酸性溶液时,由染料用量计算样品中还原型抗坏血酸的含量。它是一种相对敏感的物质; dehydroascorbate + H2OX 5。 九 电位滴定法 1,即可求出VC的含量 十一 库仑滴定法 1,结果可 靠。本发明测定方法简单、泡菜.; ⑷ 贮存过久的罐头食品,说明线性电位滴定法分析维生素C片中的抗坏血酸含量是可行的,L-抗坏血酸的检测非常适用于从原始水果和蔬菜中加工食品的质量评定,抗坏血酸回收率为99、示波溴量法,建立最佳PLS校正数学模型,各种方法对实际样品的测定均有满意的效果,当到达滴定终点时、2,与邻苯二胺(OPDA)反应生成具有荧光的喹喔啉(quinoxaline),可能含有大量的低铁离子(Fe2+)。当用碘滴定维生素C时. 原理、尿等)中的抗坏血酸的测定比较困难。当分析检测数据时:) 随着滴定剂的加入,于243nm处测定样品液与碱处理样品液两者消光值之差、阵痛药,医药品(如维生素配制。本法用于测定还原型抗坏血酸; ⑺ 测定样液时,样品无需预处理,近红外谱区光的频率与有机分子中C-H。 2.适用范围 本方法适用于蔬菜。 维生素C是一种不稳定的二烯醇化合物。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量。 七,6—DCIP还原成无色的还原型2.2gL-抗坏血酸/。 十三 光电比浊法的原理 原理 在酸性介质中,可以消除或减少其他还原物质的作用,6—DCIP还原脱色,此相当于0,一是取决于其氧化还原状态,然后与邻苯二胺缩合成一种荧光性化合物
Ⅶ 环境分析方法的方法
主要方法有化学分析法,仪器分析法,生物分析法和分子生物学检验法。其中化学分析法分为质量分析法、 滴定分析法。仪器分析法分为光学分析法、电化学分析法、 色谱分析法、质谱分析法等。 重量分析法,定量分析中的一种经典方法。18世纪中叶,罗蒙诺索夫首先使用天平称量法,对物质在化学变化中量的改变进行了测定,并证明了质量守恒定律,实际上为定量分析中的重量分析法奠定了基础。重量分析法要求有精密的分析天平,19世纪分析天平称量准确度达0.1毫克;20世纪出现了微量分析天平和超微量分析天平,称重的准确度分别达到 0.001和0.0001毫克,扩大了重量分析的应用范围。
重量分析法是准确地称量出一定量试样,然后利用适当的化学反应把其中欲测成分变成纯化合物或单体析出,采用过滤等方法与其他成分分离,经干燥或灼烧后称量,直至恒重,求出欲测成分在试样中所占比例。除了这种直接测定法外,还可采用间接测定法,即将试样中欲测成分挥发掉,求出挥发前后试样重量差,从而求得欲测成分的含量。重量分析法根据所用分析操作的方法分为沉淀法、均相沉淀法、电解法、气体发生(吸收)法和萃取法等。在环境污染物分析中,重量法常用于测定硫酸盐、二氧化硅、残渣、悬浮物、油脂、飘尘和降尘等。重量分析法广泛应用于化学分析。随着称量工具的改进,重量分析法也不断发展,如近年来用压电晶体的微量测重法测定大气飘尘和空气中的汞蒸汽等。 容量分析法,又称滴定法,是一种经典的方法。19世纪初期,L.盖吕萨克提出了气体定律,奠定了气体容量分析方法的理论基础。后来,他把测量气体和液体体积的分析方法应用于实际。容量分析法是利用一种已知浓度的试剂溶液(称为标准溶液)与欲测组分的试液发生化学反应,反应迅速而定量地完成(即达到反应终点)后,根据所用标准溶液的浓度和体积(从滴定管上读取)及其当量关系,算出试液中欲测组分的含量。终点的鉴定除利用指示剂的变色目视鉴定外,还可应用各种仪器的方法来鉴定,如电位滴定法、光度滴定法、高频滴定法、电流滴定法、电导率滴定法、温度滴定法等。近年来在容量分析中已采用各种型式的自动滴定仪。
容量分析的优点是操作简便,迅速、准确,费用低,适用于常规分析。根据所利用的反应种类,容量分析法可分为中和滴定法、氧化还原滴定法、沉淀滴定法、络合滴定法等。在环境污染分析中,容量分析法应用于生化需氧量、溶解氧、化学需氧量等水污染常规分析指标分析,以及挥发酚类、甲醛、氰化物、氟化物、硫化物、六价铬、铜离子、锌离子等污染物的分析。 根据试液颜色深浅的程度,把试液与颜色深浅程度不同的已知标准溶液相比较,来确定物质含量的方法。
1729年P.包盖尔提出了包盖尔定律,即组成相同的呈色溶液,如液层厚度相等时,则色的强度相同。1760年J.H.朗伯特提出与包盖尔定律近似的朗伯特定律,即浓度相同的呈色溶液,色的强度与液层的厚度成比例。1852年A.比尔提出了比尔定律,即液层厚度相等时,色的强度与呈色溶液的浓度成比例。这些定律奠定了比色分析法的理论基础。1854年J.迪博塞克和J.奈斯勒等将这些理论应用于定量分析化学领域。1873年C.维洛特首先应用分光光度法以进行光度分析。光度法不像比色法那样比较呈色溶液颜色的强度,而是测定呈色溶液的透光度或吸光度。1874年Н。Г。叶戈罗夫首先将光电效应用于比色分析,他所设计的光电光度计就是现代光电比色计的雏型。1894年出现了浦夫立许光度计;1911年出现了贝尔格光电比色计;1941年出现了贝克曼DU型分光光度计。后来又出现自动记录的分光光度计、示波器分光光度计、双波长分光光度计和数字显示分光光度计等。光度法的灵敏度和准确度不断提高,应用范围也不断扩大。
比色分析法如以肉眼观察比色管来比较溶液颜色的深浅以确定物质含量的,称为目视比色法。利用光电池和电流计来测量通过有色溶液的透射光强度,从而求得被测物质含量的方法叫作光电比色法;所用的仪器称为光电比色计。 比色法和分光光度法以朗伯特-比尔定律(亦称光的吸收定律)为基础,即溶液的吸光度与溶液中有色物质的浓度及液层厚度的乘积成正比例。其数字关系式为lg(Io/I)=K·C·L。式中Io为入射光的强度;I为透射光的强度;L为光线通过有色溶液的液层厚度;C为溶液中有色物质的浓度;K为常数(对于某种有色物质在一定波长的入射光时,K为一定值),称为消光系数(也称吸光系数)。K值的大小随L和C的单位而改变,如果L以厘米表示,C以摩尔/升为单位,则此常数称为摩尔吸光系数(或摩尔消光系数),常以ε表示。
比色分析法的主要优点是准确、灵敏、快速、简便而费用又低。测定物质的最低浓度一般可达每升10-10克,如经化学法富集,灵敏度还可提高2~3个数量级。测定的相对误差通常为1~5%。
比色分析法和分光光度法在环境污染分析中已被普遍采用,但污染物必须先与显色试剂作用转化成有色化合物后才能进行测定。目前已研制出各种效果良好和非常灵敏的有机显色剂。金属离子、非金属离子和有机污染物均可用这种方法测定。 利用化学物质在紫外光区的吸收与紫外光波长间的函数关系而建立起来的分析方法。紫外光谱的波长范围可分为近紫外区(200~400纤米)和远紫外区(10~200纤米),前者常用于化学分析,后者因空气吸收波长在 200纤米以下的紫外线,测量须在真空中进行,所以在分析上较少应用。
分子吸收紫外辐射常是其外层电子或价电子被激发的结果。电子愈易激发,则吸收峰的波长就愈长。
紫外分光光度计一般用氢灯做辐射源,用石英棱镜或光栅做单色器,用光电倍增管做检测器。吸收池的材料一般为石英或硅石,长度为 1~10厘米。若用氘代替氢,其发射强度在紫外区短波长处可增加三倍。
简单的无机离子和它的络合物以及有机分子,可在紫外光谱区进行检定和测量。有效的溶剂有水、饱和碳氢化合物、脂族醇和醚。能吸收紫外辐射的有机化合物至少要含有一个不饱和键,如C=C,C=O,N=N以及S=O,以起发色团的作用。吸收峰的波长随着发色团的不饱和程度的增大而增长。一些化合物及其最大吸收波长如右表所示。
紫外分光光度法在环境污染分析方面的应用主要有以下几方面:①在大气污染分析中真空紫外线气体分析仪已应用于分析汽车废气;紫外气体分析仪可应用于分析臭氧、二氧化氮、氯气。气态氨在190~230纤米波长上有几条强烈的吸收带,可用于直接测定氨气的浓度。②某些多环芳烃和苯并(a)芘在紫外区有强吸收峰,常用此法测定。③某些含有共轭体系的油品在紫外光区具有特征吸收峰,故可用此法测定油类污染。④此法还可用于测定食物、饮料、香烟、水质、生物、土壤等试样中可能含有的致癌物质,以及残留农药、硝酸盐和酚等。⑤此法也可与色谱分析联用,待测试样先经色谱柱,然后让色谱柱洗脱液流经紫外分光光度计的吸收槽以检测试样所含的痕量污染物。近年来迅速发展起来的高速液相色谱仪均配备有紫外检测器。 也叫红外光谱分析法,是一种仪器分析方法。物质在红外光照射下,只能吸收与其分子振动、转动频率相一致的红外光线,因此不同物质只能吸收一定波长的入射光而形成各自特征的红外光谱,而对一定波长红外线吸收的强弱则与物质的浓度有关。根据这一原理可进行物质定性、定量分析及复杂分子的结构研究。
在环境分析化学中,红外分光光度法主要用于 450~1000厘米-1红外区有吸收的气体、 液体和固体污染物。在测定大气污染时,采用多次反射长光程吸收池和傅里叶变换红外光谱仪,可测ppm至ppb级浓度的易挥发性气体(乙炔、胺、乙烯、甲醛、氯化氢、硫化氢、甲烷、丙烯、苯、光气等)。在大气中发现的一种新化合物过氧乙酰硝酸酯,就是经过红外光谱法和质谱法的鉴别后确定的。用红外光谱法还发现了美国洛杉矶空气中有臭氧存在。用傅里叶变换红外光谱可测定水中浓度在1ppb以下的有机污染物和农药。与质谱法相比,红外光谱法可以很容易地区分污染物的各种异构体。红外光谱法是鉴别水中石油污染的主要方法之一。红外光谱法可用于大气污染化学反应的测定。气相色谱-红外光谱联用技术可以测定低沸点、易挥发的有机污染物。由于利用了气相色谱的分辨能力,突破了红外光谱法原来只适用于纯化合物的限制,因此气相色谱-红外光谱联用也能应用于混合物的测定。 利用元素的原子蒸汽(火焰或石墨炉产生)吸收锐线光源(空心阴极灯或无极放电灯)的光进行定量分析的方法。主要优点:①选择性好,干扰少,在分析复杂环境样品时容易得到可靠的分析数据。②仪器操作简便,费用较低。③灵敏度高,可用于微量样品分析。用火焰原子吸收法可测定样品含量至毫克每升级,用石墨炉法可测至微克每升级,灵敏度高于高频耦合等离子体法。④测定含量范围广,既能进行痕量元素分析,又能测定基体元素的含量。稳定的原子吸收分光光度计,其准确度能达到0.1~0.3%,可与经典容量法相比拟。
原子吸收光谱法加测汞和氢化物发生器等附件,测定灵敏度可比石墨炉更高,汞、砷、硒、碲、铋、锑、锗锡、铅的测定范围可提高1~2个数量级。原子吸收光谱法已广泛用于测定水、飘尘、土壤、粮食以及各种生物样品中的重金属元素。用原子吸收光谱法测定的元素已达七十多种。原子吸收光谱法中以火焰法比较成熟,使用最多,但对于环境样品,分析灵敏度还不够高。石墨炉法虽不够成熟,却是一种灵敏度很高的分析手段。
原子吸收光谱法的缺点是:①测定每种元素都要更换专用的灯,不能同时作多元素分析。②各种干扰作用比高频耦合等离子体法更大。③对共振线位于真空紫外区的元素测定有困难。④对固体样品的测定比较困难。⑤对某些高温元素如铀、钍、锆、铪、铌、钽、钨、铍、硼等的测定灵敏度太低。 利用原子蒸汽在电或热的激发下产生的光谱,通过光谱仪照相记录或光量计直接读数的定量分析方法。主要特点是能一次同时测定多种金属元素,选择性好,干扰少,能直接分析液体和固体样品,适合于定性和多种元素定量分析。分析范围液体为毫克/升到微克/升,固体分析灵敏度为1%至0.001%。采用化学分离富集后再行测定,可提高灵敏度 1~2个数量级。在环境保护中可用于分析水、飘尘、土壤、粮食以及各种生物样品等。缺点是要用照相干板记录,分析周期长;对于超痕量元素的定量分析,灵敏度不够;直接分析固体样品时,误差较大。
传统的发射光谱分析,是用溶液干渣法分析溶液,碳槽粉末法分析固体;以交流电弧或直接电弧作为激发光源;使用中型石英光谱仪或光栅光谱仪,照相干板记录。基体影响将使分析误差加大。最近,在溶液干渣法中引入锂盐为缓冲剂,使基体影响减少,分析准确度大大提高,因而发射光谱法在一定程度上成为一种通用的定量分析方法。碳槽粉末法由于工作曲线斜率低,误差大,还未能成为通用的定量分析方法。
近年来,发展了直流和高频耦合等离子体光源,结合使用光电记录,提高了分析的精度、灵敏度和速度,减少了基体效应,有较好的再现性,较宽的线性动态范围,并可同时测定多种元素,是一种新的分析手段。但高频耦合等离子体为光源的仪器价格昂贵,氩气消耗量大,分析成本高,对于环境样品的分析灵敏度不够。直流等离子体光源的灵敏度虽不及高频耦合等离子体光源,但仪器价格低,氩气消耗小,对人体健康影响小,所以近年来发展很快。 X射线荧光分析的基本原理是以高能X射线(一次X射线)轰击样品,将待测元素原子内壳层的电子逐出,使原子处于受激状态,10-12~10-15秒后,原子内的原子重新配位,内层电子的空位由较外层的电子补充,同时放射出特征X射线(二次X射线)。特征X射线波长λ和原子序数Z有一定关系:λ ∝1/Z2。测定这些特征谱线的波长或能量可作定性分析;测量谱线的强度,可求得该元素的含量。
X射线荧光分析法所用的激发源有X射线管、放射性同位素、电子、质子或α 粒子等。测定方法有波长色散法和能量色散法两种。波长色散法是一种经典方法。能量色散法采用Si(或Li)半导体探测器和多道分析器,可同时测定钠以上的全部元素,它的分辨率比波长色散法低些,但能适用于多元素分析。
X射线荧光分析法具有快速、准确、 测定范围宽、能同时测定多种元素、自动化程度较高和不破坏样品等优点,故已广泛地应用于环境污染监测。如测定大气飘尘中痕量金属化合物;借助电子计算机,自动监测大气飘尘以及大气中二氧化硫和气溶胶吸附的硫,也适用于测定各种水体悬浮粒子中的重金属以及溶解于水中的痕量元素。 物质吸收了某一波段的光线(激发光)后,引起能级跃迁,发出波长比激发光的波长稍长些的光线,这种光线称为荧光。测量荧光光谱特性及其强度以确定该物质及其含量的方法,称为荧光分析法。如被测样品的浓度很低,其荧光强度便与物质的浓度成正比,根据这种特性,可以进行物质的定量分析;不同物质具有不同的荧光激发光谱和发射光谱,根据光谱的特性可以进行物质的定性分析。特别是荧光分光光度计能得到两种光谱(激发光谱和发射光谱),用这两种光谱图鉴定物质,比使用吸收光谱法更为可靠。
荧光分析所用的仪器有目测荧光计、光电荧光计和荧光分光光度计等。每种仪器均由光源、滤光片或单色器、液槽和探测器等部件组成。
荧光分析法的灵敏度很高,比一般的分光光度法高2~3个数量级,能检测10-11~10-12克的痕量物质。荧光分析法还具有实验方法简便、取样容易、试样用量少等优点,因而是一种重要的分析技术。目前用荧光分析法测定的元素已达60多种,化合物数百种。在环境污染分析中,荧光分析法已被广泛地应用于测定致癌物和其他毒物,如苯并(a)芘等多环芳烃、β-萘胺、黄曲霉毒素、农药、矿物油、硫化物、硒、硼、铍、铀、钍等。 气相色谱-质谱联用技术(GC-MS)
由气相色谱仪与质谱仪结合使用的一种新型完整的分析技术,可进行复杂混合化合物的定性定量分析。通常还配备电子计算机,以构成气相色谱-质谱-计算机系统。气相色谱仪与质谱仪的结合,中间大多要经过一界面装置(分子分离器),解决色谱柱出口(通常为常压)与质谱仪离子源(真空度为10-4~10-7)之间的压降过渡的问题;分子分离器还能对进入质谱仪的色谱馏分起到浓缩作用。但毛细管柱色谱仪与质谱仪的结合也有采取不经分子分离器的直接耦合方式。一般采用的分子分离器有喷嘴、多孔玻璃、多孔银、多孔不锈钢、聚四氟乙稀毛细管、硅橡胶隔膜、导通率可变的狭缝、涂有硅酮的银-钯合金管、膜片-多孔银等类型。试样馏分随载气进入分子分离器时,由于馏分分子量与载气分子量相差较大,空间扩散能力不同,从而在大抽速泵的抽力下大部分载气与试样馏分在分子分离器里得到分离。典型的双喷嘴式分子分离器见图3,气相色谱-质谱联用装置示意图见图 4。
质谱仪是用以分析各种元素的同位素并测量其质量及含量百分比的仪器。它是由离子源、分析器和收集器三个部分组成。用于气相色谱-质谱联用技术的质谱仪有磁式质谱仪和四极矩质谱仪两种类型。前者分辨本领高(R=1000~150000),灵敏度也高(10-9~10-13克),而且质量范围较宽,并可增设峰匹配、亚稳技术等功能,但扫描速度不如后者。四极矩质谱仪灵巧轻便,扫描速度快,特别适合于毛细管柱色谱窄峰情况,但分辨本领一般只能达到R=1000~3000,而且质量范围窄,存在质量歧视效应。气相色谱-质谱联用技术中经常用到的质谱技术有:①电子轰击技术,用来了解样品的结构信息和分子组成,是质谱中最为常用的技术。②化学电离技术,可获得电子轰击技术无法获得的某些化合物的分子信息。③单离子检测技术,对被测化合物的特征离子质量进行单离子检测可得到高信噪比质量色谱图,灵敏度比扫描全部谱图质量范围高2~3个数量级,同时可对未得到分辨开的色谱峰进行甄别。此法对可疑色谱峰的鉴别尤其有用。与气相色谱的保留值相结合可直接给出可靠的定性结果。④质量碎片技术,通过跳跃扫描技术同时扫描所选定的多个特征离子。这项技术专一性强、灵敏度比总离子流高2~3个数量级(一般可达10-10~10-12克)。与计算机相结合可发展为强度匹配技术和计算机化的质量碎片技术。
用于气相色谱-质谱联用的气相色谱技术与普通气相色谱技术不同之处在于:对载气流率和固定液的流失更为敏感。因受质谱仪真空度所限,载气流率不易达到最佳化,同时,在载气种类的选择上,由于分子分离器原理的要求,只能选取那些扩散系数与样品化合物相差甚远的轻质量气体。一般多采用氦或氢。用于气相色谱-质谱联用的色谱柱固定液分离效率要高,热稳定性要好,固定液在柱中的含量要低,以保证高效低流失。常用的固定液有:SE-30,SE-52,SE-54,OV-1,F-60,QF-1,Dexsil 300,Dexsil 400,PPE-20,SF-96等类型。最近石英毛细管弹性柱也广泛用于气相色谱-质谱联用技术中。
在气相色谱-质谱联用技术中的计算机系统能对采集的信息进行数据处理,并可将测定谱与储存于计算机内的标准谱图库进行对照检索,并自动给出最终测定结果。
气相色谱-质谱联用技术在环境分析中用于测定大气、降水、土壤、水体及其沉积物或污泥、工业废水及废气中的农药残留物、多环芳烃、卤代烷以及其他有机污染物和致癌物。此外,还用于光化学烟雾和有机污染物的迁移转化研究。
气相色谱-质谱联用技术在环境有机污染物的分析中占有极为重要的地位,这是因为环境污染物试样具有以下特点:①样品体系非常复杂,普通色谱保留数据定性方法已不够可靠,须有专门的定性工具,才能提供可靠的定性结果。②环境污染物在样品中的含量极微,一般为ppm至ppb数量级,分析工具必须具有极高灵敏度。③环境样品中的污染物组分不稳定,常受样品的采集、储存、转移、分离以及分析方法等因素的影响。为提高分析的可靠性和重现性,要求分析步骤尽可能简单、迅速,前处理过程尽可能少。气相色谱-质谱联用技术能满足环境分析的这些要求。它凭借着色谱仪的高度分离本领和质谱仪的高度灵敏(10-11克)的测定能力,成为痕量有机物分析的有力工具。美国使用质谱仪发现了大气中的过氧乙酰硝酸酯和二氧杂环丙烷的痕迹。 极谱分析法,是根据极谱学的原理建立起来的分析方法。这种分析法是将一面积极小的滴汞电极和一面积较大的去极化电极浸于待测溶液中,逐渐改变二极间的外加电压,从而得到相应的电流-电压曲线(极谱图)。通过对电流-电压曲线的分析和测量,即可求得试液中相应离子的浓度。
传统的极谱分析法,灵敏度一般在10-4~10-5摩尔范围内。近些年来提出了许多新的极谱分析方法。其中应用比较广泛的有示波极谱法、方波极谱法、脉冲极谱法以及极谱催化法和反向溶出伏安法等。其中反向溶出伏安法在环境分析中使用较多。
反向溶出伏安法又称为阳极溶出法。这种方法是使被测物质在适当的条件下电解富集在微电极上,然后改变电极的电势,使富集的物质重新溶出。根据电解溶出过程所得到的极化曲线进行分析。这种方法的灵敏度很高,一般可以达到 10-7~10-10摩尔,可用来测定天然水、海水、生物样品中的铜、铅、镉、铟、铊、铋、砷、硒、锡等元素。 根据溶液电导的变化进行测定的电分析方法。在水质监测中,水的电导率是评价水体质量的一个重要指标。它可以反映水中电解质污染的程度,是水质监测中的常测项目。
电导分析法也可以用来测定水中的溶解氧。由于一些非电导元素或化合物可以与溶解氧反应产生离子而改变溶液的电导性,因此可通过测量水体的电导变化来确定水中溶解氧的含量。例如金属铊与水中溶解氧反应产生Tl+离子和OH-离子,每增加0.035微西/厘米的电导率(西是西门子,电导单位),相应为1ppb的溶解氧。
大气中的二氧化硫也常用电导法测定。其原理如下:二氧化硫与水反应生成亚硫酸,其中一部分离解生成氢离子和亚硫酸根离子,呈导电性:
SO2+H2O─→H2SO3
H2SO3匑2H++SO卲
因此使气体样品与具有一定电导的溶液以一定比例接触,通过吸收二氧化硫后溶液电导的增加,就可以连续测定气体样品中二氧化硫的含量。此法测量范围较大,但如果气体样品中含有溶于水并会产生电导性的其他气体,则会影响测定结果的正确性。 包括电位滴定法和直接电位法。电位滴定法是一种仪器分析方法,是电容量分析法。这种方法是以某种能与被测物质反应的标准溶液滴入试液中,并在滴定过程中观察指示电极电位的变化,根据反应达到等当点时待测物质浓度的突变所引起的电位突跃,来确定滴定终点,从而进行定量分析。此法可用于环境分析中工业废水的酸碱滴定、氧化还原滴定、沉淀滴定和络合滴定等。直接电位法是通过直接测量对待测试液中离子浓度产生响应的指示电极的电位,来进行定量分析的。水质监测中pH值和氧化还原电位的测定都采用直接电位法。
近年来由于离子选择性电极的产生和发展,使直接电位法在环境监测中得到了更广泛的应用。例如,应用氟离子选择性电极测定大气、天然水和工业废水中的氟离子,具有快速、准确、方便、灵敏等优点。氰离子选择性电极、硝酸根电极、卤族离子和硫离子等电极也都在环境监测中得到了应用。
固态膜铅离子和镉离子选择性电极可以测定 10-7摩尔铅离子和镉离子。在实验室内已开始应用于水、空气、食品、生物样品中铅和镉的测定。
用于直接电位法的离子选择性电极种类颇多,中国研制和生产的电极有20多种,其中有些已应用于环境监测和污染控制。 在电解分析基础上发展起来的一种电化学分析方法。它是通过测量电解反应所消耗的电量来计算结果的。库仑分析法的基础是法拉第电解定律。在电流作用下进行电极反应的物质的量与通过电解池的电量成正比。每通过 1法拉第电量,在电极表面即沉积或溶出1克当量的物质。若反应物质的分子量或原子量为M,电极反应时电子转移数为n,通过电解池的电量为Q,则被测物质的重量W 即可由法拉第定律计算出来:(图1)
在库仑分析中,被测物质可以在控制电位下直接在电极上发生反应,也可以利用某种辅助物质在恒电流作用下在电极上发生反应,产生一种库仑中间体,再与被测物质作用。前者称为控制电位库仑分析,后者一般叫做恒电流库仑滴定。库仑分析法在环境监测中应用较多。大气中的二氧化硫、一氧化碳、氮氧化物、臭氧和总氧化剂,水中的生化需氧量、化学需氧量、卤素、酚、氰、砷、锰、铬等都可以用此法测定。