Ⅰ 哪些行业需要气体质量流量计,阀门,接头,气缸,空气泵等,有全面点的解释吗,哪些行业用的多
氮气和氩气用于焊接行业做保护气,
氮气也用于化工厂制氨气,硝酸等
氮主要用于合成氨,反应式为N2+3H2=2NH3( 条件为高压,高温、和催化剂。反应为可逆反应)还是合成纤维(锦纶、腈纶),合成树脂,合成橡胶等的重要原料。由于氮的化学惰性,常用作保护气体。以防止某些物体暴露于空气时被氧所氧化,用氮气填充粮仓,可使粮食不霉烂、不发芽,长期保存。液氨还可用作深度冷冻剂。作为冷冻剂在医院做除斑,包,豆等的手术时常常也使用, 即将斑,包,豆等冻掉,但是容易出现疤痕,并不建议使用。
氮是一种营养元素还可以用来制作化肥。例如:碳酸氢铵NH4HCO3,氯化铵NH4Cl,硝酸铵NH4NO3等等。
在汽车上氮气有着非常重要的作用:
1. 提高轮胎行驶的稳定性和舒适性。氮气几乎为惰性的双原子气体,化学性质极不活泼,气体分子比氧分子大,不易热胀冷缩,变形幅度小,其渗透轮胎胎壁的速度比空气慢约30~40%, 能保持稳定胎压,提高轮胎行驶的稳定性,保证驾驶的舒适性;氮气的音频传导性低,相当于普通空气的1/5,使用氮气能有效减少轮胎的噪音,提高行驶的宁静度。
2.防止爆胎和缺气碾行。爆胎是公路交通事故中的头号杀手。据统计,在高速公路上有46%的交通事故是由于轮胎发生故障引起的,其中爆胎一项就占轮胎事故总量的70%。汽车行驶时,轮胎温度会因与地面磨擦而升高,尤其在高速行驶及紧急刹车时,胎内气体温度会急速上升,胎压骤增,所以会有爆胎的可能。而高温导致轮胎橡胶老化,疲劳强度下降,胎面磨损剧烈,又是可能爆胎的重要因素。而与一般高压空气相比,高纯度氮气因为无氧且几乎不含水份不含油,其热膨胀系数低,热传导性低,升温慢,降低了轮胎聚热的速度,不可然也不助然等特性,所以可大大地减少爆胎的几率。
3.延长轮胎使用寿命 使用氮气后,胎压稳定体积变化小,大大降低了轮胎不规则磨擦的可能性,如冠磨、胎肩磨、偏磨,提高了轮胎的使用寿命;橡胶的老化是受空气中的氧分子氧化所致,老化后其强度及弹性下降,且会有龟裂现象,这时造成轮胎使用寿命缩短的原因之一。氮气分离装置能极大限度地排除空气中的氧气、硫、油、水和其它杂质,有效降低了轮胎内衬层的氧化程度和橡胶被腐蚀的现象,不会腐蚀金属轮辋,延长了轮胎的使用寿命,也极大程度减少轮辋生锈的状况。
4.减少油耗,保护环境。轮胎胎压的不足与受热后滚动阻力的增加,会造成汽车行驶时的油耗增加;而氮气除了可以维持稳定的胎压,延缓胎压降低之外,其干燥且不含油不含水,热传导性低,升温慢的特性,减低了轮胎行走时温度的升高,以及轮胎变形小抓地力提高等,降低了滚动阻力,从而达到减少油耗的目的。
氩的最早用途是向电灯泡内充气。焊接和切割金属也使用大量的氩。用作电弧焊接不锈钢、镁、铝和其他合金的保护气体,即氩弧焊
氩弧焊的危害:
(1)焊工尘肺 尘肺是指由于长期吸人超过规定浓度而引起肺组织弥漫性纤维化的粉尘所致的疾病。焊工尘肺是由于长期吸入超过允许浓度的以氧化铁为主并有无定型的二氧化硅、硅酸盐、锰、铁、铬以及臭氧、氮氧化物等混合烟尘和有毒气体,并在组织中长期作用所致的混合性尘肺。
据有关资料表明,目前我国焊工尘肺的最短发病工龄为7年,平均发病工龄为20~30年左右,并明显呈现北方寒冷地区发病率高,南方地区发病率较低的现象。这主要是因为北方气候寒冷、车间关闭门窗时间长、自然通风换气条件差的原因。
焊工尘肺主要表现为呼吸系统症状:气短、咳嗽、咳痰、胸闷和胸痛。部分焊工尘肺患者可呈无力、食欲减退、体重减轻以及神经衰弱症候群(如头痛、头晕、失眠、嗜睡、多梦、记忆力减退等),同时对肺功能也有影响。
(2)锰中毒 锰蒸气在空气中能很快氧化成灰色的氧化锰(MnO)及棕红色的四氧化三锰(Mn3O4)烟尘。焊工长期吸入超过允许浓度的锰及其化合物的微粒和蒸气,则可能造成锰中毒。
焊工锰中毒发病很慢,大多在接触3~5年后,甚至可达20年才逐渐发病。
慢性锰中毒早期表现为疲劳乏力,时常头痛、头晕、失眠、记忆力减退以及植物神经功能紊乱,如舌、眼睑和手指的细微振颤等。中毒进一步发展,则神经精神症状均更明显,而且转变、跨越、下蹲等都较困难,走路时表现左右摇摆或前冲后倒,书写时振颤不清等。
(3)焊工金属热 金属热是接触足够浓度的某些金属烟尘的工人常见的一种综合征。焊工金属热是指吸人焊接金属烟尘中0.05~0.5Pm的氧化铜、氧化锌、氧化铝、氧化锰及氧化铁微粒和氟化物等,容易通过上呼吸道进入末梢细支气管和肺泡,再进入血液,引起焊工金属热反应。金属热不是慢性病,而是一种复发性急性偶发病。其主要症状是下班后感觉嘴里有金属味,食欲不振、恶心、寒战,大多伴有低烧。焊工金属热在经常进行铜及铜合金焊接的工人中较为常见,经常在船舱、密闭容器内使用碱性焊条施焊者,亦容易出现此症。
氧气用于各种工厂1.冶炼工艺
在炼钢过程中吹以高纯度氧气,氧便和碳及磷、硫、硅等起氧化反应,这不但降低了钢的含碳量,还有利于清除磷、硫、硅等杂质。而且氧化过程中产生的热量足以维持炼钢过程所需的温度,因此,吹氧不但缩短了冶炼时间,同时提高了钢的质量。高炉炼铁时,提高鼓风中的氧浓度可以降焦比,提高产量。在有色金属冶炼中,采用富氧也可以缩短冶炼时间提高产量。
2.化学工业
在生产合成氨时,氧气主要用于原料气的氧化,例如,重油的高温裂化,以及煤粉的气化等,以强化工艺过程,提高化肥产量。
3.国防工业
液氧是现代火箭最好的助燃剂,在超音速飞机中也需要液氧作氧化剂,可燃物质浸渍液氧后具有强烈的爆炸性,可制作液氧炸药。
4.医疗保健方面
供给呼吸:用于缺氧、低氧或无氧环境,例如:潜水作业、登山运动、高空飞行、宇宙航行、医疗抢救等时。
Ⅱ 可以用“固体氢氧化钠中滴加浓氨水”方法制备氨气的原因是什么
氨水是弱碱,在水中不完全电离,向固体氢氧化钠中滴加氨水,会使氨水中OH-的浓度增大,从而导致水中NH3浓度的升高,同时,氢氧化钠溶于水放热,温度的升高使氨气的溶解度降低,从而会使暗器逸出。
氨气的实验室制法
加热固体铵盐和碱的混合物反应原理:2NH4Cl+Ca(OH)2=△= CaCl2+2NH3↑+2H2O[2]
反应装置:固体+固体加热制气体装置。包括试管、酒精灯、铁架台(带铁夹)等。
净化装置(可省略):用碱石灰干燥。
收集装置: 向下排空气法,验满方法是用湿润的红色石蕊试纸置于试管口,试纸变蓝色;或将蘸有浓盐酸的玻璃棒置于试管口,有白烟产生。
尾气装置:收集时,一般在管口塞一团棉花球,可减少NH3与空气的对流速度,收集到纯净的NH3.
注意事项:
不能用NH4NO3跟Ca(OH)2反应制氨气。硝酸铵受撞击、加热易爆炸,且产物与温度有关,可能产生NH3、N2、N2O、NO。
实验室制NH3不能用NaOH、KOH代替Ca(OH)2。因为NaOH、KOH是强碱,具有吸湿性(潮解)易结块,不易与铵盐混合充分接触反应。又KOH、NaOH具有强腐蚀性在加热情况下,对玻璃仪器有腐蚀作用,所以不用NaOH、KOH代替Ca(OH)2制NH3。
用试管收集氨气要堵棉花。因为NH3分子微粒直径小,易与空气发生对流,堵棉花目的是防止NH3与空气对流,确保收集纯净;减少NH3对空气的污染。
实验室制NH3除水蒸气用碱石灰,而不采用浓H2SO4和固体CaCl2。因为浓H2SO4与NH3反应生成(NH4)2SO4。NH3与CaCl2反应能生成CaCl2·8NH3(八氨合氯化钙)。CaCl2+8NH3= CaCl2·8NH3
2.用氮化物制取氨气
可以用氮化物与水反应或者叠氮化物分解。如:
Li3N + 3H2O = 3LiOH + NH3↑
3.加热浓氨水
反应原理:NH3·H2O =△= NH3↑+H2O。
这种方法一般用于实验室快速制氨气。
装置:烧瓶,酒精灯,铁架台,橡胶塞,导管等。
注意事项:加热浓氨水时也会有水蒸气,需要用干燥装置除杂。同上,这种方法制NH3除水蒸气用碱石灰,而不要采用浓H2SO4和固体CaCl2。
4.浓氨水中加固态碱性物质
反应原理:浓氨水中存在以下平衡:
NH3+H2O←→ NH3·H2O←→NH4+ +OH-,[5]
加入固态碱性物质(如CaO,NaOH,碱石灰等),消耗水且使c(OH-)增大,使平衡移动,同时反应放热,促使NH3·H2O的分解。
氨气工业制法
空气中的氮气加氢工艺流程有很多方案,世界各国采用的也不尽相同。至2014年世界上比较先进的有布朗三塔三废锅氨合成圈、伍德两塔两废锅氨合成圈、托普索S-250型氨合成圈和卡萨里轴径向氨合成工艺。随着大型化的发展,氨合成圈已成为降低合成氨能耗的主要单元之一。近代大型氨合成装置的代表设计有三种:
1.布朗的三塔三废锅氨合成圈
布朗三塔三废锅氨合成圈由3个合成塔和3个废锅组成。塔内有催化剂筐,气体由外壳与筐体的间隙从底部向上流过,再由上向下轴向流过催化剂床。三塔催化剂装填量比二塔多,最终出口氨含量可以从16.5%提高到21%以上,减少了循环气量,节省了循环压缩功。合成塔控制系统非常简单,各塔设有旁路用阀门调节气体入塔温度。由于氨合成反应平衡的限制,决定了催化剂温度,不需要调节催化剂床层反应温度。
2.伍德两塔三床两废锅氨合成圈
伍德两塔三床两废锅氨合成圈采用两个较小的合成塔,3个催化剂床,两塔塔后各连一个废锅。这种结构使反应温度分布十分接近最优的反应温度,气体的循环量和压降小,投资和能耗节省,副产高压蒸汽多。
3.托普索两塔三床两废锅氨合成圈
托普索S-250系统采用无下部换热的S-200合成塔和S-50合成塔组成。还包括:(1)废锅和锅炉给水换热器回收废热;(2)合成塔进出气换热器,水冷器,氨冷器和冷交换器,氨分离器及新鲜气氨冷器等。合成塔为径向流动催化剂床,采用1.5mm~3mm小催化剂,压降为0.3MPa。由S-200型塔出来的合成气,经废热锅炉回收热量,并保证入S-50型塔的合适温度,以提高单程合成率。
其他方法
天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。
重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩[6] 的洗涤剂。
煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
化工上氨气的用途
用途: 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。
贮运: 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。