Ⅰ 简述气压制动系传动装置的特点
气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力且主车与被版拖的挂车以及汽车列权车之间制动驱动系统的联接装置结构简单、联接和断开都很方便,因此广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、贮气罐、制动阀等装置,使结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3~0.9s),因此在制动阀到制动气室和贮气罐的距离较远时有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为0.5~0.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。
Ⅱ 气压传动系统中的气源装置主要由哪几部分组成它们各起什么作用
最常见的有空气过滤器、油雾气、调压阀三部分组成。。空气过滤器是回将空气当中的杂质过滤干答净,起到清洁空气的作用。 油雾气主要是起润滑作用。油雾气可以提高气缸的使用寿命。 调压阀起到调节压力和稳压的作用。。
以上回答希望你能喜欢。
Ⅲ 液压与气压传动系统主要由什么组成
液压与气压传动系统主要由五部分组成:
一、动力装置,气源或油泵。
二、控制调节内装置,各种阀类元件。
三、执容行元件,缸或马达。
四、辅助装置,如油箱、过滤器、蓄能器、冷却器、分水滤气器、油雾器、消声器、管件、管接头以及各种信号转换器等。
五、工作介质,如液压油、空气。
Ⅳ 气压增压式液力制动传动装置有那些主要部件组成
空气液压制动传动装置(油气复合式) 一、目的 气压制动的长处是小的踏板力和小的踏板行程,能产生大的促动力。液压制动之长是滞后时间短,摩擦件少,性能稳定,非悬架支承件少,行驶平顺性好,适用多种高性能制动器,可用双轮缸,更合理的布置双管路系统。 为了兼取气压制动和液压制动两者的优点,不少重型汽车采用了空气液压制动传动装置。它和真空加力装置的原理一样,只是以压缩空气作为动力源。由于压缩空气的工作压力较大,多为(0.45~0.6)mpa,而真空式所具有的最大压力差,只能略等于大气压力。故加力气室小巧紧凑,安装位置不受限制,系统布局合理。 二、控制型式 这种制动传动装置,由于控制阀的安装和控制方式的不同,可分为两种控制型式: (1)直接控制式--利用气压控制阀同时直接控制两个单腔的增压器或一个双腔的增压器(又称气顶油式)。 (2)间接控制式--利用一个单腔液压主缸,同时控制两个带有气压控制阀的增压器(又称油控气、气顶油式)。 三、间接控制式的空气液压制动传动装置 (一)组成和构造特点 图20-67所示为双管路油控气、气顶油制动系统的组成。它由空气压缩机1、调压器2、贮气筒3、4组成加力气源。各管路分别装有2各自的空气增压器,用一个单腔液压主缸34控制。 图20-67 间接控制式的空气液压制动传动装置 1-空气压缩机;2-调压器;3、4-贮气筒,5、7-轮缸;6、9-空气增压器;8-制动主缸;10-气压表(二)空气增压器 1、空气增压器的组成 从图20-68看出:空气增压器是由加力气室17、辅助缸12和控制阀三部分组成。是气压和液压制动结构的变型体,故省略结构内容。 图20-68 间接控制的空气增压器简图 1-加力气室活塞;2-回位弹簧;3-控制阀活塞;4-放气螺钉;5-膜片芯管;6-空气滤清器;7-膜片;
8-排气阀;9-进气阀;10-放气螺钉;11-复合式单向阀;12-辅助缸;13-球阀;14-辅助缸活塞;
Ⅳ 气压增压式液力制动传动装置有哪些主要部件组成
空气液压制动传动装置(油气复合式) 一、目的 气压制动的长处是小的踏板力和小的踏板行程,能产生大的促动力。液压制动之长是滞后时间短,摩擦件少,性能稳定,非悬架支承件少,行驶平顺性好,适用多种高性能制动器,可用双轮缸,更合理的布置双管路系统。 为了兼取气压制动和液压制动两者的优点,不少重型汽车采用了空气液压制动传动装置。它和真空加力装置的原理一样,只是以压缩空气作为动力源。由于压缩空气的工作压力较大,多为(0.45~0.6)mpa,而真空式所具有的最大压力差,只能略等于大气压力。故加力气室小巧紧凑,安装位置不受限制,系统布局合理。 二、控制型式 这种制动传动装置,由于控制阀的安装和控制方式的不同,可分为两种控制型式: (1)直接控制式--利用气压控制阀同时直接控制两个单腔的增压器或一个双腔的增压器(又称气顶油式)。 (2)间接控制式--利用一个单腔液压主缸,同时控制两个带有气压控制阀的增压器(又称油控气、气顶油式)。 三、间接控制式的空气液压制动传动装置 (一)组成和构造特点 图20-67所示为双管路油控气、气顶油制动系统的组成。它由空气压缩机1、调压器2、贮气筒3、4组成加力气源。各管路分别装有2各自的空气增压器,用一个单腔液压主缸34控制。 图20-67 间接控制式的空气液压制动传动装置 1-空气压缩机;2-调压器;3、4-贮气筒,5、7-轮缸;6、9-空气增压器;8-制动主缸;10-气压表(二)空气增压器 1、空气增压器的组成 从图20-68看出:空气增压器是由加力气室17、辅助缸12和控制阀三部分组成。是气压和液压制动结构的变型体,故省略结构内容。 图20-68 间接控制的空气增压器简图 1-加力气室活塞;2-回位弹簧;3-控制阀活塞;4-放气螺钉;5-膜片芯管;6-空气滤清器;7-膜片;
8-排气阀;9-进气阀;10-放气螺钉;11-复合式单向阀;12-辅助缸;13-球阀;14-辅助缸活塞;
15-片状推叉;16-加力气室推杆;17-加力气室;18-保养孔 2.空气增压器的工作情况 (1)不制动时–––控制阀活塞3左侧c室无控制油压,控制阀的膜片7和活塞3在其回位弹簧的作用下被推到左侧极端位6置,进气阀9关闭,压缩空气不能进入d室。排气阀8开启,使d和e室与大气相通。加力气室的a室、b室也与大气相通, 活塞1被推到左侧极端位置。辅助缸活塞14与推杆16用销连接,也处在左侧极端位置。此时,片状推叉15球端将球阀13推开,使辅助缸左右两腔连通,增压器处于不工作状态,制动主缸和辅助缸油压与大气压力相等。 (2)制动时–––制动主缸的控制油液进入辅助缸活塞14的左侧,通过活塞14的中心孔,球阀13、出油阀11进入各自轮缸而制动。另一部分油液经节流小孔进入c室,推动活塞3和膜片7及芯管5右移。先消除排气阀间隙使排气阀8关闭,切断d室和e室的通道,再将进气阀9推开。贮气筒的压缩空气进入d室,并经空气管进入a室,推动活塞1、推杆16和活塞14右移。b室中的空气经e室排出,并产生较小的嘘声。此时,由于辅助缸活塞14离开了左侧的极端位置,片状推叉15对球阀13的推力消失,球阀立即关闭,活塞14右腔的油压升高。此时,作用在活塞14上的压力,等于增压推力和控制油压推力之和。但前者比后者更大,因而减轻了操纵力。 (3)维持制动时–––若踏板停止不动时,随着辅助缸活塞的右移,控制阀活塞左侧的油压趋于下降,膜片总成左移,进气阀9关闭,控制阀即处于“双阀关闭”的平衡状态。此时,控制活塞左侧的控制油压推力与右侧膜片上的气压推力平衡。辅助缸活塞左侧的推力也与右侧的总阻抗力平衡。 可见,制动主缸输出的控制油压,决定了控制阀随动输入的气压。当加力气室的气压达到一定值时(0.6mpa),辅助缸输出的油压达13mpa。制动踏板再继续踩下时,增压器即进入定值加力段。 (4)放松制动时–––制动主缸的输出油压撤消,作用在控制阀活塞3和辅助缸活塞14左侧的油压即撤消回位。排气阀8开启,a室的压缩空气经空气管返回d室,并经排气间隙、芯管和e室带着较大的嘘声排入大气。活塞1、活塞3、活塞14都返回左侧的极端位置。片状推叉15又顶开球阀13,各轮缸油管的油液推开复合式单向阀11返回辅助缸和主缸,制动即解除。当阀门11外侧油压达到残余压力值时即关闭,使辅助缸输出管路和各轮缸间保持一定的残压,制动主缸内无复合式单向阀,它和辅助缸间无残压存在。 (5)增压器失效时和无压缩空气时 由于辅助缸活塞有中心孔和球阀13,在增压器失效时和无压缩空气时,能进行应急制动。但制动力显著降低,且踏板沉重。因此项应急功能必须存在,辅助缸只能是单活塞式,双管路系统只能是并装两个空气增压器。 另外,从工作过程得知:在踩下制动踏板和放松制动踏板时,空气滤清器6处会有一小、一大的排气嘘声,这是人工检验空气增压器好坏的表征。
Ⅵ 液压与气压传动系统主要由什么组成
液压传动系统由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油(工作介质)。
1、动力元件
即液压泵,其职能是将原动机的机械能转换为液体的压力动能(表现为压力、流量),其作用是为液压系统提供压力油,是系统的动力源。
2、执行元件
指液压缸或液压马达,其职能是将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可完成回转运动。
3、控制元件
指各种阀利用这些元件可以控制和调节液压系统中液体的压力、流量和方向等,以保证执行元件能按照人们预期的要求进行工作。
4、辅助元件
包括油箱、滤油器、管路及接头、冷却器、压力表等。它们的作用是提供必要的条件使系统正常工作并便于监测控制。
5、工作介质
即传动液体,通常称液压油。液压系统就是通过工作介质实现运动和动力传递的,另外液压油还可以对液压元件中相互运动的零件起润滑作用。
液压传动优点:
1、液压传动可以输出较大的推力或大转矩,可实现低速大吨位的运动,这是其它传动方式所不能比的突出优点。
2、液压传动能很方便地实现大范围的无级调速(调速范围达2000:1),调速范围大,且可在系统运行过程中调速。
3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、 液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
气压传动优点:
1、工作介质是空气,来源于大自然中的空气,取之不尽,用之不竭,使用后直接排入大气而无污染,不需要设置专门的回气装置。
2、空气的粘度很小,所以流动时管道压力损失较小,节能,高效,适用于集中供应和远距离输送。
3、气动动作迅速,反应快,适合于高速往复运动;维护简单,调节方便,特别适合于轻型设备的控制。
4、工作环境适应性好,防火防爆。特别适合在易燃、易爆、潮湿、多尘、强磁、振动、辐射等恶劣条件下工作,外泄漏不污染环境,在食品、轻工、纺织、印刷、精密检测等环境中采用最适宜。
Ⅶ 单管路气压制动传动装置很少应用吗
这是:CA1091型汽车双管路制动传动装置
目前汽车都采用双管路制动传动装置,安全性能高,而且如果一边制 动失效也不会影响其他3个制动,这就是双管路制动传动装置的好处
1-空气压缩机 2-卸荷阀 3-单向阀 4-取气阀 5-湿贮气筒 6、15-油水放出阀
7-安全阀 8-单向阀 9-挂车制动控制阀 10-分离开关 11-连接头
12-气压过低报警开关13-后轮制动气室 14、17-制动灯开关
16-双腔串联制动控制阀 18-前轮制动气室 19-双针气压表 20-调压器
双管路制动传动装置,每个系统,基本上都是单独的,所以安全性高!!
排版可能不是蛮好,希望能帮到你,如有不懂的在问我!!
Ⅷ 气压增压式液力制动传动装置的组成
空气液压制动传动装置(油气复合式) 一、目的 气压制动的长处是小的踏板力和小的踏板行程,能产生大的促动力。液压制动之长是滞后时间短,摩擦件少,性能稳定,非悬架支承件少,行驶平顺性好,适用多种高性能制动器,可用双轮缸,更合理的布置双管路系统。 为了兼取气压制动和液压制动两者的优点,不少重型汽车采用了空气液压制动传动装置。它和真空加力装置的原理一样,只是以压缩空气作为动力源。由于压缩空气的工作压力较大,多为(0.45~0.6)mpa,而真空式所具有的最大压力差,只能略等于大气压力。故加力气室小巧紧凑,安装位置不受限制,系统布局合理。 二、控制型式 这种制动传动装置,由于控制阀的安装和控制方式的不同,可分为两种控制型式: (1)直接控制式--利用气压控制阀同时直接控制两个单腔的增压器或一个双腔的增压器(又称气顶油式)。 (2)间接控制式--利用一个单腔液压主缸,同时控制两个带有气压控制阀的增压器(又称油控气、气顶油式)。 三、间接控制式的空气液压制动传动装置 (一)组成和构造特点 图20-67所示为双管路油控气、气顶油制动系统的组成。它由空气压缩机1、调压器2、贮气筒3、4组成加力气源。各管路分别装有2各自的空气增压器,用一个单腔液压主缸34控制。 图20-67 间接控制式的空气液压制动传动装置 1-空气压缩机;2-调压器;3、4-贮气筒,5、7-轮缸;6、9-空气增压器;8-制动主缸;10-气压表(二)空气增压器 1、空气增压器的组成 从图20-68看出:空气增压器是由加力气室17、辅助缸12和控制阀三部分组成。是气压和液压制动结构的变型体,故省略结构内容。 图20-68 间接控制的空气增压器简图 1-加力气室活塞;2-回位弹簧;3-控制阀活塞;4-放气螺钉;5-膜片芯管;6-空气滤清器;7-膜片;
8-排气阀;9-进气阀;10-放气螺钉;11-复合式单向阀;12-辅助缸;13-球阀;14-辅助缸活塞;
15-片状推叉;16-加力气室推杆;17-加力气室;18-保养孔 2.空气增压器的工作情况 (1)不制动时–––控制阀活塞3左侧c室无控制油压,控制阀的膜片7和活塞3在其回位弹簧的作用下被推到左侧极端位6置,进气阀9关闭,压缩空气不能进入d室。排气阀8开启,使d和e室与大气相通。加力气室的a室、b室也与大气相通, 活塞1被推到左侧极端位置。辅助缸活塞14与推杆16用销连接,也处在左侧极端位置。此时,片状推叉15球端将球阀13推开,使辅助缸左右两腔连通,增压器处于不工作状态,制动主缸和辅助缸油压与大气压力相等。 (2)制动时–––制动主缸的控制油液进入辅助缸活塞14的左侧,通过活塞14的中心孔,球阀13、出油阀11进入各自轮缸而制动。另一部分油液经节流小孔进入c室,推动活塞3和膜片7及芯管5右移。先消除排气阀间隙使排气阀8关闭,切断d室和e室的通道,再将进气阀9推开。贮气筒的压缩空气进入d室,并经空气管进入a室,推动活塞1、推杆16和活塞14右移。b室中的空气经e室排出,并产生较小的嘘声。此时,由于辅助缸活塞14离开了左侧的极端位置,片状推叉15对球阀13的推力消失,球阀立即关闭,活塞14右腔的油压升高。此时,作用在活塞14上的压力,等于增压推力和控制油压推力之和。但前者比后者更大,因而减轻了操纵力。 (3)维持制动时–––若踏板停止不动时,随着辅助缸活塞的右移,控制阀活塞左侧的油压趋于下降,膜片总成左移,进气阀9关闭,控制阀即处于“双阀关闭”的平衡状态。此时,控制活塞左侧的控制油压推力与右侧膜片上的气压推力平衡。辅助缸活塞左侧的推力也与右侧的总阻抗力平衡。 可见,制动主缸输出的控制油压,决定了控制阀随动输入的气压。当加力气室的气压达到一定值时(0.6mpa),辅助缸输出的油压达13mpa。制动踏板再继续踩下时,增压器即进入定值加力段。 (4)放松制动时–––制动主缸的输出油压撤消,作用在控制阀活塞3和辅助缸活塞14左侧的油压即撤消回位。排气阀8开启,a室的压缩空气经空气管返回d室,并经排气间隙、芯管和e室带着较大的嘘声排入大气。活塞1、活塞3、活塞14都返回左侧的极端位置。片状推叉15又顶开球阀13,各轮缸油管的油液推开复合式单向阀11返回辅助缸和主缸,制动即解除。当阀门11外侧油压达到残余压力值时即关闭,使辅助缸输出管路和各轮缸间保持一定的残压,制动主缸内无复合式单向阀,它和辅助缸间无残压存在。 (5)增压器失效时和无压缩空气时 由于辅助缸活塞有中心孔和球阀13,在增压器失效时和无压缩空气时,能进行应急制动。但制动力显著降低,且踏板沉重。因此项应急功能必须存在,辅助缸只能是单活塞式,双管路系统只能是并装两个空气增压器。 另外,从工作过程得知:在踩下制动踏板和放松制动踏板时,空气滤清器6处会有一小、一大的排气嘘声,这是人工检验空气增压器好坏的表征。
Ⅸ 简述气压制动系传动装置的特点
气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力且主车与内被拖容的挂车以及汽车列车之间制动驱动系统的联接装置结构简单、联接和断开都很方便,因此广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、贮气罐、制动阀等装置,使结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3~0.9s),因此在制动阀到制动气室和贮气罐的距离较远时有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为0.5~0.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。